JPS62167980A - Valve - Google Patents

Valve

Info

Publication number
JPS62167980A
JPS62167980A JP895786A JP895786A JPS62167980A JP S62167980 A JPS62167980 A JP S62167980A JP 895786 A JP895786 A JP 895786A JP 895786 A JP895786 A JP 895786A JP S62167980 A JPS62167980 A JP S62167980A
Authority
JP
Japan
Prior art keywords
alloy
valve
less
resistance
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP895786A
Other languages
Japanese (ja)
Inventor
Tetsuo Fujiwara
藤原 鉄雄
Kaoru Tada
薫 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP895786A priority Critical patent/JPS62167980A/en
Publication of JPS62167980A publication Critical patent/JPS62167980A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding Valves (AREA)

Abstract

PURPOSE:To enhance the resistance to erosion and seizure, by making one valve contact surface of a cobalt-based Co-Cr-W alloy, and another valve contact surface of a nickel-based alloy of 400 or more in hardness (Hv). CONSTITUTION:The contact surface of one of a valve casing and a valve element is made of a cobalt-based Co-Cr-W alloy, while that of the other is made of a nickel-based alloy or an iron-based eduction-hardened alloy, which has a hardness (Hv) of 400 or more. For example, Stellite 3, 6, 21 or 25 is used as the cobalt-based Co-Cr-W alloy. For example, an Ni-Cr-Mo-Nb alloy, an Ni-Cr-Al-Mo alloy or an Ni-Cr-B-Si-C-Fe alloy is used as the nickel-based alloy of 400 or more in hardness (Hv).

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は耐焼付性、耐エロージヨン性に優れた弁に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a valve with excellent seizure resistance and erosion resistance.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来から化学、原子カプラントなど各種プラント分野で
用いる弁の弁箱及び弁体の弁座には、耐二ローション特
性、耐焼付性を付与するためにC。
Conventionally, the valve bodies and valve seats of valves used in various plant fields such as chemical and atomic couplants have been coated with C to give them anti-lotion properties and anti-seizure properties.

基体Co −Cr −W系合金(通称、ステライト)が
溶接されている。
A base Co-Cr-W alloy (commonly known as stellite) is welded.

しかしながら、最近では、Co資源の枯渇、化学プラン
トにあってはその反応制御1M子カプラントにあっては
その安全性向上の観点から、 Coの放出をなくすため
上記ステライトに代えてNiあるいはFeを基体とした
耐重ローション・耐摩耗合金を弁箱の弁座および/また
は弁体の弁座に使用した弁の研究がなされている。
However, recently, from the viewpoint of the depletion of Co resources and the safety improvement of reaction control 1M sub-couplets in chemical plants, Ni or Fe-based substrates have been introduced in place of the above-mentioned stellite in order to eliminate the release of Co. Research is being carried out on valves that use heavy-duty lotions and wear-resistant alloys for the valve seat of the valve body and/or the valve seat of the valve body.

しかし従来から知られているNiあるいはFe基体の合
金は、 Co基体のステライトに比べてその耐工゛ロー
ション性、耐焼付性の点で充分な特性を備えるものでは
なかった。
However, the conventionally known Ni- or Fe-based alloys do not have sufficient properties in terms of corrosion resistance and seizure resistance compared to Co-based stellite.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した問題点を解消するためになされたも
ので、各種プラントにおいてコバルト粒子またはコバル
トイオンの放出が少なく、がっ、耐重ローション性及び
耐焼付性に優れた弁体を提供することを目的とするもの
である。
The present invention was made in order to solve the above-mentioned problems, and it is an object of the present invention to provide a valve body that releases less cobalt particles or cobalt ions in various plants and has excellent resistance to heavy lotion and seizure resistance. The purpose is to

〔発明の概要〕[Summary of the invention]

本発明者等は耐重ローション性、耐焼付性を向上させる
方法を検討した結果、摺動時に接触する弁座表面同志が
類似した材料でかつねばい材料であると摩耗量が多く、
焼付けを生じやすいことを見出した。従って特定の異種
の材料を対にしてもちいることによりステライトを用い
なくとも同等の特性が得られるであろうという思想から
本発明を創出するに到った。
As a result of studying methods to improve heavy lotion resistance and seizure resistance, the inventors found that if the valve seat surfaces that come into contact with each other during sliding are made of similar and sticky materials, the amount of wear will be large.
It was found that burn-in easily occurs. Therefore, the present invention was created based on the idea that equivalent characteristics could be obtained without using stellite by using specific different materials in pairs.

すなわち本発明は弁箱あるいは弁体の一方の弁座表面が
Co −Cr −W系のコバルト基合金からなり、他方
の弁座表面がニッケル基合金あるいは鉄基析出硬化型合
金からなることを特徴とする弁であり、異種の材料を組
合せることにより、耐焼付性に優れた弁を得ることがで
きるのである。
That is, the present invention is characterized in that one valve seat surface of the valve body or valve body is made of a Co-Cr-W based cobalt-based alloy, and the other valve seat surface is made of a nickel-based alloy or an iron-based precipitation hardening alloy. By combining different materials, it is possible to obtain a valve with excellent seizure resistance.

本発明に用いるCo−0r−W系のコバルト基合金の具
体例としては1例えばステライト3.同6、同21.同
25があげられる。
Specific examples of Co-0r-W type cobalt-based alloys used in the present invention include 1, stellite, 3. 6, 21. 25 can be mentioned.

−Cr −AQ −Mo系、Ni−Cr −B −5i
 −C−Fe系等が挙げられる。
-Cr -AQ -Mo system, Ni-Cr -B -5i
-C-Fe type etc. are mentioned.

これらの合金は耐食性や耐重ローション性が優れた肉盛
合金として使用されている。 Hv 400以上のNi
基合金と上記コバルト基合金を組合わせることにより、
耐焼付性が良好となる。
These alloys are used as overlay alloys with excellent corrosion resistance and heavy lotion resistance. Ni with Hv 400 or more
By combining the base alloy and the above cobalt-based alloy,
Good seizure resistance.

特にクロム15〜45%、ニオブ3〜15%、モリブチ
220%以下残部がニッケルより成る弁座合金を用いる
のが良い。
In particular, it is preferable to use a valve seat alloy consisting of 15 to 45% chromium, 3 to 15% niobium, and 220% or less molybutton, the balance being nickel.

まずクロームは、耐食性を向上させるのに有効であると
同時に高温における耐酸化性ならびに硬さを高めるため
に必要な成分で組成比が15%未満らであり、望ましく
は20〜35%が良い。ニオブはクローム及びニッケル
と結合して、Cr、Nb等の金属間化合物をつくり硬さ
を高め、耐摩耗性及び耐重ローション性に必要な成分で
組成比3%未満では効果が不充分でまた。15%を越え
ると靭性の低下がみられ機械的強度が損なわれるからで
あり、望ましくは7〜15%が良い、モリブデンは、耐
食性の向上ならびに固溶体強化により硬さ、耐摩耗性及
び耐重ローション性を向上させるのに必要な成分で組成
比が20%を越えると効果は飽和するとともに靭性の低
下がみられることからこの範囲とした。なお、モリブデ
ンの組成範囲は5〜15%が望ましい、またこのNi基
合金は、ニオブの一部をタンタルで置換してもよい、ま
たモリブデンの一部をタングステンに置換することもで
きる。さらに溶解時に添加する脱酸、脱窒剤としてのマ
ンガンやシリコンなどを含んでいても差支えない。
First, chromium is a necessary component for improving corrosion resistance as well as oxidation resistance and hardness at high temperatures, and its composition ratio is less than 15%, preferably 20 to 35%. Niobium combines with chromium and nickel to form intermetallic compounds such as Cr and Nb to increase hardness, and is a necessary component for wear resistance and heavy lotion resistance.If the composition ratio is less than 3%, the effect is insufficient. If the content exceeds 15%, the toughness will decrease and the mechanical strength will be impaired.Molybdenum is preferably 7 to 15%.Molybdenum improves corrosion resistance and hardness, wear resistance, and heavy lotion resistance due to solid solution strengthening. This range was chosen because if the composition ratio exceeds 20% of the components necessary to improve the hardness, the effect will be saturated and the toughness will decrease. Note that the composition range of molybdenum is preferably 5 to 15%, and in this Ni-based alloy, a part of niobium may be replaced with tantalum, and a part of molybdenum can also be replaced with tungsten. Furthermore, it may contain manganese, silicon, or the like as a deoxidizing and denitrifying agent that is added during melting.

上記合金にさらに20%以下の鉄の添加は素地の強化及
び靭性の向上に寄与する。少量で効果を発揮するが3%
以上が好ましく、20%を越えると素地の強度が低下し
、合金の機械的強度が損なわれるからであり望ましくは
3〜12%が良い。
Further addition of 20% or less iron to the above alloy contributes to strengthening the base material and improving toughness. Effective in small amounts, but only 3%
The content is preferably 3 to 12%, because if it exceeds 20%, the strength of the base material will decrease and the mechanical strength of the alloy will be impaired.

またNi基合金として炭素0.3〜1.5%、クロAs
 5〜25%、 1111m0.5〜6.0%、硅素0
.5〜6.0%、鉄10%以下、残部が実質的にニッケ
ルより成るものを用いても良い。
In addition, as a Ni-based alloy, carbon 0.3 to 1.5%, chromium As
5-25%, 1111m0.5-6.0%, 0 silicon
.. 5 to 6.0%, 10% or less of iron, and the remainder substantially of nickel may be used.

炭素は耐摩耗性ならびに硬度を上昇させるのに有効な元
素であるが0.3%より少ないときには耐摩耗性、硬度
ともに低く、一方1.5%を越えると靭性が低下するこ
とから0.3〜1.5%とした。なお望ましくは0.4
〜1.0%が良い、硅素及び硼素はそれぞれ硅化物及び
ホウ化物を生成して耐摩耗性ならびに強度を上昇させる
のに有効な元素であるがいずれも0.5%より少ないと
きにはその効果が充分でなく、また多量の含有は粗大な
硅化物やホウ化物を生成し、靭性を低下することから6
%以下とした。なお望ましくは硼素0.5〜5.0%、
硅素2.5〜6.0%が良い、鉄は素地の強化と耐熱衝
撃性の向上に寄与するものであるが、10%を越えると
素地の強度が低下し、機械的強度が損なわれるからであ
る。なお望ましくは1〜6%が良い。
Carbon is an effective element for increasing wear resistance and hardness, but when it is less than 0.3%, both wear resistance and hardness are low, while when it exceeds 1.5%, toughness decreases. ~1.5%. Preferably 0.4
Silicon and boron are effective elements for increasing wear resistance and strength by forming silicides and borides, respectively, but when the amount is less than 0.5%, the effect is lost. If it is not sufficient or contains a large amount, coarse silicides and borides will be formed and the toughness will decrease.
% or less. In addition, boron is preferably 0.5 to 5.0%,
2.5 to 6.0% silicon is good; iron contributes to strengthening the base and improving thermal shock resistance, but if it exceeds 10%, the strength of the base decreases and mechanical strength is lost. It is. Note that it is preferably 1 to 6%.

さらにクロムは耐食性及び合金の素地を強化するために
必要な成分であるが、5%未満では効果が充分でなく、
また25%を越えると靭性が低下することから5〜25
%とした。なお望ましくは10〜20%が良い。
Furthermore, chromium is a necessary component for corrosion resistance and strengthening the base of the alloy, but if it is less than 5%, the effect is insufficient.
In addition, if it exceeds 25%, the toughness decreases, so 5 to 25%
%. Note that it is preferably 10 to 20%.

本発明に用いるFe −Cr −Ni系の鉄基析出硬化
型合金としては、例えば5US630,5US631.
マルエージング鋼等が挙げられる。
Examples of Fe-Cr-Ni based iron-based precipitation hardening alloys used in the present invention include 5US630 and 5US631.
Examples include maraging steel.

特に重量比でCr7〜14%、Ni6〜10%、 Al
10.5〜2.0%、 Mo1.5〜3%、C0,1%
以下及び残部Feの組成を有する鉄基析出硬化型合金は
硬さ、耐食性とも優れているため、本発明に用いるのに
好適であるa Crは耐食性向上のため必須であり7%
以上は必要である。しかし多量の含有はフェライトの生
成を促し、硬度を低下させるため14%以下とする。好
ましくは11.5〜13.5%である。Niは析出硬化
現象を起こさせ、フェライトの生成を抑制するために6
%以上の添加が必要である。しかし長歌の含有はオース
テナイトの生成を促し、強度が不足するため10%以下
とする。好ましくは7.0〜9.0%である。^2は析
出硬化を起こさせるために少なくとも0.5%以上の添
加が必要である。しかし多量の含有は加工性を低下させ
るため2%以下とする。好ましくは0.7〜1.5%で
あるa Moは耐食性、強度を向上させるために少なく
とも1.5%以上の添加が必要である。しかし多量の含
有は9−ライトの生成を促すため3%以下とする。好ま
しくは1.7〜2.5%である。炭素は強度を向上させ
フェライトの生成を抑制する成分であるが、多量の含有
は耐食性、延性を害することから0.1%以下、好まし
くは0.05%以下とする。
In particular, the weight ratio is 7-14% Cr, 6-10% Ni, Al
10.5-2.0%, Mo1.5-3%, C0.1%
Iron-based precipitation hardening alloys having the following composition with the balance being Fe are suitable for use in the present invention because they have excellent hardness and corrosion resistance.a Cr is essential for improving corrosion resistance and is 7%
The above is necessary. However, a large amount of Ni promotes the formation of ferrite and reduces hardness, so the content is limited to 14% or less. Preferably it is 11.5 to 13.5%. Ni is 6 to cause precipitation hardening phenomenon and suppress the formation of ferrite.
It is necessary to add more than %. However, the inclusion of Nagaka promotes the formation of austenite and lacks strength, so the content is limited to 10% or less. Preferably it is 7.0 to 9.0%. ^2 needs to be added in an amount of at least 0.5% to cause precipitation hardening. However, since a large amount of Ni will reduce processability, the content should be limited to 2% or less. aMo is preferably added in an amount of 0.7 to 1.5%, and must be added in an amount of at least 1.5% to improve corrosion resistance and strength. However, the content is limited to 3% or less because a large amount of content promotes the formation of 9-lite. Preferably it is 1.7 to 2.5%. Carbon is a component that improves strength and suppresses the formation of ferrite, but its content is limited to 0.1% or less, preferably 0.05% or less, since a large amount of carbon impairs corrosion resistance and ductility.

以上説明したようなコバルト基合金、Cr −Ni −
Fe系鉄基析出硬化型合金及びNi基合金は、例えば弁
箱、弁体の表面に肉感溶接しても良いし、ロー付、拡散
接合、ネジ等のカン合でも良く、摺動面が前記合金から
構成されていれば良い。
Cobalt-based alloys such as those explained above, Cr-Ni-
Fe-based iron-based precipitation hardening alloys and Ni-based alloys may be welded to the surface of the valve body or valve body, for example, or may be joined by brazing, diffusion bonding, screws, etc., and the sliding surface may be It is sufficient if it is made of an alloy.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の詳細な説明する。 The present invention will be explained in detail below.

第1表に供試合金の化学組成を示す。Nα1〜5につい
ては高周波誘導溶解炉を用いて外径4mmの溶接棒を製
造し、5US316表面に肉盛溶接したものから試験片
を採取した。また、Mo6.7については高周波真空誘
導溶解炉を用いて溶解後熱間鍛造を行ない、950〜1
050℃、1〜2時間程度の溶体化処理及び500〜6
00℃、1〜3時間程度の時効処理を施したものから試
験片を採取した。
Table 1 shows the chemical composition of the test gold. For Nα1 to Nα5, test pieces were taken from welding rods having an outer diameter of 4 mm manufactured using a high-frequency induction melting furnace and overlay welded on the surface of 5US316. In addition, for Mo6.7, hot forging was performed after melting using a high frequency vacuum induction melting furnace, and 950 to 1
Solution treatment at 050°C for about 1 to 2 hours and 500 to 6
Test pieces were taken from those subjected to aging treatment at 00°C for about 1 to 3 hours.

耐エロージヨン試験は学振法に準じて振幅Dotua、
振動数6.5 KHz、試験片180分の条件で行ない
、試験片の損耗量を測定した。その結果を第1表に併記
した。
The erosion resistance test was conducted using amplitude Dotua,
Testing was carried out under the conditions of a vibration frequency of 6.5 KHz and a test piece duration of 180 minutes, and the amount of wear on the test piece was measured. The results are also listed in Table 1.

第1表より明らかなように本発明に係るNα1〜7は損
耗量が従来1二ローション性に優れるとされるSUS 
304(&8)よりも小さく、優れた1二ローション性
を有していることが確認された。
As is clear from Table 1, Nα1 to Nα7 according to the present invention have a wear amount of 12 compared to conventional SUS, which is said to have excellent lotion properties.
It was confirmed that it was smaller than 304 (&8) and had excellent lotion properties.

(以下余白) 次に、上記の試料Ha 1〜7の合金を用いて第2表に
示す組合せで、第1図に示す呼び径100mの仕切弁を
製作し開閉動作後の弁の気密性を試験した1図において
1は弁箱、2は弁箱の弁座、3は弁体、4は弁体の弁座
、5は弁棒、6はボンネット、7はハンドルを示す。ま
た比較例として、上記1,4.6の合金を用いて、第2
表に示す組合せで同一構造の仕切弁を製作し、同一条件
下にて試験した。その結果を第2表に併せて示した。
(Leaving space below) Next, using the alloys of samples Ha 1 to 7 and the combinations shown in Table 2, a gate valve with a nominal diameter of 100 m as shown in Figure 1 was manufactured, and the airtightness of the valve after opening and closing operations was tested. In the figure tested, 1 shows the valve box, 2 shows the valve seat of the valve box, 3 shows the valve body, 4 shows the valve seat of the valve body, 5 shows the valve stem, 6 shows the bonnet, and 7 shows the handle. In addition, as a comparative example, using the alloys 1 and 4.6 above, the second
Gate valves of the same structure were manufactured using the combinations shown in the table and tested under the same conditions. The results are also shown in Table 2.

なお、開閉動作は、面圧2 kg / m”の負荷状態
で100回行ない気密性試験は高圧水を通水し、出口側
の漏れを測定した。
The opening/closing operation was performed 100 times under a surface pressure of 2 kg/m'', and the airtightness test was conducted by passing high-pressure water and measuring leakage on the outlet side.

(以下余白) 第2表 第2表より明らかなように、本発明に係る仕切弁は、従
来バルブ弁座に使用されている比較例1のコバルト基合
金を用いたものと同様に耐焼付性に優れ、また耐摩耗性
に優れていることが確認された。
(The following is a blank space) Table 2 As is clear from Table 2, the gate valve according to the present invention has the same seizure resistance as the one using the cobalt-based alloy of Comparative Example 1, which is conventionally used for the valve seat. It was confirmed that it has excellent wear resistance.

〔発明の効果〕〔Effect of the invention〕

以上の結果から明らかなように、本発明に係る弁は、弁
箱及び弁体の弁座に使用するCo基基合金及耐焼付性優
れている。また、Coの放出を低減できることにより、
化学及び特に原子力等の各種プラントの流路の開閉に好
適な弁である。
As is clear from the above results, the valve according to the present invention has excellent seizure resistance compared to the Co-based alloy used for the valve body and the valve seat of the valve body. In addition, by being able to reduce the release of Co,
This valve is suitable for opening and closing flow paths in various plants such as chemical and especially nuclear power plants.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す仕切弁の縦断面図である
。 1・・・弁箱      2・・・弁箱の弁座3・・・
弁体      4・・・弁体の弁座5・・・弁棒  
   6・・・ボンネット7・・・ハンドル 代理人 弁理士 則 近 憲 佑 同  竹花喜久男 第1図
FIG. 1 is a longitudinal sectional view of a gate valve showing an embodiment of the present invention. 1...Valve box 2...Valve seat of the valve box 3...
Valve body 4... Valve seat of the valve body 5... Valve stem
6...Bonnet 7...Handle agent Patent attorney Nori Chika Ken Yudo Kikuo Takehana Figure 1

Claims (6)

【特許請求の範囲】[Claims] (1)弁箱あるいは弁体の一方の弁座表面がCo−Cr
−W系のコバルト基合金からなり、他方の弁座表面が硬
さ(Hv)400以上のニッケル基合金からなることを
特徴とする弁。
(1) One valve seat surface of the valve body or valve body is made of Co-Cr.
- A valve characterized in that it is made of a W-based cobalt-based alloy, and the other valve seat surface is made of a nickel-based alloy having a hardness (Hv) of 400 or more.
(2)前記ニッケル基合金は重量比でCr15〜45%
、Nb3〜15%、Mo20%以下及び残部Niの組成
を有することを特徴とする特許請求の範囲第1項記載の
弁。
(2) The nickel-based alloy has a weight ratio of 15 to 45% Cr.
, Nb 3 to 15%, Mo 20% or less, and the balance Ni.
(3)前記ニッケル基合金は重量比でCr15〜45%
、Nb3〜15%、Mo20%以下、Fe20%以下及
び残部Niの組成を有することを特徴とする特許請求の
範囲第1項記載の弁。
(3) The nickel-based alloy has a weight ratio of 15 to 45% Cr.
, Nb 3 to 15%, Mo 20% or less, Fe 20% or less, and the balance Ni.
(4)前記ニッケル基合金は重量比でC0.3〜1.5
%、Cr5〜25%、Si0.5〜6.0%、B0.5
〜6.0%、Fe10%以下及び残部Niの組成を有す
ることを特徴とする特許請求の範囲第1項記載の弁。
(4) The nickel-based alloy has a weight ratio of C0.3 to 1.5.
%, Cr5-25%, Si0.5-6.0%, B0.5
The valve according to claim 1, having a composition of 6.0% to 6.0%, 10% or less of Fe, and the balance Ni.
(5)弁箱あるいは弁体の一方の弁座表面がCo−Cr
−W系のコバルト基合金からなり、他方の弁座表面がF
e−Cr−Ni系の鉄基析出硬化型合金からなることを
特徴とする 弁。
(5) One valve seat surface of the valve body or valve body is made of Co-Cr.
- Made of W-based cobalt-based alloy, the other valve seat surface is F
A valve characterized by being made of an e-Cr-Ni iron-based precipitation hardening alloy.
(6)前記鉄基析出硬化型合金は重量比でCr7〜14
%、Ni6〜10%、Al0.5〜2.0%、Mo1.
5〜3%、C0.1%以下及び残部Feの組成を有する
ことを特徴とする特許請求の範囲第5項記載の弁。
(6) The iron-based precipitation hardening alloy has a weight ratio of Cr7 to 14.
%, Ni6-10%, Al0.5-2.0%, Mo1.
The valve according to claim 5, characterized in that the valve has a composition of 5 to 3%, C 0.1% or less, and the balance Fe.
JP895786A 1986-01-21 1986-01-21 Valve Pending JPS62167980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP895786A JPS62167980A (en) 1986-01-21 1986-01-21 Valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP895786A JPS62167980A (en) 1986-01-21 1986-01-21 Valve

Publications (1)

Publication Number Publication Date
JPS62167980A true JPS62167980A (en) 1987-07-24

Family

ID=11707149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP895786A Pending JPS62167980A (en) 1986-01-21 1986-01-21 Valve

Country Status (1)

Country Link
JP (1) JPS62167980A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6098655A (en) * 1996-12-03 2000-08-08 Carolina Power & Light Company Alleviating sticking of normally closed valves in nuclear reactor plants

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6098655A (en) * 1996-12-03 2000-08-08 Carolina Power & Light Company Alleviating sticking of normally closed valves in nuclear reactor plants

Similar Documents

Publication Publication Date Title
EP0181570B1 (en) Valve
EP1980637B1 (en) Acid resistant austenitic alloy for valve seat inserts
EP1391529B1 (en) Wear and corrosion resistant austenitic iron base alloy
Ocken The galling wear resistance of new iron-base hardfacing alloys: a comparison with established cobalt-and nickel-base alloys
US20070086910A1 (en) Acid resistant austenitic alloy for valve seat insert
AU2007218061B2 (en) Stainless steel weld overlays with enhanced wear resistance
JPS6343462B2 (en)
JP2001342549A (en) Heat resisting steel with low and medium cr content
EP1313888B1 (en) Low cost, corrosion and heat resistant alloy for diesel engine valves
JPS62167980A (en) Valve
JPS621837A (en) Valve
US5660939A (en) Stainless steel alloy
JPS61241576A (en) Valve
JPS58187663A (en) Valve
JPS61106745A (en) Valve
JPS61106749A (en) Valve
JPS61106748A (en) Valve
JPS63285371A (en) Valve
JPS60245771A (en) Valve
JPS62177144A (en) Wear resistant member and its production
EP4190931A1 (en) Nickel-niobium intermetallic alloy useful for valve seat inserts
JP2664242B2 (en) Light water reactor piping valve
JPS5855223B2 (en) Heat-resistant and wear-resistant Cr↓-Fe↓-Ni↓-Co-based alloy
JPH08267275A (en) Nickel alloy material for welding
JPH02261885A (en) Sliding part