JPH02268981A - Valve for light water reactor piping - Google Patents

Valve for light water reactor piping

Info

Publication number
JPH02268981A
JPH02268981A JP8794389A JP8794389A JPH02268981A JP H02268981 A JPH02268981 A JP H02268981A JP 8794389 A JP8794389 A JP 8794389A JP 8794389 A JP8794389 A JP 8794389A JP H02268981 A JPH02268981 A JP H02268981A
Authority
JP
Japan
Prior art keywords
valve
valve seat
water reactor
light water
reactor piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8794389A
Other languages
Japanese (ja)
Other versions
JP2664242B2 (en
Inventor
Yoshiteru Chiba
良照 千葉
Noriyuki Onaka
大中 紀之
Yoshiyuki Kojima
慶享 児島
Atsushi Oda
篤 小田
Kikuo Takeshima
菊男 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8794389A priority Critical patent/JP2664242B2/en
Publication of JPH02268981A publication Critical patent/JPH02268981A/en
Application granted granted Critical
Publication of JP2664242B2 publication Critical patent/JP2664242B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding Valves (AREA)

Abstract

PURPOSE:To manufacture a valve seat being excellent in wear resistance and corrosion resistance by forming a cladding by welding layer being harder than a valve or a valve seat material on the surface of the valve sheet, and specifying a dilution rate from a base material of a boundary layer of the cladding by welding layer and the valve or the valve seat. CONSTITUTION:In a valve box valve seat 7 or a valve disc valve seat 5 of a valve for light water reactor piping, a cladding by welding layer being harder than a valve or a valve seat material is formed on the surface of the valve seats 5, 7. A dilution rate from a base material of a boundary layer of this cladding by welding layer and the valve or the valve seats 5, 7 is set of <=5%. An Fe base alloy of the surface of the valve box valve seat 7 has a chemical composition of 20-30% Cr, 10-20% Ni, 5-15% Mo, 1-5% W, <=1.0% C and Fe as the remainder by a weight ratio. An Fe base alloy of the surface of the valve disc valve 5 has a chemical composition of 10-20% Cr, 5-15% Ni, 2-10% Mo, 2-10% Nb, 2-10% Mn, 100-1000PPM N, <=1.0% C and Fe as the remainder by a weight ratio.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、軽水炉配管用弁に係り、特に、耐磨耗及び耐
腐食性に優れた弁に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a valve for light water reactor piping, and particularly to a valve with excellent wear resistance and corrosion resistance.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭62−1837号公報で開示のよ
うに、弁座表面がNi基とFe基の組合せからなり、N
i基はCo基と同様に炉心に入り56COとなり、配管
、タービンその他の機器の放射能を上げる原因となる事
に対し考慮されていない、また、Fe基では析出硬化型
の合金を使用しており。
In the conventional device, the valve seat surface is made of a combination of Ni and Fe groups, as disclosed in Japanese Patent Application Laid-Open No. 62-1837, and N
Like the Co group, the i group enters the reactor core and becomes 56CO, which is a cause of increased radioactivity in piping, turbines, and other equipment. Ori.

肉感溶接後に高温での熱処理が必要とされている。Heat treatment at high temperature is required after feel welding.

しかし、析出硬化熱処理による肉感溶接部の割れ発生の
恐れがある事に対して考慮されていない。
However, no consideration is given to the possibility that cracks may occur in the textured weld due to precipitation hardening heat treatment.

本発明は、弁座表面をFs基同士の組合せにすることに
より、析出硬化熱処理をせずに、耐磨耗、及び、耐腐食
性に優れた弁座の製作を可能にした。
The present invention makes it possible to manufacture a valve seat with excellent wear resistance and corrosion resistance without performing precipitation hardening heat treatment by forming the valve seat surface in combination with Fs groups.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の軽水炉配管用弁は、耐磨耗性、及び、耐二ローシ
ョン性を付与するためにGo、及び、Ni基合金が肉感
溶接されている。
Conventional valves for light water reactor piping are welded with Go and Ni-based alloys to provide wear resistance and lotion resistance.

しかし、Co、及び、Ni基合金は軽水炉の高温高圧水
、あるいは、蒸気の高速流体に接しているので、二ロー
ションによってCO及びNiが炉水中に溶出し、また金
属同士の摺動磨耗によってGo及びNiが炉水中に混入
する。これらのG。
However, since Co and Ni-based alloys are in contact with high-temperature, high-pressure water or high-velocity steam fluid in light water reactors, CO and Ni are eluted into the reactor water by the second lotion, and Go and Ni are mixed into the reactor water. These G.

及びNiは炉心に入り放射化されGoはBOCOとなり
、Niは88Goとなり、配管、タービン、その他の機
器に循環、付着し、軽水炉プラント全体の放射能を上げ
るという欠点がある。
and Ni enter the reactor core and become radioactive, Go becomes BOCO and Ni becomes 88Go, which circulate and adhere to piping, turbines, and other equipment, raising the radioactivity of the entire light water reactor plant.

本発明の目的は、肉盛溶接材にCoを含まず、低Ni合
金、つまり、Fe基合金を使用し、耐二ローション、及
び、耐磨耗性に優れた弁体弁座、及び、弁箱弁座を提供
することにある。
The object of the present invention is to provide a valve body and a valve seat, which do not contain Co in the overlay welding material, use a low Ni alloy, that is, a Fe-based alloy, and which have excellent two-lotion resistance and wear resistance. Our goal is to provide box bento seats.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、Co基及びNi基合金を用いることなく、
Co基合金と同等の耐二ローション、及び、耐磨耗性を
得ることができるかと研究開発を進めた。
The above purpose is to avoid using Co-based and Ni-based alloys.
We conducted research and development to see if it would be possible to obtain the same lotion resistance and abrasion resistance as Co-based alloys.

弁の摺動時に接触する弁座同士がNi基合金系の材料で
あれば磨耗量も多く、弁座表面の粗さも大になる。また
、弁座表面がNi基とFe基合金の組合せであると、N
i基合金井座の表面の粗さが大になり弁としての機能が
果せなくなる。従って、Fe基合金系の材料を弁座に用
いることにより、Co基、及び、Ni基合金を用いるこ
となくCo+基合金同等の特性が得られることを実験室
的に解明し本発明に至った。
If the valve seats that come into contact with each other when the valve slides are made of a Ni-based alloy material, the amount of wear will be large and the surface roughness of the valve seats will also be large. In addition, if the valve seat surface is a combination of Ni-based and Fe-based alloys, N
The surface roughness of the i-based alloy seat becomes so large that it cannot function as a valve. Therefore, by using an Fe-based alloy material for the valve seat, we have found in the laboratory that properties equivalent to Co+-based alloys can be obtained without using Co-based or Ni-based alloys, and we have arrived at the present invention. .

〔作用〕[Effect]

本発明は、耐腐食及び耐磨耗性の良好なCr−Ni−M
o−W−Fe系のFe合金と、耐腐食。
The present invention provides Cr-Ni-M with good corrosion resistance and wear resistance.
Fe alloy of o-W-Fe system and corrosion resistant.

及び、耐磨耗性の良好なCr−Ni−Mo−Nb−Mn
−Fe系のFe基合金を組合せることにより、耐腐食及
び耐磨耗性に優九た弁座を得ることができる。
And Cr-Ni-Mo-Nb-Mn with good wear resistance
By combining -Fe-based Fe-based alloys, a valve seat with excellent corrosion resistance and wear resistance can be obtained.

本発明に用いたCr−Ni−Mo−W−Fe基のFe基
合金はオーステナイトとフェライトの二相ステンレス鋼
である。
The Cr-Ni-Mo-W-Fe-based Fe-based alloy used in the present invention is a duplex stainless steel of austenite and ferrite.

特に、重量比でCr2O〜30%、Ni10〜20%2
MO5〜15%、Wl〜5%、C1,0%以下、及び、
残部Feの組成をもつFe基合で、耐腐食及び耐磨耗性
ともに優れているため1本発明の弁座に用いるのに好適
である。
In particular, Cr2O~30%, Ni10~20%2 by weight
MO5-15%, Wl-5%, C1.0% or less, and
It has a Fe-based composition with the balance being Fe and has excellent corrosion resistance and wear resistance, so it is suitable for use in the valve seat of the present invention.

Crは耐腐食性向上のため必須であり、20%以上は必
要である。しかし、多量の含有はフェライトの生成を促
し、硬度を低下させるため30%以下とする。好ましく
は25〜28%である。
Cr is essential for improving corrosion resistance, and 20% or more is required. However, since a large amount of content promotes the formation of ferrite and reduces hardness, the content is limited to 30% or less. Preferably it is 25-28%.

Niはフェライトの生成を抑制するため10%以上の添
加は必要である。しかし、多量の含有はオーステナイト
の生成を促し、強度が不足するため、20%以下とする
事が望ましい、好ましくは15〜18%である。
Ni needs to be added in an amount of 10% or more in order to suppress the formation of ferrite. However, since a large amount of content promotes the formation of austenite and lacks strength, it is desirable to limit the content to 20% or less, preferably 15 to 18%.

Moは耐腐食、及び、耐磨耗性を向上させるために必要
な成分であるが、過剰な添加は靭性を害することから5
〜10%とする、好ましくは8〜9%である。
Mo is a necessary component to improve corrosion resistance and wear resistance, but excessive addition impairs toughness.
~10%, preferably 8-9%.

Wは合金基質部に固溶し硬さを向上させるために必要な
成分であるが、過剰な添加は靭性を損なうことから1〜
5%とする。好ましくは1.5〜2.5%である。
W is a necessary component to dissolve in the alloy matrix and improve hardness, but excessive addition impairs toughness, so
5%. Preferably it is 1.5 to 2.5%.

Cは合金の強度を向上させ、フェライトの生成を抑制す
る成分である。多量の含有は耐腐食性及び鋼の延性を害
するので1.0%以下とする。好ましくは0.2〜0.
4%である。
C is a component that improves the strength of the alloy and suppresses the formation of ferrite. Since a large amount of content impairs corrosion resistance and ductility of steel, the content should be 1.0% or less. Preferably 0.2-0.
It is 4%.

他方の弁座表面のFe基合金はCr−N1−M o −
M n −F e系のFe基合金で耐腐食、及び、耐二
ローション性に優れた合金として使用されている。Cr
−Ni−Mo−W−Fe系のFe基合金と組合せると耐
磨耗が良好とする。
The Fe-based alloy on the other valve seat surface is Cr-N1-Mo-
It is a Mn-Fe-based Fe-based alloy and is used as an alloy with excellent corrosion resistance and lotion resistance. Cr
- When combined with a Ni-Mo-W-Fe based Fe-based alloy, good wear resistance is achieved.

特に、Cr10〜20%、Ni5〜15%。In particular, 10-20% Cr and 5-15% Ni.

MO2〜10%、Nb2〜10%、Mn2〜10%、 
N 100〜11000pp、 C1、0%以下及び残
部Feの化学組成をもつFe基合金である。
MO2~10%, Nb2~10%, Mn2~10%,
It is an Fe-based alloy with a chemical composition of 100 to 11,000 pp of N, 0% or less of C1, and the balance Fe.

Crは耐腐食性向上のための必須な元素である。Cr is an essential element for improving corrosion resistance.

Crは10%未満では耐腐食性が劣る。多量の含有はフ
ェライトの生成を促し、20%を越えるとCと結合が多
くなり脆くなり、硬度も低下するため最も好ましい範囲
は16〜18%である。
If Cr is less than 10%, corrosion resistance is poor. A large amount of content promotes the formation of ferrite, and if it exceeds 20%, the number of bonds with C increases, resulting in brittleness and decreased hardness, so the most preferable range is 16 to 18%.

Niは、フェライトの生成を抑制するために、5%以上
の添加が必要である。しかし、多量の含有はオーステナ
イトの生成を促す。また、耐腐食性を向上させるが、強
度を低下させる原因にもなるので、最も好ましい範囲は
8〜9%である。
Ni needs to be added in an amount of 5% or more in order to suppress the formation of ferrite. However, a large amount of content promotes the formation of austenite. Moreover, although it improves corrosion resistance, it also causes a decrease in strength, so the most preferable range is 8 to 9%.

Mo及びNbは耐腐食性、及び、耐磨耗性を向上させる
ために必要であるが、過剰な添加は靭性、及び、溶接性
を害するので、2〜10%、好ましくは4〜6%である
Mo and Nb are necessary to improve corrosion resistance and wear resistance, but excessive addition impairs toughness and weldability, so Mo and Nb are added in an amount of 2 to 10%, preferably 4 to 6%. be.

Mnはオーステナイト生成元素であるが、10%を越え
ると耐腐食性を損うことから2〜10%とする。
Mn is an austenite-forming element, but if it exceeds 10%, corrosion resistance is impaired, so it is set at 2 to 10%.

最も好ましい範囲は5〜8%である。The most preferred range is 5-8%.

Nは本発明合金で重要な元素であり、耐磨耗性の向上か
ら多い程良いが、NはCrと結合してCrzN窒化物を
作り耐腐食性を低下するため11000pp以下である
のが良い。最も好ましくは600ppm以下である。
N is an important element in the alloy of the present invention, and the more the better in order to improve wear resistance, but since N combines with Cr to form CrzN nitride and reduces corrosion resistance, it is preferably 11,000 pp or less. . Most preferably it is 600 ppm or less.

Cは1.0% を越えるとCrと結合して炭化物を作り
易くなり、耐腐食性を低下させる。また、溶接性及び合
金の延性も低下する。最も好ましくは0.1〜0.2%
である。
When C exceeds 1.0%, it tends to combine with Cr to form carbides, reducing corrosion resistance. Also, the weldability and ductility of the alloy are reduced. Most preferably 0.1-0.2%
It is.

以上説明したように、 Cr−Ni−Mo −W −F
e系とCr−Ni−Mo−Nb−Mn−Fe系のFe基
合金は、例えば、弁箱弁座及び弁体弁座の表面に肉盛溶
接、ロー付、拡散接合、粉体肉盛溶接、及び、ねじ止め
でも良く、または、弁箱弁座、及び、弁体弁座を精密鋳
造で製作することもできる。この様に、弁座表面の摺動
面が、合金から構成されていればよい。
As explained above, Cr-Ni-Mo -W -F
e-based and Cr-Ni-Mo-Nb-Mn-Fe-based Fe-based alloys can be applied, for example, to the surfaces of the valve box seat and valve seat by overlay welding, brazing, diffusion bonding, or powder overlay welding. , and may be screwed, or the valve body valve seat and valve body valve seat may be manufactured by precision casting. In this way, it is sufficient that the sliding surface of the valve seat surface is made of an alloy.

〔実施例〕〔Example〕

以下、本発明の一実施例を示す。 An embodiment of the present invention will be shown below.

第1表に供試材合金の化学組成を示す。Table 1 shows the chemical composition of the sample alloy.

試料−1は市販材を使用した。魔2〜Na16に付いて
は高周波真空溶解炉を用いて溶解した。溶解後ガスアト
マイズ法により供試材合金の粉末を製造した。粉末の粒
径は一70〜+250メツシュのものである。その粉末
を用いてプラズマ粉体肉盛溶接法で5US304板材の
上に二層肉感溶接を行なった。肉盛溶接条件は溶接電流
165〜180A、溶接電圧30〜33V、溶接速度6
0〜65閣/win、ウィービング巾50〜54m、A
rガス流量は3Q/sinである。母材と溶接金属の希
釈率は3〜4%であった0以上の溶接条件で二層肉盛溶
接を行なったものから磨耗試験片を採取した。磨耗条件
は面圧25,50,75及び100kg/csfとし、
磨耗速度3.1m/win、磨耗時間は0.5hで水中
で行い、磨耗体積減(cd)及び磨耗面の粗さを測定し
た。第1図に磨耗試験結果の一例を示す、第1図により
明らかなように。
Sample-1 used a commercially available material. Na2 to Na16 were melted using a high frequency vacuum melting furnace. After melting, a powder of the sample alloy was produced by gas atomization. The particle size of the powder is from -70 to +250 mesh. Using the powder, two-layer tactile welding was performed on a 5US304 plate by plasma powder build-up welding. Overlay welding conditions are welding current 165-180A, welding voltage 30-33V, welding speed 6.
0-65 kaku/win, weaving width 50-54m, A
The r gas flow rate is 3Q/sin. Wear test pieces were taken from double-layer overlay welding under a welding condition of 0 or more, in which the dilution rate of the base metal and weld metal was 3 to 4%. Wear conditions are surface pressures of 25, 50, 75 and 100 kg/csf.
The test was carried out in water at a wear rate of 3.1 m/win and a wear time of 0.5 h, and the wear volume loss (cd) and roughness of the worn surface were measured. As is clear from FIG. 1, an example of the abrasion test results is shown in FIG.

本発明の試料NQ3と&11の組合せが従来材の試料N
a I Co基合金材と同等の磨耗体積減を示した。
The combination of samples NQ3 and &11 of the present invention is the conventional material sample N
a I It showed the same wear volume reduction as the Co-based alloy material.

第2図は弁のシール性の生命である磨耗面の表面粗さを
示す、第2図で明らかなように本発明の組合せが従来材
と同等である事を確認した。
Figure 2 shows the surface roughness of the worn surface, which is the key to the valve's sealing performance.As is clear from Figure 2, it was confirmed that the combination of the present invention was equivalent to the conventional material.

次に、試料Nnl、3,11,13,14,15、及び
、16の合金を用いて第2表に示す組合せで第3図に示
す4B管用弁を製作し、高温高圧水中で弁の開閉作動試
験をした。
Next, using the alloys of samples Nnl, 3, 11, 13, 14, 15, and 16, a 4B pipe valve shown in Figure 3 was manufactured using the combinations shown in Table 2, and the valve was opened and closed in high-temperature, high-pressure water. I did an operation test.

第  2  表 作動試験条件は弁の開閉口数百回、弁の面圧は200k
g/cdとし、弁の気密性を確認した。その結果を第2
表に示す、第2表で明らかなように、弁箱弁座に試料N
Q3、弁体弁座試料N11llを使用した弁は百回の開
閉試験で水漏れは確認されず、気密性を保持し、弁の機
能を十分に示した。一方、弁箱弁座に試料虱13、弁体
弁座に試料Nu 14の組合せは58回で気密性は破壊
された。同じく弁箱弁座に試料&15、弁体弁座に試料
&16の組合せは71回の弁の開閉で気密性は破壊され
た。
Table 2 Operation test conditions: valve opening and closing several hundred times, valve surface pressure 200k
g/cd, and the airtightness of the valve was confirmed. The second result is
As shown in Table 2, sample N was placed on the valve box valve seat.
Q3: The valve using the valve body and valve seat sample N11ll did not show any water leakage after 100 opening/closing tests, maintained airtightness, and fully demonstrated the function of the valve. On the other hand, when the combination of sample Nu 13 on the valve box valve seat and sample Nu 14 on the valve body valve seat was used 58 times, the airtightness was destroyed. Similarly, for the combination of sample &15 on the valve box valve seat and sample &16 on the valve body valve seat, the airtightness was destroyed by opening and closing the valve 71 times.

従来材である試料丸1同士のGo基基合金台せも弁の開
閉試験を行った。その結果、本発明材の組合せと同等で
ある事を確認した。
An opening/closing test was conducted on the Go-based alloy base valves of the conventional material sample round 1. As a result, it was confirmed that the combination was equivalent to the combination of the materials of the present invention.

以上の結果、従来弁座に使用されているCo及びNi基
合金を用いた弁と本発明合金組合せ弁と同等である事を
確認した。
From the above results, it was confirmed that the valve using the Co and Ni-based alloys conventionally used for the valve seat and the alloy combination valve of the present invention are equivalent.

〈実施例2〉 第1表に供試材合金の化学組成を示す。試料−1は市販
材を使用した。試料&2〜4までは溶解中に吸込方法に
より4.0φX500 mの溶接棒を製作した。試料N
α5〜16については溶解後鍛造、圧延及び線引をし、
4.0φX500 mの溶接棒を製作した。その溶接棒
を用いてTIG (ダンゲステン電極不活性ガスアーク
)溶接方法で5US304の板材の上に二層肉感溶接を
行なった。肉盛溶接条件は、溶接電流150A、溶接電
流25Vである0以上の溶接条件で肉盛溶接を行なった
ものから、磨耗試験片を採取した。磨耗条件、及び、試
験結果は実施例1と同じ及び同等である。
<Example 2> Table 1 shows the chemical composition of the test material alloy. Sample-1 used a commercially available material. For samples &2 to 4, welding rods of 4.0φ x 500 m were manufactured using the suction method during melting. Sample N
For α5 to 16, after melting, forging, rolling and wire drawing are performed.
A welding rod of 4.0φ x 500 m was manufactured. Using the welding rod, two-layer feel welding was performed on a 5US304 plate material by TIG (Dungesten electrode inert gas arc) welding method. Wear test pieces were taken from the overlay welding performed under welding conditions of 0 or more, which are a welding current of 150 A and a welding current of 25 V. The wear conditions and test results are the same as in Example 1.

次に、第3図に示すネッキプッシュ上部、及び、下部に
TIG溶接で二層肉盛溶接を行った上部、及び、下部の
組合せは実施例1と同じである。試験も実施例1の高温
高圧水中での開閉試験と同じに行なった。ネッキプッシ
ュ部からの気密の破壊はすべての組合せから確認されず
、従来材であるCo基合金と同等であることを確認した
Next, the combination of the neck push upper part shown in FIG. 3, the upper part and the lower part on which double-layer overlay welding was performed by TIG welding, and the lower part are the same as in Example 1. The test was conducted in the same manner as the opening/closing test in high temperature and high pressure water in Example 1. No breakage of airtightness from the neck push part was observed in any of the combinations, confirming that they were equivalent to the conventional material, Co-based alloy.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、軽水炉配管、及び、配管に接続されて
いる周辺機器の放射線を従来の半分以下におさえ、定期
検査時の作業時間を二倍以上に確認することができる。
According to the present invention, radiation of light water reactor piping and peripheral equipment connected to the piping can be suppressed to less than half of the conventional level, and the work time during periodic inspections can be more than doubled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は摩耗試験結果で体積域と磨耗面圧の関係を示す
線図、第2図は磨耗試験結果で表面粗さと磨耗面圧の関
係を示す線図、第3図は仕切弁の断面図を示す。 1・・・ハンドル、2・・・ボンネット、3・・・弁棒
、4・・・弁箱、5・・・弁体弁座、6・・・弁体、7
・・・弁箱弁座、8・・・ネッキプッシュ上部、9・・
・ネッキプッシュ下部。 鴇 R耗面圧(lqfんが)
Figure 1 is a diagram showing the relationship between volume area and wear surface pressure based on the wear test results, Figure 2 is a diagram showing the relationship between surface roughness and wear surface pressure based on the wear test results, and Figure 3 is a cross section of the gate valve. Show the diagram. DESCRIPTION OF SYMBOLS 1... Handle, 2... Bonnet, 3... Valve stem, 4... Valve box, 5... Valve body valve seat, 6... Valve body, 7
...Valve box valve seat, 8...Neck push upper part, 9...
- Lower neck push. R wear surface pressure (lqf)

Claims (1)

【特許請求の範囲】 1、軽水炉配管用弁の弁箱弁座あるいは弁体弁座におい
て、 弁座の表面に前記弁又は弁座材より硬い肉盛溶接層を形
成し、前記肉盛溶接層と前記弁又は前記弁座との境界層
が母材からの希釈率が5%以下であることを特徴とする
軽水炉配管用弁。 2、請求項1の弁座表面の肉盛溶接層が、Fe基合金同
士であることを特徴とする軽水炉配管用弁。 3、請求項1の弁箱弁座表面のFe基合金は重量比でC
r20〜30%、Ni10〜20%、Mo5〜15%、
W1〜5%、C1.0以下、及び、残部Feの化学組成
をもつことを特徴とする軽水炉配管用弁。 4、請求項1の弁体弁座表面のFe基合金は重量比でC
r10〜20%、Ni5〜15%、Mo2〜10%、N
b2〜10%、Mn2〜10%、N100〜1000P
PM、C1.0以下及び残部Feの化学組成をもつこと
を特徴とする軽水炉配管用弁。 5、請求項1の弁箱弁座表面及び弁体弁座表面の化学組
成が逆の組成であることを特徴とする軽水炉配管用弁。 6、請求項3または4または5の合金を弁座表面にロー
付及び拡散接合で弁座表面を形成することを特徴とする
軽水炉配管用弁。 7、請求項3または4の合金を弁座表面に粉末肉盛溶接
で弁座表面を形成することを特徴とする軽水炉配管用弁
。 8、請求項3または4の合金を弁座表面に溶接棒を用い
て溶接し、弁座表面を形成することを特徴とする軽水炉
配管用弁。 9、請求項3または4の合金で弁体弁座及び弁箱弁座を
形成することを特徴とする軽水炉配管用弁。 10、請求項2または3または4の合金はオーステナイ
ト+フェライトの二相ステンレス鋼であり、フェライト
量は最大で30%以下であることを特徴とする軽水炉配
管用弁。
[Claims] 1. In a valve box seat or a valve body valve seat of a light water reactor piping valve, a welded build-up layer is formed on the surface of the valve seat that is harder than the valve or valve seat material, and the welded build-up layer is A valve for light water reactor piping, characterized in that a boundary layer between the valve and the valve or the valve seat has a dilution rate of 5% or less from a base material. 2. The valve for light water reactor piping according to claim 1, wherein the overlay weld layer on the surface of the valve seat is made of Fe-based alloy. 3. The Fe-based alloy on the valve seat surface of the valve box according to claim 1 has a weight ratio of C
r20-30%, Ni10-20%, Mo5-15%,
A light water reactor piping valve having a chemical composition of W1 to 5%, C1.0 or less, and the balance Fe. 4. The Fe-based alloy on the surface of the valve body of claim 1 has a weight ratio of C
r10-20%, Ni5-15%, Mo2-10%, N
b2~10%, Mn2~10%, N100~1000P
A light water reactor piping valve characterized by having a chemical composition of PM, C1.0 or less, and the balance Fe. 5. A valve for light water reactor piping, characterized in that the chemical compositions of the valve body valve seat surface and the valve body valve seat surface of claim 1 are opposite in composition. 6. A valve for light water reactor piping, characterized in that the valve seat surface is formed by brazing and diffusion bonding the alloy of claim 3, 4, or 5 on the valve seat surface. 7. A valve for light water reactor piping, characterized in that the valve seat surface is formed by powder overlay welding of the alloy of claim 3 or 4 on the valve seat surface. 8. A valve for light water reactor piping, characterized in that the alloy of claim 3 or 4 is welded to the valve seat surface using a welding rod to form the valve seat surface. 9. A valve for light water reactor piping, characterized in that a valve body valve seat and a valve body valve seat are formed of the alloy according to claim 3 or 4. 10. A valve for light water reactor piping, characterized in that the alloy according to claim 2, 3, or 4 is a duplex stainless steel of austenite + ferrite, and the amount of ferrite is 30% or less at maximum.
JP8794389A 1989-04-10 1989-04-10 Light water reactor piping valve Expired - Fee Related JP2664242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8794389A JP2664242B2 (en) 1989-04-10 1989-04-10 Light water reactor piping valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8794389A JP2664242B2 (en) 1989-04-10 1989-04-10 Light water reactor piping valve

Publications (2)

Publication Number Publication Date
JPH02268981A true JPH02268981A (en) 1990-11-02
JP2664242B2 JP2664242B2 (en) 1997-10-15

Family

ID=13928978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8794389A Expired - Fee Related JP2664242B2 (en) 1989-04-10 1989-04-10 Light water reactor piping valve

Country Status (1)

Country Link
JP (1) JP2664242B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06297188A (en) * 1993-04-13 1994-10-25 Daido Steel Co Ltd Fe base alloy for cladding by welding
JP6793866B1 (en) * 2020-06-17 2020-12-02 株式会社クボタ Gas valve and propane gas flow control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06297188A (en) * 1993-04-13 1994-10-25 Daido Steel Co Ltd Fe base alloy for cladding by welding
JP6793866B1 (en) * 2020-06-17 2020-12-02 株式会社クボタ Gas valve and propane gas flow control method
WO2021256002A1 (en) * 2020-06-17 2021-12-23 株式会社クボタ Gas valve and method for controlling flow rate of propane gas
US11686395B2 (en) 2020-06-17 2023-06-27 Kubota Corporation Gas valve and flow rate control method for propane gas

Also Published As

Publication number Publication date
JP2664242B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
US4754950A (en) Valve
Ocken The galling wear resistance of new iron-base hardfacing alloys: a comparison with established cobalt-and nickel-base alloys
US5633094A (en) Valve having facing layers of co-free Ni-base Alloy
El Koussy et al. Effects of thermal aging on microstructure and mechanical properties of duplex stainless steel weldments
AU678466B2 (en) Wear resistant alloy
JPH02268981A (en) Valve for light water reactor piping
Raman et al. The oxidation behaviour of the weld metal, heat affected zone and base metal in the weldments of 2.25 Cr-1Mo steel
JP2840191B2 (en) Equipment using cobalt-free alloy material
JP7329923B2 (en) valve
Wu et al. Microstructural and mechanical characterization of Stellite-hardfaced coatings with two types of buffer layers
JPH02182854A (en) Valve for light water reactor piping
JPS59169696A (en) Valve device
Keshari et al. Mechanical characterization of dissimilar welded joint of SS202 and SS304 by tungsten inert gas welding
JPS58187663A (en) Valve
JPH04276038A (en) Valve for light water nuclear reactor
JPH1163251A (en) Valve
JP3503565B2 (en) Valve and nuclear power plant using the same
JP3721300B2 (en) valve
JPH04361A (en) Build-up powder for atomic power plant equipment
JP3173998B2 (en) Alloy materials for sliding members and equipment parts
JPS62167980A (en) Valve
JPS61106748A (en) Valve
JP2021055819A (en) valve
JPS62177371A (en) Valve
Hamada et al. Niobium-added type 308 stainless steel weld metal resistant to sensitization by postweld heat treatment and low-temperature aging

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees