JPH0265072A - Electrolyte circulation type metal-halogen battery - Google Patents

Electrolyte circulation type metal-halogen battery

Info

Publication number
JPH0265072A
JPH0265072A JP63214629A JP21462988A JPH0265072A JP H0265072 A JPH0265072 A JP H0265072A JP 63214629 A JP63214629 A JP 63214629A JP 21462988 A JP21462988 A JP 21462988A JP H0265072 A JPH0265072 A JP H0265072A
Authority
JP
Japan
Prior art keywords
electrode
negative electrode
positive electrode
negative
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63214629A
Other languages
Japanese (ja)
Inventor
Nobuo Watanabe
修夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63214629A priority Critical patent/JPH0265072A/en
Publication of JPH0265072A publication Critical patent/JPH0265072A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries
    • H01M6/46Grouping of primary cells into batteries of flat cells
    • H01M6/48Grouping of primary cells into batteries of flat cells with bipolar electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To improve the current concentration in a negative electrode and obtain an electrolyte circulation type battery with good performance and a long life by making the area of the negative electrode provided in a reaction tank larger than the area of a positive electrode. CONSTITUTION:A sheet of an electrode 12 serves as both negative and positive electrodes for separate reaction cells, the wide face of the obliquely cut electrode 12 serves as the negative electrode 12a, and the narrow face serves as the positive electrode 12b. For the current distribution at the time of a charge, the current flowing from the positive electrode 12b to the negative electrode 12a at the electrode end is not concentrated at the negative electrode 12 and dispersed. The metal, e.g., Zn, generated at the time of a charge is uniformly deposited on the negative electrode 12a as shown by B in the figure. The electrolytic reaction at the time of a discharge is smoothly performed, and the battery performance is not reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電解液循環式金属−ハロゲン電池、特に電解液
を循環させて充放電反応を行う反応槽(反応セル)内に
設けられている正極及び負極の構成の改良に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a metal-halogen battery with a circulating electrolyte solution, particularly a battery provided in a reaction tank (reaction cell) in which a charging/discharging reaction is performed by circulating an electrolyte solution. This invention relates to improvements in the configurations of positive and negative electrodes.

[従来の技術] 電解液循環式の金属−ハロゲン電池が蓄積エネルギの大
きい二次電池として電気自動車の電源用などに用いられ
ている。
[Prior Art] A metal-halogen battery with an electrolyte circulation type is used as a secondary battery with a large amount of stored energy, for example, as a power source for an electric vehicle.

第4図には、従来の金属−臭素電池の概要が示されてお
り、反応セル10には負極12a及び正極12bが、こ
の両極の間にはセパレータ14が設けられ、このセパレ
ータ14により負極室16と正極室18とが分離形成さ
れている。
FIG. 4 shows an outline of a conventional metal-bromine battery, in which a reaction cell 10 is provided with a negative electrode 12a and a positive electrode 12b, and a separator 14 is provided between these two electrodes. 16 and a positive electrode chamber 18 are formed separately.

そして、この負極室16には負極液貯蔵槽20から負極
液がポンプ24により循環され、正極室18には正極液
貯蔵槽22から正極液がポンプ26により循環されてい
る。また、正極液貯蔵槽22内には、臭素錯化合物貯蔵
槽28が設けられており、この臭素錯化合物はバルブ3
0により必要な時期に正極電解液に混合される。
The negative electrode liquid is circulated into the negative electrode chamber 16 from the negative electrode liquid storage tank 20 by a pump 24, and the positive electrode liquid is circulated into the positive electrode chamber 18 from the positive electrode liquid storage tank 22 by a pump 26. Further, a bromine complex compound storage tank 28 is provided in the positive electrode liquid storage tank 22, and this bromine complex compound is stored in the valve 3.
0, it is mixed into the positive electrode electrolyte at the required time.

このような金属−臭素電池として、例えば亜鉛(Z n
)−臭素(B r)が用いられ、正極電解液には四級ア
ンモニウム塩等の錯化剤が加えられており、この錯化剤
は臭素と反応して電解液に不溶でかつ電解液よりも比重
の大きい臭素錯化合物を形成する役割をする。
As such a metal-bromine battery, for example, zinc (Z n
)-bromine (Br) is used, and a complexing agent such as a quaternary ammonium salt is added to the positive electrode electrolyte, and this complexing agent reacts with bromine and becomes insoluble in the electrolyte and more It also plays a role in forming bromine complexes with high specific gravity.

このような構成によれば、充電時には図中の負極12a
にZnが、正極12bにBrが生成し、次のような反応
が行われる。
According to such a configuration, during charging, the negative electrode 12a in the figure
Zn is produced at the positive electrode 12b, and Br is produced at the positive electrode 12b, and the following reaction takes place.

正極 2Br−1−*  Br2+’le負極 Zn2
”+2e  −42n そして、正極12bで生成された臭素は前記錯化剤と反
応して臭素錯化合物を形成し、この臭素錯化合物は図示
100のように反応セル10から臭素錯化合物貯蔵槽2
8に供給され沈澱することになる。一方、負極12aで
生成した亜鉛は負極12aの電極板上に電解析出(電析
)することになる。
Positive electrode 2Br-1-* Br2+'le Negative electrode Zn2
"+2e -42n Then, the bromine generated at the positive electrode 12b reacts with the complexing agent to form a bromine complex, and this bromine complex is transferred from the reaction cell 10 to the bromine complex storage tank 2 as shown in the figure 100.
8 and will be precipitated. On the other hand, the zinc generated at the negative electrode 12a is electrolytically deposited (electrodeposited) on the electrode plate of the negative electrode 12a.

従って、放電時には各電極において前記反応式と逆の反
応が行われ、これにより電極間から所定の電流が取り出
される。
Therefore, during discharge, a reaction opposite to the reaction formula described above takes place at each electrode, and a predetermined current is thereby extracted from between the electrodes.

このような電解液循環式電池は、例えば特開昭57−1
99167号公報に示されるバイポーラ型電池として用
いられており、これを第5図に基づいて説明する。
Such an electrolyte circulation type battery is described, for example, in Japanese Patent Application Laid-Open No. 57-1
This is used as a bipolar type battery shown in Japanese Patent No. 99167, and this will be explained based on FIG.

バイポーラ型電池は、電極ユニット34とセパレータユ
ニット38を交互に積層配置することにより構成され、
前記電極ユニット34はカーボン含釘の導電性プラスチ
ックから成る電極12を絶縁プラスチックから成る外枠
34aで保持する。
A bipolar battery is constructed by alternately stacking electrode units 34 and separator units 38,
The electrode unit 34 holds the electrode 12 made of carbon-containing conductive plastic with an outer frame 34a made of insulating plastic.

この電極ユニット34の電極12は、米国特許No41
69816に示される共押出し成型あるいはインサート
・インジェクション等によって外枠34aに接続形成さ
れており、その表裏の面で負極12a及び正tffi1
2bの両極の役目(一方は別の反応セルの電極となる)
をする構成となっている。また、セパレータユニット3
8はセパレータ14を所定の厚さを有するセパレータ枠
38aで保持し、このセパレータ枠38aには電解液流
路40が形成される。
The electrode 12 of this electrode unit 34 is disclosed in U.S. Patent No. 41
It is connected to the outer frame 34a by co-extrusion molding or insert injection as shown in No. 69816, and the negative electrode 12a and the positive tffi1 are
The role of both poles of 2b (one becomes the electrode of another reaction cell)
It is configured to do this. Also, separator unit 3
8 holds the separator 14 with a separator frame 38a having a predetermined thickness, and an electrolyte flow path 40 is formed in this separator frame 38a.

このような電極ユニット34とセパレータユニット38
を積層すると、一方の電極ユニット34の負極12aと
セパレータ14との間に第4図の負極室16が、他方の
電極ユニット34の正極12bとセパレータ14との間
に正極室18が形成され、この負極室16及び正極室1
8には前記電解液流路40から電解液が供給される。な
お、セパレータ14には整流器42が形成されており、
これにより電解液の流れを良好にすることができる。
Such an electrode unit 34 and separator unit 38
When stacked, a negative electrode chamber 16 in FIG. 4 is formed between the negative electrode 12a of one electrode unit 34 and the separator 14, and a positive electrode chamber 18 is formed between the positive electrode 12b of the other electrode unit 34 and the separator 14. This negative electrode chamber 16 and positive electrode chamber 1
8 is supplied with electrolyte from the electrolyte flow path 40. Note that a rectifier 42 is formed in the separator 14,
This makes it possible to improve the flow of the electrolyte.

[発明が解決しようとする課題] ところで、従来の電極ユニット34では負極12aの周
縁部に金属(Zn等)が集中して電析するという問題が
あった。すなわち、第6図に示されるように、従来では
負極12aと正極12bの面積はほぼ同一となっており
、充電時において電流が周縁部に集中することから、負
極12aの周縁部に図示Aのような電析した金属(Zn
等)の不均一な盛り上がりが生じる。
[Problems to be Solved by the Invention] Incidentally, the conventional electrode unit 34 has a problem in that metal (such as Zn) is concentrated and deposited on the peripheral edge of the negative electrode 12a. That is, as shown in FIG. 6, in the past, the areas of the negative electrode 12a and the positive electrode 12b are almost the same, and since the current concentrates at the peripheral part during charging, the peripheral part of the negative electrode 12a as shown in FIG. Electrodeposited metals such as (Zn
etc.), uneven swelling occurs.

このような電析不良が生じると、セパレータ14と電極
12との距離が1mm程度しかないこともあり、電析し
た金属がセパレータを損傷し、電池性能及び電池寿命を
低下させてしまう。
If such electrodeposition failure occurs, the distance between the separator 14 and the electrode 12 may be only about 1 mm, and the electrodeposited metal may damage the separator, reducing battery performance and battery life.

発明の目的 本発明は前記従来の問題点を解決することを課題として
なされたものであり、その目的は、負極に電析する金属
の厚さを均一にすることのできる電解液循環式金属−ハ
ロゲン電池を提供することにある。
OBJECTS OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and its purpose is to provide an electrolyte-circulating metal-plating method that can uniformize the thickness of the metal electrodeposited on the negative electrode. Our goal is to provide halogen batteries.

[課題を解決するための手段] 前記目的を達成するために、本発明に係る電解液循環式
金属−ハロゲン電池は、正極及び負極が対向して設けら
れた反応槽内に電解液を循環させる電解液循環式金属−
ハロゲン電池において、負極の面積を正極の面積よりも
大きくしたことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the electrolyte circulating metal-halogen battery according to the present invention circulates an electrolyte in a reaction tank in which a positive electrode and a negative electrode are provided facing each other. Electrolyte circulating metal
A halogen battery is characterized in that the area of the negative electrode is larger than the area of the positive electrode.

[作用] 以上の構成によれば、正極と負極との間に生じる電流に
おいて、電極端部において密集する電流分布が負極側で
は面積が広いので均一となり、金属は負極板上に均一に
電析することになる。
[Function] According to the above configuration, in the current generated between the positive electrode and the negative electrode, the current distribution that is concentrated at the electrode end becomes uniform on the negative electrode side because the area is wide, and the metal is deposited uniformly on the negative electrode plate. I will do it.

従って、放電時の電解反応もスムーズに行われ、電池性
能を低下させることもなくなる。
Therefore, the electrolytic reaction during discharge is carried out smoothly, and there is no deterioration in battery performance.

[実施例] 以下、図面に基づいて本発明の好適な実施例を説明する
[Embodiments] Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第1図には、本発明に係る電解液循環式金属−ハロゲン
電池の電極ユニット44の第1実施例が示されており、
この第1実施例は、第5図で示したように、電極ユニッ
トとセパレータユニットを交互に積層して反応セルを複
数個設ける電池に関するものである。
FIG. 1 shows a first embodiment of an electrode unit 44 for a circulating electrolyte metal-halogen battery according to the present invention.
This first embodiment relates to a battery in which a plurality of reaction cells are provided by alternately stacking electrode units and separator units, as shown in FIG.

本発明において特徴的なことは、不均一な電析をなくす
ために対向する電極において負極の面積を正極の面積よ
りも大きくしたことである。
A feature of the present invention is that the area of the negative electrode is made larger than the area of the positive electrode in the opposing electrodes in order to eliminate non-uniform electrodeposition.

従って、第1実施例では、電極ユニット44の電極12
における外枠44aとの接続部46を斜めにカッティン
グし、この外枠44aとの接続は、超音波溶着あるいは
インサート・インジェクション等によって行う。実施例
の場合、前記1枚の電極12にて別個の反応セルに亘る
負極及び正極の両極の役目を行わせているから、図のよ
うに斜めにカッティングされた電極12の広い方の面を
負極12a1狭い方の而を正極12bとする。このよう
に、積層タイプのバイポーラ型電池においては、−枚の
電極板を斜めにカッティングするだけで、異なる面積の
正負の2つの電極を容易に製作することができる。
Therefore, in the first embodiment, the electrode 12 of the electrode unit 44
The connecting portion 46 with the outer frame 44a is cut diagonally, and the connection with the outer frame 44a is performed by ultrasonic welding, insert injection, or the like. In the case of the example, since the single electrode 12 serves as both the negative and positive electrodes for separate reaction cells, the wide side of the electrode 12 cut diagonally as shown in the figure The narrower end of the negative electrode 12a1 is designated as the positive electrode 12b. In this way, in a stacked bipolar battery, two positive and negative electrodes with different areas can be easily manufactured by simply cutting the negative electrode plates diagonally.

また、電極12の厚さが約ll1fllであれば、カッ
チラング面の長さは約3fflI11程度とすることが
でき、これによれば電極12と外枠44aとの接触面積
が広くなるので、電極12の保持強度が増すという利点
が生じる。
Further, if the thickness of the electrode 12 is about ll1fll, the length of the cuttering surface can be about 3fflI11, and this increases the contact area between the electrode 12 and the outer frame 44a, so the electrode 12 The advantage is that the holding strength of the material is increased.

第2図には、第1実施例の場合の充電時における電流分
布が示されており、図のように電極端においては正極1
2bから負極12aに流れる電流が負極12aにおいて
は集中せずばらつくことになる。従って、図示Bのよう
に、充電時に生じる金属(例えばZn)は負極12aに
均一に析出することになる。
Figure 2 shows the current distribution during charging in the case of the first embodiment, and as shown in the figure, at the electrode end, the positive electrode 1
The current flowing from the negative electrode 2b to the negative electrode 12a is not concentrated at the negative electrode 12a but varies. Therefore, as shown in FIG. B, metal (for example, Zn) generated during charging is uniformly deposited on the negative electrode 12a.

次に、第3図には本発明の第2実施例が示されており、
第2実施例は電極12の接続部46を階段状にカッティ
ングしたことを特徴とする。もちろん、負h 12 a
の面を広くし、正極12bの面を狭くすることは第1実
施例と同様である。
Next, FIG. 3 shows a second embodiment of the present invention,
The second embodiment is characterized in that the connecting portion 46 of the electrode 12 is cut in a stepped manner. Of course, negative h 12 a
It is the same as in the first embodiment that the surface of the positive electrode 12b is made wider and the surface of the positive electrode 12b is made narrower.

また、前記階段は第3図のように1段ではなく、複数段
にすることができ、このような段差を設けることにより
、外枠44aとの接触面積を多くして、接続部46の強
度を高めることができる。
Further, the stairs can have multiple steps instead of one step as shown in FIG. can be increased.

このように、実施例によれば、負極での電流密度を低く
することができるので、金属(Zn等)を均一に電析す
ることができる。また、異なる反応セルにおいて電極を
共用する実施例のバイポーラ型電池では、1枚の電極板
を表裏面において異なる広さとなるようにカッティング
すればよく、これにより電極ユニットにおいて電極と外
枠の接続部の強度を高めることができるという利点があ
る。
As described above, according to the embodiment, the current density at the negative electrode can be lowered, so that metals (such as Zn) can be uniformly deposited. In addition, in the bipolar battery of the embodiment in which electrodes are shared in different reaction cells, it is sufficient to cut one electrode plate to have different widths on the front and back surfaces, and this allows the connection between the electrode and the outer frame in the electrode unit. It has the advantage of increasing the strength of

[発明の効果コ 以上説明したように、本発明によれば、反応槽内に設け
られた正極及び負極において、負極の面積を正極の面積
よりも大きくしたので、負極での電流集中が改善され、
負極板に析出する金属は均一の厚さになり、これにより
金属の電析状態が改善される。従って、性能が良く寿命
の長い電解液循環式電池を提供可能となる。
[Effects of the Invention] As explained above, according to the present invention, in the positive and negative electrodes provided in the reaction tank, the area of the negative electrode is made larger than the area of the positive electrode, so current concentration at the negative electrode is improved. ,
The metal deposited on the negative electrode plate has a uniform thickness, which improves the state of metal deposition. Therefore, it is possible to provide an electrolyte circulation type battery with good performance and long life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る電解液循環式金属−ハロゲン7u
池の電極ユニットを示す第1実施例の一部断面図、 第2図は第1図の電極ユニットを用いた反応セル内の充
電時の電流分布を示す図、 第3図は本発明に係る電極ユニットを示す第2実施例の
一部断面図、 第4図は金属−臭素電池の概要を示す説明図、第5図は
従来のバイポーラ電池の構成を示す説明図 第6図は従来装置において反応セル内で対向する電極間
の電流分布を示す説明図である。 10 ・・・ 反応セル 12a  ・・・ 負極 12b  ・・・ 正極 セパレータ 電極ユニット 4a 外枠 セパレータユニット
Figure 1 shows an electrolyte circulation type metal-halogen 7u according to the present invention.
FIG. 2 is a diagram showing the current distribution during charging in the reaction cell using the electrode unit of FIG. 1; FIG. 3 is a diagram showing the current distribution according to the present invention. FIG. 4 is an explanatory diagram showing the outline of a metal-bromine battery; FIG. 5 is an explanatory diagram showing the configuration of a conventional bipolar battery; and FIG. 6 is a diagram showing the configuration of a conventional bipolar battery. FIG. 2 is an explanatory diagram showing current distribution between opposing electrodes in a reaction cell. 10... Reaction cell 12a... Negative electrode 12b... Positive electrode separator electrode unit 4a Outer frame separator unit

Claims (1)

【特許請求の範囲】[Claims] (1)正極及び負極が対向して設けられた反応槽内に電
解液を循環させる電解液循環式金属−ハロゲン電池にお
いて、負極の面積を正極の面積よりも大きくしたことを
特徴とする電解液循環式金属−ハロゲン電池。
(1) In an electrolyte circulating metal-halogen battery in which an electrolyte is circulated in a reaction tank in which a positive electrode and a negative electrode are provided facing each other, an electrolytic solution characterized in that the area of the negative electrode is larger than the area of the positive electrode. Circulating metal-halogen battery.
JP63214629A 1988-08-29 1988-08-29 Electrolyte circulation type metal-halogen battery Pending JPH0265072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63214629A JPH0265072A (en) 1988-08-29 1988-08-29 Electrolyte circulation type metal-halogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63214629A JPH0265072A (en) 1988-08-29 1988-08-29 Electrolyte circulation type metal-halogen battery

Publications (1)

Publication Number Publication Date
JPH0265072A true JPH0265072A (en) 1990-03-05

Family

ID=16658902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63214629A Pending JPH0265072A (en) 1988-08-29 1988-08-29 Electrolyte circulation type metal-halogen battery

Country Status (1)

Country Link
JP (1) JPH0265072A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014186809A (en) * 2013-03-22 2014-10-02 Nissan Motor Co Ltd Air cell and battery pack stacked with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014186809A (en) * 2013-03-22 2014-10-02 Nissan Motor Co Ltd Air cell and battery pack stacked with the same

Similar Documents

Publication Publication Date Title
US5650239A (en) Method of electrode reconditioning
JPH0441473B2 (en)
CA1222281A (en) Secondary battery having the separator
US4746585A (en) Comb-type bipolar stack
JPH0265072A (en) Electrolyte circulation type metal-halogen battery
EP0548716B1 (en) Method of operating metal-halogen battery
JP3307048B2 (en) Operating method of zinc-bromine battery
JP2505007Y2 (en) Electrolyte circulation type laminated battery
JPH0629893Y2 (en) Secondary battery separator
JP2853271B2 (en) Electrolyte static zinc-bromine battery
JPH03127467A (en) Perfect discharge device of zinc-bromine battery
JPH0119233B2 (en)
JPS61158673A (en) Zinc-halogen battery with porous electrode
JPH02247983A (en) Electrolyte circulation type battery
JPH03147279A (en) Zinc-bromine battery
JP2967634B2 (en) Zinc-bromine battery
JPS61101959A (en) Electrode of zinc/bromine cell
JPH0834110B2 (en) Operating method of zinc-bromine battery
JP2853264B2 (en) Electrolyte stationary metal-bromine battery
JPH03254075A (en) Perfect discharge device for zinc-bromine battery
JPS628470A (en) Method for turning over static zinc-bromine cell
JPH02242570A (en) Storage of zinc-bromine battery
JPH06333609A (en) Method for operating zinc-bromine battery
JPH01102863A (en) Zn-br battery
JPH0419674B2 (en)