JPH03127467A - Perfect discharge device of zinc-bromine battery - Google Patents

Perfect discharge device of zinc-bromine battery

Info

Publication number
JPH03127467A
JPH03127467A JP1264217A JP26421789A JPH03127467A JP H03127467 A JPH03127467 A JP H03127467A JP 1264217 A JP1264217 A JP 1264217A JP 26421789 A JP26421789 A JP 26421789A JP H03127467 A JPH03127467 A JP H03127467A
Authority
JP
Japan
Prior art keywords
discharge
battery
stacks
zinc
bromine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1264217A
Other languages
Japanese (ja)
Inventor
Hatsuo Nakao
初男 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1264217A priority Critical patent/JPH03127467A/en
Publication of JPH03127467A publication Critical patent/JPH03127467A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To avoid the generation of an imperfect discharge by connecting discharge resistance units responding to the battery stacks by using multipole connector devices. CONSTITUTION:By connecting multipole connectors (CN) 72 and 78, exclusive discharge resistance units 74a, 74b,...74n-1 are connected to battery stacks 64a, 64b,...64n-1 respectively, and the stacks 64 and the resistance units 74 are made into the opposite condition one to one to perform the discharge operations independently with different discharge amounts respectively. As a result, even though the discharge capacities in the stacks 64 are uneven each other, the discharge operations are carried out until all the stacks finish the discharges. In such a way, only the service times of the stacks 64 up to the time the discharge is finished are different, but all the discharges can be completed finally, and an improper condition such as an imperfect discharge and a reverse charging can be avoided securely.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電気自動車用亜鉛−臭素電池の完全放電制御装
置、特に電池スタックを構成する各セル間における亜鉛
電析状態のばらつきを解消するための亜鉛−臭素電池の
完全放電制御装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a complete discharge control device for zinc-bromine batteries for electric vehicles, particularly for eliminating variations in the state of zinc electrodeposition between cells constituting a battery stack. The present invention relates to a complete discharge control device for a zinc-bromine battery.

[従来の技術] 電解液への溶解度が高く電極反応特性の優れた臭素を正
極活物質とし、亜鉛を負極活物質とする亜鉛−臭素電池
が開発されており、貯蔵・取扱いの容易性や高エネルギ
ー密度など多くの利点から例えば電気自動車用駆動源と
しての期待を集めている。
[Prior art] Zinc-bromine batteries have been developed in which bromine, which has high solubility in electrolytes and excellent electrode reaction characteristics, is used as the positive electrode active material and zinc is used as the negative electrode active material. Due to its many advantages such as energy density, it is attracting attention as a driving source for electric vehicles, for example.

第3図に特開昭57−199167号公報に開示されて
いる一般的な亜鉛−臭素電池の原理構成を示す。
FIG. 3 shows the principle structure of a general zinc-bromine battery disclosed in Japanese Patent Application Laid-Open No. 57-199167.

正極10及び負極12がそれぞれ配設された正極側反応
槽14と、負極側反応槽16との間で電解液18を介し
て次式で示される電気化学反応が行われる。
An electrochemical reaction expressed by the following equation is performed between a positive electrode side reaction tank 14 in which a positive electrode 10 and a negative electrode 12 are disposed, and a negative electrode side reaction tank 16 via an electrolytic solution 18.

(負極) Z n”+ 2 e”” =’  Z n放
電 (1) このような亜鉛−臭素電池では、 電解液18と して臭化亜鉛ZnBr2水溶液が用いられ、必要に応じ
て電導変向上剤、臭素錯化剤、デンドライト抑制剤など
が添加される。
(Negative electrode) Z n"+ 2 e"" = ' Z n discharge (1) In such a zinc-bromine battery, a zinc bromide ZnBr2 aqueous solution is used as the electrolyte 18, and if necessary, a conductivity improvement agent, Bromine complexing agents, dendrite inhibitors, etc. are added.

充電時には反応槽14.16内において前記第1式に→
で示す充電反応が行われて正極10側では臭素B r 
2が生成され電解液18内に溶解し、他方負極12側で
は亜鉛Znが析出し、負極12上に亜鉛の析出層が形成
されていく。
At the time of charging, in the reaction tank 14.16, the above-mentioned formula 1 →
A charging reaction shown by is performed, and bromine B r
On the other hand, on the negative electrode 12 side, zinc Zn is precipitated, and a deposited layer of zinc is formed on the negative electrode 12.

また、放電時には−で示す前記充電時と逆の反応が行わ
れ、正極10側では臭素B r 2が還元されて臭素イ
オンBr−となって電解液18中に溶解し、負極12側
では亜鉛の析出層が酸化されて亜鉛イオンZn2+とな
って電解液18中に溶解する。
Further, during discharging, a reaction opposite to that during charging is performed, which is indicated by -, and on the positive electrode 10 side, bromine Br2 is reduced and becomes bromine ions Br-, which are dissolved in the electrolytic solution 18, and on the negative electrode 12 side, zinc The deposited layer is oxidized to become zinc ions Zn2+ and dissolved in the electrolytic solution 18.

ここで、上記電気反応が行われる反応槽14.16内は
充電時に生成する臭素B r 2により自己放電を招く
ことがないようその内部がセパレータ膜20により分離
されており、該セパレータ膜20は電解液18中の各種
イオンは通過させるがこれに溶解する臭素B r 2の
透過を阻止することによって自己放電防止作用を果す。
Here, the inside of the reaction tank 14.16 in which the electrical reaction is carried out is separated by a separator film 20 to prevent self-discharge due to bromine B r 2 generated during charging. It allows various ions in the electrolytic solution 18 to pass through, but blocks the passage of bromine B r 2 dissolved therein, thereby achieving a self-discharge prevention effect.

セパレータ膜20としては、一般にイオン透過膜あるい
は多孔質膜が用いられるが、電池の内部抵抗を小さくす
るという観点からは後者が望ましい。
As the separator membrane 20, an ion-permeable membrane or a porous membrane is generally used, and the latter is preferable from the viewpoint of reducing the internal resistance of the battery.

そして、図示例に示すような電解液循環型の電池におい
ては、充電時における化学反応によって得たエネルギー
を貯蔵するための正極側電解液貯蔵槽22と負極側電解
液貯蔵槽24とを含む。
The electrolyte circulation type battery as shown in the illustrated example includes a positive electrolyte storage tank 22 and a negative electrolyte storage tank 24 for storing energy obtained through a chemical reaction during charging.

前記正極側電解液貯蔵槽22は、正極側反応槽14との
間で配管26.28を介して電解液循環経路を形成して
おり、循環経路に設けたポンプ30によって正極側反応
槽14内における反応後の正極側電解液18aを貯蔵槽
22へ送り出すと共に、貯蔵槽22内の電解液18aを
反応槽14に供給する。
The positive electrode side electrolyte storage tank 22 forms an electrolyte circulation path with the positive electrode side reaction tank 14 via piping 26, 28, and the positive electrode side reaction tank 14 is pumped by a pump 30 provided in the circulation path. The positive electrode side electrolyte 18a after the reaction in is sent to the storage tank 22, and the electrolyte 18a in the storage tank 22 is supplied to the reaction tank 14.

ここで、電解液18内に臭素錯化剤が添加されていると
、充電時に発生した臭素B r 2は錯体化され、電解
液18に不溶な錯体化合物32となって析出し、該錯体
化合物32は貯蔵層22の底部に形成された錯体貯蔵部
34内に順次沈澱貯蔵されていく。
Here, if a bromine complexing agent is added to the electrolytic solution 18, the bromine B r 2 generated during charging is complexed and precipitated as a complex compound 32 insoluble in the electrolytic solution 18, and the complex compound 32 is sequentially precipitated and stored in a complex storage section 34 formed at the bottom of the storage layer 22.

また、この錯体貯蔵部34と配管28とはバルブ36を
有する錯体供給管38により接続されており、バルブ3
6は通常開放状態におかれて錯体貯蔵部34に沈澱した
錯体化合物32は配管28を介して正極側反応槽14へ
送り出される。
Further, the complex storage section 34 and the pipe 28 are connected by a complex supply pipe 38 having a valve 36.
6 is normally kept open, and the complex compound 32 precipitated in the complex storage section 34 is sent to the positive electrode side reaction tank 14 via the pipe 28.

また、前記負極側電解液貯蔵槽24は同様にして負極側
反応槽16との間で配管40.42を介して電解液循環
経路を形成し、循環経路に設けたポンプ44により負極
側反応槽16内で反応した負極側電解液18bを貯蔵t
124へ送り出すと共に、貯蔵槽24から新たな電解液
18bを反応槽16に向は供給する。
In addition, the negative electrode side electrolyte storage tank 24 similarly forms an electrolyte circulation path with the negative electrode side reaction tank 16 via piping 40, 42, and the negative electrode side reaction tank is operated by a pump 44 provided in the circulation path. The negative electrode side electrolyte 18b that has reacted in the 16 is stored t
At the same time, a new electrolytic solution 18b is supplied from the storage tank 24 to the reaction tank 16.

このように、亜鉛−臭素電池では貯蔵槽22゜24内に
電解液18を十分貯蔵し、該貯蔵電解液18を用いて充
電時には前記第1式に示す充電反応を行い、錯体貯蔵部
32に臭素の錯体化合物を貯蔵し負極12上に亜鉛の析
出槽を形成して電力を貯蔵する。
In this way, in the zinc-bromine battery, the electrolytic solution 18 is sufficiently stored in the storage tanks 22 and 24, and when charging using the stored electrolytic solution 18, the charging reaction shown in the first equation is carried out, and the complex storage section 32 is charged. A bromine complex compound is stored, a zinc precipitation tank is formed on the negative electrode 12, and electric power is stored.

第4図にこのような原理を用いて形成される一般的な亜
鉛−臭素電池の電池スタックの分解斜視図を示す。
FIG. 4 shows an exploded perspective view of a typical zinc-bromine battery stack formed using this principle.

この電池スタックは、電極フレーム48とセパレータフ
レーム50とが交互に多数積層され、その両端がエンド
ブロック52(図示例では一方のみを示す)により閉止
されてなる。
This battery stack has a large number of electrode frames 48 and separator frames 50 stacked alternately, and both ends thereof are closed by end blocks 52 (only one is shown in the illustrated example).

各電極フレーム48は、その表及び裏面に正または負極
をなす電極部48aが形成され、セパレータフレーム5
0を介して両側に位置する電極フレーム48の一方の電
極部48aが正極、そして他方の電極部48が負極を形
成するように構成されている。他方、セパレータフレー
ム52にはセパレータ膜50aが担持されている。
Each electrode frame 48 has an electrode portion 48a forming a positive or negative electrode on its front and back surfaces, and the separator frame 5
One electrode part 48a of the electrode frame 48 located on both sides of the electrode frame 48 is configured to form a positive electrode, and the other electrode part 48 forms a negative electrode. On the other hand, the separator frame 52 carries a separator film 50a.

そして、一方の電極部48aとセパレータ膜50aの片
面との間の空間が一方の反応槽を形成し、セパレータ膜
50aの他方の面と次の電極部48aとの間の空間が他
側の反応槽を形成し、これらによって電池スタックの基
本機能単位であるセルが構成されている。
The space between one electrode section 48a and one side of the separator membrane 50a forms one reaction tank, and the space between the other side of the separator membrane 50a and the next electrode section 48a forms the other side reaction tank. These cells form cells, which are the basic functional units of the battery stack.

そして、この電池スタックのエンドブロック52を含む
全セルを貫通して正及び負極側反応槽に連通する供給側
共通マニホールド53及び排出側共通マニホールド54
が形成されている。
A supply side common manifold 53 and a discharge side common manifold 54 penetrate through all the cells including the end block 52 of this battery stack and communicate with the positive and negative side reaction tanks.
is formed.

従って、各電解液貯蔵槽から供給される電解液18は、
各供給側共通マニホールド53を経て各セパレータフレ
ーム50に形成されたチャンネル50bを通り、そのセ
パレータ膜50aとの接続部に形成された整流板50c
によって各反応槽内にまんべんなく平均して導かれて所
定の化学反応に供された後、排出側供給マニホールド5
4を通って再び電解液貯蔵槽に帰還することになる。
Therefore, the electrolyte 18 supplied from each electrolyte storage tank is
Passing through each supply side common manifold 53, passing through a channel 50b formed in each separator frame 50, and a rectifying plate 50c formed at the connection part with the separator film 50a.
After being evenly introduced into each reaction tank and subjected to a predetermined chemical reaction, the discharge side supply manifold 5
4 and returns to the electrolyte storage tank again.

以上のように構成される亜鉛−臭素電池では、1セルが
約1.6〜1.8Vの電圧を持ち、電池スタックは60
のセルが積層されて成る略100■/スタツクのものが
通常使用されている。
In the zinc-bromine battery constructed as described above, one cell has a voltage of about 1.6 to 1.8V, and the battery stack has a voltage of about 60V.
A stack of about 100 cells/stack is usually used.

しかし、負荷として用いられるモータの種類等によって
は更に高い電圧が要求されることがある。
However, a higher voltage may be required depending on the type of motor used as the load.

この場合、1スタツクのセル数を増加させるとこれに伴
いシャント電流も増大するという弊害を避けられない。
In this case, it is unavoidable that when the number of cells in one stack is increased, the shunt current also increases.

このため、複数の電池スタックを直列に接続するという
方法が採用される。
For this reason, a method is adopted in which multiple battery stacks are connected in series.

ところが、このように電池スタックを複数個接続して充
放電作用を繰り返していくうちに各スタック電極表面上
における亜鉛の電析状態が乱れ、これがセパレータ膜2
0を破損させたり電解液18の質を劣化されるなどの問
題を引き起し結果的に電池寿命を縮めてしまうという問
題があった。
However, as multiple battery stacks are connected in this way and charging and discharging are repeated, the state of zinc electrodeposition on the surface of each stack electrode is disturbed, and this causes the separator film 2
This causes problems such as damage to the electrolyte 18 and deterioration of the quality of the electrolyte 18, resulting in a shortened battery life.

このような問題に対処するため、電池非使用状態で電池
容量をゼロにする完全放電を定期的に行って析出されて
いる亜鉛を消費し尽くす必要があり、その際の完全放電
装置として実開昭62−144066号公報等では第5
図に示す回路が採用されていた。
To deal with this problem, it is necessary to periodically perform a complete discharge to reduce the battery capacity to zero when the battery is not in use, and to consume the deposited zinc. No. 5 in Publication No. 144066, etc.
The circuit shown in the figure was used.

図において、電気自動車に搭載され車両駆動用電源とし
て機能する複数個直列接続された亜鉛−臭素電池のスタ
ック56a、56b、・・・ 56nの両端が負荷抵抗
器58に接続され完全放電作用が行われる。
In the figure, both ends of a stack 56a, 56b, . . . , 56n of zinc-bromine batteries connected in series, which are installed in an electric vehicle and function as a power source for driving the vehicle, are connected to a load resistor 58 to perform a complete discharge action. be exposed.

[発明が解決しようとする課題] ここで、上記第5図のような回路で完全放電を行わせる
場合、全ての電池スタック56の放電容量、その他の特
性が同じであれば問題はないが完全に同一とするのは難
しい。
[Problem to be Solved by the Invention] Here, when a complete discharge is performed using a circuit as shown in FIG. It is difficult to make them the same.

そして、この特性がスタック相互で相違している場合に
は、第6図の実線で示す電池システム全体の電圧及び二
点鎖線で示す電池システム全体の放電電流がOに収束し
て見掛上完全放電作用が終了しているにも拘らず、−の
電池スタックは一点鎖線で示すような容量を残存させた
ままの不完全放電状態に陥り、また他の電池スタックは
逆充電されて負の電圧が印加されてしまっているという
ような事態が生じる。
If this characteristic differs between stacks, the voltage of the entire battery system shown by the solid line in Figure 6 and the discharge current of the entire battery system shown by the two-dot chain line converge to O and appear to be completely complete. Even though the discharging action has ended, the - battery stack falls into an incompletely discharged state with remaining capacity as shown by the dashed line, and the other battery stacks are reversely charged and have a negative voltage. A situation may arise in which the voltage is applied.

ここで、上記逆充電作用は負極(亜鉛極)側での臭素の
発生をもたらし、次に充電する際に電析される亜鉛とこ
の臭素とが反応(自己放電)して放電容量の低下を引き
起こす。ところが、逆充電される電池スタックはもとも
と放電容量の少ない側の電池に限られており、この結果
電池間の容量差が一層拡大してしまう。
Here, the above-mentioned reverse charging effect causes the generation of bromine on the negative electrode (zinc electrode) side, and during the next charging, the zinc deposited reacts with this bromine (self-discharge), causing a decrease in discharge capacity. cause. However, the battery stack that is reverse-charged is originally limited to batteries with lower discharge capacity, and as a result, the difference in capacity between the batteries further increases.

従って、このような直列接続による放電方法には、その
特性が均一な電池のみを選択して使用しなければならな
かった。
Therefore, in such a series connection discharge method, it is necessary to select and use only batteries with uniform characteristics.

本発明は上記従来の課題に鑑みなされたものであり、そ
の目的は不完全放電や逆充電を引き起こすことなく複数
の全電池スタックを確実に放電を完了させ得る亜鉛−臭
素電池の完全放電装置を提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to provide a complete discharge device for zinc-bromine batteries that can reliably complete the discharge of all battery stacks without causing incomplete discharge or reverse charging. It is about providing.

[課題を解決するための手段] 上記目的を達成するために本発明は、放電抵抗を各電池
スタックに対応した複数の抵抗子から構成し、前記各電
池スタックと対応する各抵抗子とをそれぞれ同峙に接続
する多極コネクタ手段を備え、各電池スタック毎に放電
抵抗を接続して逆充電を防止したことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention comprises a discharging resistor including a plurality of resistors corresponding to each battery stack, and each resistor corresponding to each battery stack is It is characterized in that it is equipped with multi-polar connector means that are connected in parallel, and that a discharge resistor is connected to each battery stack to prevent reverse charging.

[作用] 従って本発明によれば、完全放電実施時には各電池スタ
ックのそれぞれが多極コネクタ手段により個別に放電抵
抗に接続されるので、各スタックはスタック相互間の放
電容量差にかかわりなく、それぞれ異なる放電電流をも
って完全にその電池容量が消費し尽くされるまで滞りな
く放電が行われるので、複数のスタックからなる電池シ
ステムとしての放電が終了しているのにもかかわらず個
々のスタックに残存電圧が生じたり、逆充電が行われる
などの不完全放電の発生は未然に回避される。
[Function] Therefore, according to the present invention, each battery stack is individually connected to a discharge resistor by the multi-pole connector means when performing a complete discharge, so that each battery stack can be connected to a discharge resistor independently, regardless of the difference in discharge capacity between the stacks. Since the battery is discharged without any delay until the battery capacity is completely consumed with different discharge currents, there is no residual voltage in each individual stack even though the battery system consisting of multiple stacks has finished discharging. Occurrence of incomplete discharge such as reverse charging or reverse charging can be avoided.

[実施例] 以下、図面に基づき、本発明の好適な実施例を説明する
[Examples] Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第1図に本発明装置の回路構成を示す。図において、亜
鉛−臭素電池スタック54a、64b。
FIG. 1 shows the circuit configuration of the device of the present invention. In the figure, zinc-bromine cell stacks 54a, 64b.

・・・、64nは、直列接続されており、その両端部の
端子66.68は図示しない電気自動車用モータなど通
常の負荷に接続される。
..., 64n are connected in series, and terminals 66 and 68 at both ends thereof are connected to a normal load such as an electric vehicle motor (not shown).

そして、図示例において、各電池スタック64間には、
更に中間端子7 Q a、  70 b、  ・・・7
0n(が設けられている。通常の電池使用時(充放電、
車両走行時等)では、これら中間端子70は開放されて
おり、これらは多極コネクタ72に接続されている。
In the illustrated example, between each battery stack 64,
Furthermore, intermediate terminals 7 Q a, 70 b, . . . 7
0n( is provided. During normal battery use (charging/discharging,
When the vehicle is running, etc.), these intermediate terminals 70 are open and connected to a multi-pole connector 72.

以上の各構成要素は電気自動車に搭載されている。他方
車外に設置された完全放電用負荷抵抗器74が中間端子
76 a、  76 b、 −、76n−1により、電
池スタック64の数と等しく分割されてそれぞれ対応す
る抵抗子74a、74b、・・・、74n−1を構成し
ており、該中間端子の他端が他側の多極コネクタ78に
接続されている。
Each of the above components is installed in an electric vehicle. On the other hand, the complete discharge load resistor 74 installed outside the vehicle is divided into equal parts to the number of battery stacks 64 by intermediate terminals 76 a, 76 b, -, 76 n-1, and corresponding resistors 74 a, 74 b, . . . , 74n-1, and the other end of the intermediate terminal is connected to the multi-pole connector 78 on the other side.

この結果、前記両コネクタ72と78とを接続すること
によって、各電池スタック64a、64b、・・・、6
4n−1毎に専用の放電抵抗子74a。
As a result, by connecting both the connectors 72 and 78, each battery stack 64a, 64b, . . . , 6
A dedicated discharge resistor 74a is provided for every 4n-1.

74b、・・・、74n−1が接続されることとなり、
電池スタック64と放電抵抗子74とが1対1で対応し
た状態で独立的にそれぞれ叉なる放電電流をもって放電
作用が進められることとなる。
74b, ..., 74n-1 will be connected,
With the battery stack 64 and the discharge resistor 74 in one-to-one correspondence, the discharge action proceeds independently with different discharge currents.

なお、上記両多極コネクタ72.78は、例えばプラグ
−コンセント型式の構造を採ることが好適である。
Note that it is preferable that the multipolar connectors 72 and 78 have a plug-outlet type structure, for example.

従って、各電池スタック64相互の放電容量が不均一で
あっても何ら影響なく、それぞれのスタックが滞りなく
放電を完了するまで放電作用が遂行されることとなる。
Therefore, even if the discharge capacity of each battery stack 64 is uneven, there is no effect, and the discharge operation is performed until each stack completes discharge without any problem.

この結果、各電池スタック64の電圧及び電流は、第2
図に示すような経時変化を呈しく図示例では、電池2個
の場合を示す)、各電池スタック64は、放電完了まで
の使用時間が異なるだけで、最終的には全て放電を完了
でき、不完全放電や、逆充電等の不都合な事態を確実に
回避され得る。
As a result, the voltage and current of each battery stack 64 are
Each battery stack 64 exhibits a change over time as shown in the figure (the illustrated example shows a case of two batteries), and each battery stack 64 is able to complete discharging in the end, with only a difference in the usage time until completion of discharging. Inconvenient situations such as incomplete discharge and reverse charging can be reliably avoided.

[発明の効果] 以上説明したように本発明によれば、多極コネクタ手段
を用いて各電池スタックに対応した放電抵抗子を接続す
る構成としたので、完全放電及び逆充電の恐れは全スタ
ックにおいて消滅するので、多少放電容量の異なる電池
スタックであっても問題なく直列接続の電池システムに
適応し得る。
[Effects of the Invention] As explained above, according to the present invention, since the discharge resistor corresponding to each battery stack is connected using the multi-pole connector means, the risk of complete discharge and reverse charging is eliminated from all battery stacks. Therefore, even battery stacks with slightly different discharge capacities can be applied to a series-connected battery system without any problem.

更に、繰り返し充放電時の亜鉛電析の不均一さからくる
電池間の放電容量差に対する許容レベルが広がるので、
定期的に行わなければならない完全放電作業の頻度を低
減させ得る。
Furthermore, the tolerance level for differences in discharge capacity between batteries due to uneven zinc deposition during repeated charging and discharging is expanded.
The frequency of complete discharge work that must be performed periodically can be reduced.

更に、多極コネクタを接続するというワンタッチ操作で
確実に完全放電を行わせることができるので、従来のよ
うに車載状態にある電池スタック間に放電容量差が発生
した場合でも、電池を降ろして各スタック順に放電を完
了させるという面倒な手間が不要となる。
Furthermore, it is possible to ensure complete discharge with the one-touch operation of connecting a multi-pole connector, so even if there is a difference in discharge capacity between battery stacks installed in a vehicle, unlike conventional methods, the batteries can be unloaded and each The troublesome effort of completing the discharge in stack order becomes unnecessary.

加えて、実質的な従来装置へ中間端子を増設するだけの
設計変更ですみ、極めて簡単に対応できるという効果が
ある。
In addition, the present invention has the advantage of being extremely easy to adapt to, as it requires only a design change to add an intermediate terminal to a substantial conventional device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明装置の回路構成図、 第2図は、第1図に係る装置の端子電圧及び放電電流と
放電時間との関係を示すグラフ図、第3図は、従来の亜
鉛−臭素電池の原理構成図、第4図は、第3図に係る電
池のスタックを分解斜視図で示した図、 第5図は、従来の完全放電装置を示す構成図、第6図は
第5図に係る装置の端子電圧及び放電電流と放電時間と
の関係を示すグラフ図である。 64 ・・・ 電池スタック 72゜ 7 8 ・・・ 多極コネクタ手段 放電抵抗 中間端子
FIG. 1 is a circuit configuration diagram of the device of the present invention, FIG. 2 is a graph showing the relationship between terminal voltage, discharge current, and discharge time of the device according to FIG. 1, and FIG. FIG. 4 is an exploded perspective view of the battery stack according to FIG. 3, FIG. 5 is a configuration diagram showing a conventional complete discharge device, and FIG. It is a graph figure which shows the relationship between the terminal voltage of the apparatus based on a figure, discharge current, and discharge time. 64...Battery stack 72゜78...Multi-pole connector means discharge resistor intermediate terminal

Claims (1)

【特許請求の範囲】 直列接続された複数の電池スタックを電池非使用時に放
電抵抗を介して短絡させ、完全放電を行う亜鉛−臭素電
池の完全放電装置において、前記放電抵抗を各電池スタ
ックに対応した複数の抵抗子から構成し、前記各電池ス
タックと対応する各抵抗子とをそれぞれ同時に接続する
多極コネクタ手段を備え、 各電池スタック毎に放電抵抗を接続して逆充電を防止し
たことを特徴とする亜鉛−臭素電池の完全放電装置。
[Claims] In a complete discharge device for a zinc-bromine battery that performs complete discharge by short-circuiting a plurality of battery stacks connected in series through a discharge resistor when the batteries are not in use, the discharge resistor corresponds to each battery stack. The battery comprises a plurality of resistors, and includes multi-polar connector means for simultaneously connecting each of the battery stacks and the corresponding resistors, and a discharge resistor is connected to each battery stack to prevent reverse charging. Features: Complete discharge device for zinc-bromine batteries.
JP1264217A 1989-10-09 1989-10-09 Perfect discharge device of zinc-bromine battery Pending JPH03127467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1264217A JPH03127467A (en) 1989-10-09 1989-10-09 Perfect discharge device of zinc-bromine battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1264217A JPH03127467A (en) 1989-10-09 1989-10-09 Perfect discharge device of zinc-bromine battery

Publications (1)

Publication Number Publication Date
JPH03127467A true JPH03127467A (en) 1991-05-30

Family

ID=17400123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1264217A Pending JPH03127467A (en) 1989-10-09 1989-10-09 Perfect discharge device of zinc-bromine battery

Country Status (1)

Country Link
JP (1) JPH03127467A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140062416A1 (en) * 2010-10-15 2014-03-06 Sanyo Electric Co., Ltd. Electricity storage system and control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140062416A1 (en) * 2010-10-15 2014-03-06 Sanyo Electric Co., Ltd. Electricity storage system and control device
US8958188B2 (en) * 2010-10-15 2015-02-17 Sanyo Electric Co., Ltd. Electricity storage system and control device

Similar Documents

Publication Publication Date Title
US5650239A (en) Method of electrode reconditioning
US5177425A (en) Method of charging and discharging battery and power source apparatus adopting the same
EP0165000B1 (en) Metal-halogen secondary battery
US20040151977A1 (en) Regenerative fuel cell with ph control
WO2000054359A1 (en) Dual battery systems and methods for maintaining the charge state of high power batteries
CN111247683A (en) Compact absorptive glass mat battery
US3615844A (en) Method of operating a battery having consumable anode material
JPH03127467A (en) Perfect discharge device of zinc-bromine battery
JP2967635B2 (en) Operation method of metal halogen battery
JP3574514B2 (en) Redox flow type secondary battery system
JPH03127468A (en) Perfect discharge device of zinc-bromine battery
JP3307048B2 (en) Operating method of zinc-bromine battery
JPH03254075A (en) Perfect discharge device for zinc-bromine battery
US20230291016A1 (en) Lead acid battery separator and lead acid battery
JPH0834110B2 (en) Operating method of zinc-bromine battery
KR102283441B1 (en) A Battery Cell for Redox flow battery having a mixed serial and parallel structure
JPH0265072A (en) Electrolyte circulation type metal-halogen battery
JPH03147278A (en) Zinc-bromine battery
JPH03122975A (en) Complete discharge control system of zinc-bromine battery for electric vehicle
JPH03272572A (en) Zinc-bromine battery of electrolyte circulation type
JPH0467578A (en) Stacking structure for stacked electrolyte circulation type battery
JPH02129866A (en) Zinc-bromine battery
US4948684A (en) Alkaline zinc battery having improved shelf-life, rechargeability, charge retention and capacity retention
JPH01176658A (en) Lead-acid battery
JPH03272573A (en) Zinc-bromine battery