JPH04361A - Build-up powder for atomic power plant equipment - Google Patents

Build-up powder for atomic power plant equipment

Info

Publication number
JPH04361A
JPH04361A JP2100710A JP10071090A JPH04361A JP H04361 A JPH04361 A JP H04361A JP 2100710 A JP2100710 A JP 2100710A JP 10071090 A JP10071090 A JP 10071090A JP H04361 A JPH04361 A JP H04361A
Authority
JP
Japan
Prior art keywords
powder
resistance
less
power plant
build
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2100710A
Other languages
Japanese (ja)
Inventor
Tadashi Fukuda
匡 福田
Yasutaka Okada
康孝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2100710A priority Critical patent/JPH04361A/en
Publication of JPH04361A publication Critical patent/JPH04361A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To obtain an Ni-based alloy coating layer excellent in resistance to wear and corrosion by using an alloy powder contg. specified amts. of C, Si, Mn, Cr, Mo, Ti, Nb, Fe, Al and the balance Ni and inevitable impurities and specifying the amt. of Co as the impurity. CONSTITUTION:The build-up alloy powder for an atomic power plant device contains, by weight, 0.05-0.15% C, <=0.15% Si, 0.1-1% Mn, 20-30% Cr, <=10% Mo, <=3.5% Ti, 3.5-7% Nb, <=15% Fe, <=2% Al, <=0.3% N and the balance Ni and inevitable inpurities, and the amt. of Co as the impurity is controlled to <=0.02%. One or more kinds among the nitride, carbide and oxide of metallic elements are mixed into the alloy powder by <=70wt.%. Consequently, the sliding parts such as the valve and valve seat in an atomic power plant are padded with the powder, and the resistance to wear and corrosion is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、原子力プラントに使用される弁ならびに弁
座などの摺動部に、その耐摩耗性と耐食性の向上を目的
として硬化肉盛層を形成するのに用いる粉末材料に関す
る。
Detailed Description of the Invention (Field of Industrial Application) This invention provides a hardfacing layer for sliding parts such as valves and valve seats used in nuclear power plants to improve their wear resistance and corrosion resistance. It relates to a powder material used to form.

(従来の技術) 摺動部に使用される機械部品の中には、耐摩耗性と耐食
性を同時に要求されるものが多々ある。
(Prior Art) Many mechanical parts used in sliding parts are required to have both wear resistance and corrosion resistance.

原子力プラント、例えば軽水炉の配管に用いられる弁や
弁座等もその一つであり、これらにおいては耐摩耗性と
ともに、耐食性(特に耐応力腐食割れ性)に優れている
ことが必須である。このような部品は、その全体を耐摩
耗性および耐食性に優れた材料で構成するよりも、溶射
や肉盛り溶接などの方法で摺動部に耐摩耗性、耐食性に
優れた被覆層(肉盛りN)を形成させるのが材料コスト
の低減の上でも好ましい。また、肉盛り技術は摩耗ある
いは腐食した部品の補修にも採用できる。
One such example is the valves and valve seats used in the piping of nuclear power plants, such as light water reactors, and these require excellent wear resistance as well as corrosion resistance (particularly stress corrosion cracking resistance). Rather than constructing the entire part from a material with excellent wear and corrosion resistance, it is better to apply a coating layer (overlay) with excellent wear and corrosion resistance to the sliding parts using methods such as thermal spraying or overlay welding. It is preferable to form N) from the viewpoint of reducing material costs. Overlay technology can also be used to repair worn or corroded parts.

従来、耐食・耐摩耗合金としてはCo−Cr−W系の合
金が知られており、軽水炉部品などにの肉盛り材料とし
ても、例えばステライト6(商品名)と称するCr:約
28%、C:約1%、Fe:約3%、W;約4%と残部
Coからなる合金が用いられている。(本明細書におい
て、合金成分に関する%はすべて重量%を意味する。) ところが、上記ステライト合金はCoを多量に含有する
ため、軽水炉の配管系の弁や弁座の肉盛りに使用すると
、炉の定期検査の際、誘導放射能による汚染が問題とな
る。
Conventionally, Co-Cr-W alloys have been known as corrosion-resistant and wear-resistant alloys, and they are also used as build-up materials for light water reactor parts, such as Stellite 6 (trade name), which contains approximately 28% Cr and C. An alloy consisting of: about 1%, Fe: about 3%, W: about 4%, and the balance Co is used. (In this specification, all percentages related to alloy components mean percentage by weight.) However, since the above-mentioned stellite alloy contains a large amount of Co, when it is used for filling up the valves and valve seats of the piping system of a light water reactor, it is difficult to Contamination by induced radioactivity becomes a problem during periodic inspections.

(発明が解決しようとする課題) 本発明の目的は、耐摩耗性および耐食性に優れた硬化肉
盛り層を形成するための粉末材料であって、軽水炉の配
管の弁などに適用しても誘導放射能による汚染の問題の
ない材料を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a powder material for forming a hardened build-up layer with excellent wear resistance and corrosion resistance, which can be applied to light water reactor piping valves, etc. The objective is to provide materials that are free from the problem of radioactive contamination.

(課題を解決するための手段) 本発明の要旨は、下記の(1)および(2)にある。(Means for solving problems) The gist of the present invention is in (1) and (2) below.

(1)重量%で、C:0.05〜0.15%、Si: 
0.15%以下、Mn:0.1〜1%、Cr;20〜3
0%、Mo: 10%以下、Ti: 3.5%以下、N
b: 3.5〜7%、Fe: 15%以下、Al:  
2%以下、N:0.3%以下、残部はNiと不可避的不
純物から成り、不純物としてのCOが0.02%以下で
ある肉盛り用合金粉末。
(1) In weight%, C: 0.05-0.15%, Si:
0.15% or less, Mn: 0.1-1%, Cr: 20-3
0%, Mo: 10% or less, Ti: 3.5% or less, N
b: 3.5-7%, Fe: 15% or less, Al:
2% or less, N: 0.3% or less, the remainder consisting of Ni and unavoidable impurities, and CO as an impurity being 0.02% or less.

(2)上記(1)に記載した合金粉末に金属元素の窒化
物、炭化物および酸化物の1種以上の粉末を70重量%
以下混合した肉盛り用複合粉末。
(2) Add 70% by weight of one or more powders of nitrides, carbides, and oxides of metal elements to the alloy powder described in (1) above.
Composite powder for overlay mixed as below.

上記(1)の合金粉末は、前記組成の溶湯をガスアトマ
イズして得られる実質的に球形の粉末であるのが望まし
い。特に、窒素ガスを噴霧媒とするアトマイズ法によれ
ば、合金粉末中に微細な窒化物を分散生成させることが
できる。
The alloy powder in (1) above is preferably a substantially spherical powder obtained by gas atomizing a molten metal having the above composition. In particular, according to the atomization method using nitrogen gas as an atomizing medium, fine nitrides can be dispersed and generated in the alloy powder.

上記(2)において、窒化物とは、例えば、TiN。In (2) above, the nitride is, for example, TiN.

5iJn、NbN、、CBN、 TaNであり、炭化物
とは例えば、TiC,SiC,WC,ZrC,MOZC
であり、また酸化物とは、例えば、A l goz、T
i(h、ZrO2である。
5iJn, NbN, CBN, TaN, and carbides include, for example, TiC, SiC, WC, ZrC, MOZC.
and the oxide is, for example, Al goz, T
i(h, ZrO2.

これらの粉末は、粒径1〜20μ鋼のものであるのが望
ましい。
These powders preferably have a particle size of 1 to 20 micron steel.

これらの硬質粒子を添加した粉末材料を使用する場合、
溶射などの方法によって形成した肉盛り層の中で、硬質
の粒子が均一に分散していることが耐摩耗性の向上のた
めには必須である。しかし、粉末材料の製造の際に、基
地を構成する合金粉末と硬質粒子とを単に混合するのみ
では、この複合粉末を溶射あるいは溶接して金属被覆相
を形成する時に硬質粒子が凝集・浮上する現象が発生し
て目標とする微細な分散が達成できないことがある。
When using powder materials with these hard particles added,
In order to improve wear resistance, it is essential that hard particles are uniformly dispersed in the built-up layer formed by a method such as thermal spraying. However, when manufacturing powder materials, simply mixing the alloy powder and hard particles that make up the base causes the hard particles to aggregate and float when this composite powder is thermally sprayed or welded to form a metal coating phase. This phenomenon may occur and the target fine dispersion may not be achieved.

これを避けるためには、機械的合金化の手法を用いて粒
子毎の基地組成内に硬質相が分散した構造とするのがよ
い。
In order to avoid this, it is preferable to use a mechanical alloying method to create a structure in which the hard phase is dispersed within the matrix composition of each particle.

本発明の主要な特徴は、前記の誘導放射能の問題を無く
するために、Coの含有量を誘導放射能が実質的に悪影
響を及ぼさないレベルまで低減したこと、そして、Co
を実質的に含有しなくとも耐食、耐摩耗性に優れた肉盛
り硬化層を形成できるように粉末材料の組成を選定した
こと、にある。
The main features of the present invention are that, in order to eliminate the above-mentioned problem of induced radioactivity, the content of Co has been reduced to a level where induced radioactivity does not have a substantial adverse effect;
The composition of the powder material was selected so that a hardened build-up layer with excellent corrosion resistance and wear resistance could be formed without substantially containing any.

従来のCoを含まない材料は、その化学成分含有量の不
適正ならびに硬質分散相の不足に起因して肉盛り材料と
して使用しても、肉盛り部分の耐食性、耐摩耗性が劣る
。この点を改善するため、本発明の粉末材料においては
、前記のように組成が特定されている。
Conventional Co-free materials have poor corrosion resistance and wear resistance in the build-up portion even when used as build-up material due to inappropriate chemical component content and lack of hard dispersed phase. In order to improve this point, the composition of the powder material of the present invention is specified as described above.

(作用) 以下、本発明の肉盛り用合金粉末の各成分の作用と、含
有量の限定理由を説明する。
(Function) Hereinafter, the function of each component of the alloy powder for overlay of the present invention and the reason for limiting the content will be explained.

C: CはCrと結合してM。C6なるCr炭化物を結
晶粒界に形成して結晶粒の粒界結合力を強化する働きを
する。またCはTiおよびNbと結合してTiCおよび
NbCを生成して分散した硬質相を形成し耐摩耗性を増
加させる。このような効果によって、肉盛り層に所定の
耐摩耗性を与えるには、0.05%以上が必要である。
C: C combines with Cr to form M. Cr carbide called C6 is formed at the grain boundaries and serves to strengthen the grain boundary bonding force of the crystal grains. Further, C combines with Ti and Nb to generate TiC and NbC to form a dispersed hard phase and increase wear resistance. Due to such effects, 0.05% or more is required to provide a predetermined wear resistance to the built-up layer.

しかし、Cが0.15%を超えると、NbやTiがNi
と結合して生成するT′相(NisTi)やγ“相(N
iJb)を減少させるため、肉盛り層の強度、硬度が低
下してしまうだけでなく応力腐食割れを起こして肉盛層
が破壊、脱落しやすい。したがってC含有量は0.05
〜0.15%とした。
However, when C exceeds 0.15%, Nb and Ti become Ni.
T′ phase (NisTi) and γ“ phase (NisTi) formed by combining with
iJb), not only does the strength and hardness of the build-up layer decrease, but also stress corrosion cracking occurs, causing the build-up layer to easily break and fall off. Therefore, the C content is 0.05
~0.15%.

Si:Si は合金中の不純物としての酸素を取り除く
作用をもつが、反面0.15%を超えると粒界部におけ
るM23C6の半連続状析出を圀害し、耐応力腐食割れ
性を低下させる。従って、Siの含有量は0.15%以
下とすべきである。
Si:Si has the effect of removing oxygen as an impurity in the alloy, but on the other hand, if it exceeds 0.15%, it impedes the semi-continuous precipitation of M23C6 at grain boundaries and reduces stress corrosion cracking resistance. Therefore, the Si content should be 0.15% or less.

Mn:Mnは粒界部におけるM。C4の半連続状析出を
促進する元素であり、0.1%以上含有させる必要があ
るが、含有量が1%を趙えると延性を損なう脆化相の析
出を助長する。従って、Mnの適正含有量は0.1〜1
%である。
Mn: Mn is M at the grain boundary. It is an element that promotes semi-continuous precipitation of C4, and must be contained in an amount of 0.1% or more, but if the content exceeds 1%, it promotes the precipitation of a brittle phase that impairs ductility. Therefore, the appropriate content of Mn is 0.1 to 1
%.

Cr: Crは、M!IC&型炭化物型彫化物て、前記
のように耐摩耗性向上に寄与するだけでなく、肉盛り層
の耐応力腐食割れ性を高めるにも重要な元素である。こ
れらの効果を確かにするために20%以上含有する必要
がある。しかし、30%を趙えて含有すると、溶射ある
いはPTA溶接等の肉盛り法によって金属被覆相を形成
した場合脆化相が生成して機械的特性が極端に劣化する
。したがってCrの適正含有量は20〜30%である。
Cr: Cr is M! The IC & type carbide die carving is an important element that not only contributes to improving the wear resistance as described above, but also improves the stress corrosion cracking resistance of the built-up layer. In order to ensure these effects, it is necessary to contain 20% or more. However, if the content exceeds 30%, when a metal coating phase is formed by a build-up method such as thermal spraying or PTA welding, a brittle phase will be generated and the mechanical properties will be extremely deteriorated. Therefore, the appropriate content of Cr is 20 to 30%.

Mo:Moは耐孔食性、耐隙間腐食性を向上させるが、
その含有量が10%を超えるとM。C4の粒界析出を抑
制して耐応力腐食割れを劣化させる。従って、Moは1
0%までの範囲で含有させるのがよい。
Mo: Mo improves pitting corrosion resistance and crevice corrosion resistance, but
If the content exceeds 10%, it is M. Suppresses grain boundary precipitation of C4 and deteriorates stress corrosion cracking resistance. Therefore, Mo is 1
The content is preferably up to 0%.

Ti: TiはNiと結合して前記のγ′相を析出し強
度を高くする。3.5%を越えて含有すると延性が劣化
しη相が析出して耐応力腐食割れ性が低下する。したが
ってTi含有量は3.5%以下とした。
Ti: Ti combines with Ni to precipitate the above-mentioned γ' phase and increase the strength. If the content exceeds 3.5%, ductility deteriorates, η phase precipitates, and stress corrosion cracking resistance decreases. Therefore, the Ti content was set to 3.5% or less.

Nb: NbはNiと結合して前記のT“相あるいはδ
相を析出し強度を高くする。また、NbはCと結合して
NbCの形態で結晶粒内に析出し粒界に炭化物が過剰に
析出するのを抑制して耐応力腐食割れ性を高める作用が
ある。これらの作用効果を確実にするためには3.5%
以上含有する必要がある。しかし、7%を趙えて含有す
ると耐応力腐食割れ性が低下する。したがってNb含有
量は3.5〜7%が適正範囲である。
Nb: Nb combines with Ni to form the above-mentioned T" phase or δ
Precipitate phases to increase strength. In addition, Nb combines with C and precipitates in the crystal grains in the form of NbC, suppressing excessive precipitation of carbides at grain boundaries and improving stress corrosion cracking resistance. To ensure these effects, 3.5%
It is necessary to contain the above amount. However, if the content exceeds 7%, stress corrosion cracking resistance decreases. Therefore, the appropriate range of Nb content is 3.5 to 7%.

N:NはTiN、NbNとして肉盛り層中に硬質粒子を
分散させ耐摩耗性を向上させる。しかし、Nが0.3%
を超えると前記γ′相やγ′相の生成量を減少させ、こ
れらによる硬化が小さくなり、基地の硬度が低下すると
ともに靭性も劣化する。本発明ではNを積極的に添加す
るのであるが、上記の理由でその含有量の上限は0.3
%とする。
N: N disperses hard particles in the built-up layer as TiN or NbN to improve wear resistance. However, N is 0.3%
If it exceeds this, the amount of the γ' phase and γ' phase produced is reduced, and the hardening caused by these is reduced, resulting in a decrease in the hardness of the matrix and deterioration in toughness. In the present invention, N is actively added, but for the above reasons, the upper limit of its content is 0.3
%.

Fe:Feは塑性加工時の組織の安定性を高める元素で
あるが、含有量が15%を超えると延性を害する。従っ
て、Feの含有量は15%までにとどめる。
Fe: Fe is an element that improves the stability of the structure during plastic working, but if the content exceeds 15%, it impairs ductility. Therefore, the Fe content is limited to 15% or less.

八2: ^2はNiと結合してN1JNなるγ′相を析
出させ強度を高める。しかし、2%を超えると耐応力腐
食割れ性が低下する。
82: ^2 combines with Ni to precipitate a γ' phase called N1JN to increase strength. However, if it exceeds 2%, stress corrosion cracking resistance decreases.

Co : Coは本発明の肉盛り合金粉末では、できる
だけ少ない方がよい不純物である。その許容上限を0,
02%としたのは、誘導放射能による被爆を実際上問題
のないレベル以下に抑えるためである。
Co: Co is an impurity that should be minimized in the overlay alloy powder of the present invention. Set the allowable upper limit to 0,
The reason for setting it at 0.2% is to suppress exposure to radiation due to induced radiation below a level that poses no practical problem.

本発明の肉盛り粉末材料の一つは、上記の成分の外、残
部はNiおよび不可避の不純物からなる。
One of the overlay powder materials of the present invention consists of the above-mentioned components, with the remainder being Ni and inevitable impurities.

このような材料を用いて肉盛りを行えば、基地にTiN
、NbN、TiC,NbC等の硬質粒子が分散した肉盛
り層が形成され、この層は耐食性とともに耐摩耗性に優
れたものとなる。
If overlay is done using such material, TiN will be added to the base.
, NbN, TiC, NbC, or the like is formed, and this layer has excellent corrosion resistance and wear resistance.

しかし、さらに弁、弁座の摺動部の耐摩耗性を向上させ
るためには、上記の合金粉末に窒化物、炭化物、酸化物
の硬質粒子を予め混合し、これらの硬質粒子を金属組織
中に分散させておくのがよい、このような硬質粒子の適
正添加量は70%以下である。70%を超えると溶射が
困難になる。
However, in order to further improve the wear resistance of the sliding parts of valves and valve seats, hard particles of nitrides, carbides, and oxides are mixed in advance with the above alloy powder, and these hard particles are incorporated into the metal structure. The appropriate amount of such hard particles to be added is 70% or less. If it exceeds 70%, thermal spraying becomes difficult.

前述のとおり、窒化物などの硬質粒子は、機械的合金化
法によるのが望ましい、即ち、ボールミル、バイブロボ
ット、アトライタ (商品名)等を使用して合金粉末と
NbN、TiN、TiC,NbCの粉末とを粉砕しつつ
所定割合で均一に混合して複合化させ、溶射あるいはP
TAfiI接するときの分離が発生しないようにするの
である。
As mentioned above, hard particles such as nitrides are preferably produced by mechanical alloying. In other words, by using a ball mill, Viberobot, Attritor (trade name), etc., alloy powder is mixed with NbN, TiN, TiC, NbC. The powder is pulverized and mixed uniformly in a predetermined ratio to form a composite, which is then thermally sprayed or P
This is to prevent separation from occurring when contacting TAfiI.

上記のようにして製造された本発明の粉末材料は、プラ
ズマ溶射、PTA (Plasma Transfer
edArc)i接肉盛などによって部品の所定箇所に肉
盛りされて耐摩耗性および耐食性に優れた硬化層を形成
する。
The powder material of the present invention produced as described above can be obtained by plasma spraying, PTA (Plasma Transfer
A hardened layer with excellent wear resistance and corrosion resistance is formed by overlaying at a predetermined location of the part by edArc)i welding or the like.

以下、実施例によって本発明の効果を具体的に説明する
Hereinafter, the effects of the present invention will be specifically explained using Examples.

(実施例) ■ 耐摩耗性評価試験 軽水炉環境下での弁・弁座の摺動摩耗性を評価するため
、第1表に示す環境ならびに試験条件下で、第1図に示
すバウデン式摩耗試験法によってJIS S[IJ2製
の鋼球を相手材として摩擦係数を測定した。
(Example) ■ Wear resistance evaluation test In order to evaluate the sliding wear of valves and valve seats in a light water reactor environment, the Bowden wear test shown in Figure 1 was conducted under the environment and test conditions shown in Table 1. The coefficient of friction was measured using a steel ball manufactured by JIS S [IJ2] as a mating material.

■ 応力腐食割れ試験 軽水炉環境下での耐応力腐食割れ性を評価するため、加
圧水型軽水炉−次系水を模擬した第2表に示す環境下で
、第2図に示すUベンド試験片を浸漬し、高応力を負荷
した各供試材の応力腐食割れ試験を実施し、割れの有無
を調査した。
■ Stress corrosion cracking test In order to evaluate the stress corrosion cracking resistance under the light water reactor environment, the U-bend test piece shown in Figure 2 was immersed in the environment shown in Table 2, which simulates the secondary water of a pressurized water reactor. A stress corrosion cracking test was then carried out on each specimen under high stress to investigate the presence or absence of cracks.

■ 供試材 試験に用いた供試材の粉末製造条件と性状を第3表に、
化学組成を第4−1表から第4−4表までにそれぞれ示
す、なお不純物としてP、Sがそれぞれ最大0.01%
程度、Cuが最大0.07%程度含有されている。
■ Table 3 shows the powder manufacturing conditions and properties of the sample materials used in the sample material tests.
The chemical composition is shown in Tables 4-1 to 4-4, and the impurities include P and S at a maximum of 0.01% each.
Cu is contained at a maximum of about 0.07%.

■ 金属被覆層の形成方法 第5表に示す組成のJIS SUS 304ステンレス
鋼を母材として、プラズマ溶射およびPTA溶接により
金属被覆層を形成させた。その条件を第6表および第7
表にそれぞれ示す。
■Metal coating layer formation method Using JIS SUS 304 stainless steel having the composition shown in Table 5 as a base material, a metal coating layer was formed by plasma spraying and PTA welding. The conditions are shown in Tables 6 and 7.
Each is shown in the table.

(以下、余白) 第1表 摩擦係数の測定方法・条件 第5表 母材の組成 (重量%、Fe : bal、) 第2表 耐食性能試験の条件 第6表 プラズマ溶射による金属被覆層形成の条件第3表 粉末製造条件と粉末性状 第7表 し・。(Hereafter, margin) Table 1 Measuring method and conditions for friction coefficient Table 5 Base material composition (weight%, Fe: bal,) Table 2 Corrosion resistance test conditions Table 6 Table 3 Conditions for forming metal coating layer by plasma spraying Powder manufacturing conditions and powder properties Table 7 death·.

PTA溶接による金属被覆層形成の条件(以下、余白) ■ 試験結果 結果は第3図〜第10図に示すとおりである。Conditions for forming a metal coating layer by PTA welding (hereinafter referred to as blank space) ■ Test results The results are shown in FIGS. 3 to 10.

第3図には、合金粉末のC含有量の相違による摩擦係数
のデータを示す0本発明のC含有量範囲においては比較
例(合金1,2)より格段に低い摩擦係数を示し、耐摩
耗性の良好なことがわかる。
Figure 3 shows data on friction coefficients due to differences in C content of alloy powders. In the C content range of the present invention, the friction coefficients are much lower than those of comparative examples (alloys 1 and 2), and the wear resistance is It can be seen that the quality is good.

第4図は、第4−1表の合金3の粉末に、平均粒径5μ
園のNbNを添加量を変えてボールミルで混合しNbN
含有量と摩擦係数との関係を調べた結果である。図示の
ように、NbN粒子の添加・複合化によって摩擦係数は
更に低減し、摺動摩耗の抑制に効果の大きいことが分か
る。
Figure 4 shows that the powder of Alloy 3 in Table 4-1 has an average particle size of 5 μm.
NbN was mixed in a ball mill with different amounts of added NbN.
This is the result of investigating the relationship between content and friction coefficient. As shown in the figure, the friction coefficient is further reduced by adding and compositing NbN particles, and it can be seen that this is highly effective in suppressing sliding wear.

第5図には添加したNbN粒子(添加量20重量%)の
粒度と摩擦係数との関係を示す、硬質粒子として最小径
が1μ謁以上好ましくは5μ顧以上のものを用いた場合
には、第4図に摩擦係数測定結果を示した5μ−より小
さい粒子を含む硬質粒子添加の場合に比べて、摩擦係数
は更に低減し摺動摩耗の抑制により大きな効果のあるこ
とがわかる。
Figure 5 shows the relationship between the particle size and friction coefficient of added NbN particles (addition amount: 20% by weight). When hard particles with a minimum diameter of 1 μm or more, preferably 5 μm or more are used, It can be seen that the friction coefficient is further reduced and there is a greater effect in suppressing sliding wear than in the case of adding hard particles containing particles smaller than 5 μm, the results of which are shown in FIG. 4.

第6図にはNbN以外の硬質粒子添加の例とじてTic
を複合した場合のTiC含有量と摩擦係数との関係を示
す、用いたTiC粒子は予め風力分級法にかけて5μ−
以下の微粒子を除去した。Ticの添加、複合化によっ
ても摩擦係数は更に低減し、摺動摩耗の抑制に効果の大
きいことがわかる。さらにNbN、TiC以外にも、金
属元素の窒素化合物粉末あるいは金属元素の炭化物粉末
あるいは金属元素の酸化物粉末の一般に硬度がビッカー
ス硬さで1500以上の粒子を混合して分散させても、
摩擦係数が低減して摺動摩耗の抑制に効果があった。
Figure 6 shows Tic as an example of adding hard particles other than NbN.
This shows the relationship between TiC content and friction coefficient when composited with TiC particles.
The following fine particles were removed. It can be seen that addition of Tic and compounding further reduce the friction coefficient and are highly effective in suppressing sliding wear. Furthermore, in addition to NbN and TiC, even if particles of a nitrogen compound powder of a metal element, a carbide powder of a metal element, or an oxide powder of a metal element, which generally have a Vickers hardness of 1500 or more, are mixed and dispersed,
The coefficient of friction was reduced, which was effective in suppressing sliding wear.

第7図は、第4−1表の本発明の合金3の粉末にNbN
粉末(21重量%)をボールミルを用いて混合した場合
の混合時間と前記ボールミル混合した粉末をPTA法に
よって溶接肉盛りした部分の摩擦係数を第1表に示す条
件で測定した結果を示すものである。
Figure 7 shows that NbN is added to the powder of alloy 3 of the present invention in Table 4-1.
This table shows the results of measuring the mixing time when the powder (21% by weight) was mixed using a ball mill and the friction coefficient of the part where the powder mixed with the ball mill was welded overlay by the PTA method under the conditions shown in Table 1. be.

第7図から、溶接肉盛り部の摩擦係数低減による摺動摩
耗低減には、本発明合金と硬質粒子を混合して複合粉末
を製造するとき機械的合金化法によって均一に混合する
ことが効果のあることが分かる。
From Figure 7, it is effective to reduce sliding wear by reducing the friction coefficient of the weld buildup by uniformly mixing the alloy of the present invention and hard particles using a mechanical alloying method when producing a composite powder. It turns out that there is.

第8図は、第4−2表の供試材の応力腐食割れ試験結果
である。CおよびNbの含有量が本発明で定める範囲を
はずれた場合に、割れが発生している。
FIG. 8 shows the stress corrosion cracking test results for the sample materials shown in Table 4-2. Cracks occur when the contents of C and Nb are out of the range defined by the present invention.

第9図は、第4−3表の供試材の応力腐食割れ試験結果
である。ここではCおよびCrの含有量が本発明で定め
る範囲をはずれた場合に、割れが発生することがわかる
FIG. 9 shows the stress corrosion cracking test results for the sample materials shown in Table 4-3. It can be seen here that cracks occur when the contents of C and Cr are out of the range defined by the present invention.

第10図は、第4−4表の供試材の応力腐食割れ試験結
果である。この図からはCおよびTiの含有量が本発明
で定める範囲をはずれた場合に、応力腐食割れが発生す
ることがわかる。
FIG. 10 shows the stress corrosion cracking test results for the sample materials in Table 4-4. This figure shows that stress corrosion cracking occurs when the C and Ti contents are out of the range defined by the present invention.

(発明の効果) 本発明の肉盛り材料を使用すれば、耐摩耗性と耐食性が
ともに優れたNi基合金の被覆層を得ることができる。
(Effects of the Invention) By using the overlay material of the present invention, a Ni-based alloy coating layer having excellent wear resistance and corrosion resistance can be obtained.

この肉盛り材料は、あらゆる機械部品の製造および補修
に使用できるが、Coを実質的に含まず誘導放射能の心
配がないので、軽水炉あるいは新型転換炉等の原子力プ
ラントの炉内配管に使用される弁ならびに弁座などの摺
動部に肉盛りして、その耐摩耗性、耐食性を向上させる
のに好適である。
This overlay material can be used for manufacturing and repairing all kinds of mechanical parts, but since it does not substantially contain Co and there is no concern about induced radioactivity, it is used for in-core piping in nuclear power plants such as light water reactors and new converter reactors. It is suitable for building up sliding parts such as valves and valve seats to improve their wear resistance and corrosion resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、摩擦係数の測定方法の概略を示す説明図、 第2図は、腐食試験の試験片の説明図、第3図は、合金
粉末のC含有量とその粉末を使用した肉盛り層の摩擦係
数との関係を示す図、第4図は、粉末材料のNbN含有
量とその粉末を使用した肉盛り層の摩擦係数との関係を
示す図、第5図は、合金粉末に添加したNbN粒子の粒
度とその粉末を使用した肉盛り層の摩擦係数との関係を
示す図、 第6図は、粉末材料のTiC含有量とその粉末を使用し
た肉盛り層の摩擦係数との関係を示す図、第7図は、本
発明の合金粉にNbN1末をボールミルを用いて混合す
る場合の混合時間とその粉末を使用した肉盛り層の摩擦
係数との関係を示す図、である。 第8図、第9図および第10図は、応力腐食割れ試験の
結果を示す図である。
Figure 1 is an explanatory diagram showing an outline of the method for measuring the coefficient of friction, Figure 2 is an explanatory diagram of a test piece for a corrosion test, and Figure 3 is an illustration of the C content of alloy powder and build-up using the powder. Figure 4 shows the relationship between the NbN content of the powder material and the friction coefficient of the built-up layer using that powder. Figure 5 shows the relationship between the NbN content of the powder material and the friction coefficient of the built-up layer using that powder. Figure 6 shows the relationship between the particle size of NbN particles and the friction coefficient of the built-up layer using the powder. FIG. 7 is a diagram showing the relationship between the mixing time when NbN1 powder is mixed with the alloy powder of the present invention using a ball mill and the friction coefficient of a built-up layer using the powder. FIG. 8, FIG. 9, and FIG. 10 are diagrams showing the results of stress corrosion cracking tests.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、C:0.05〜0.15%、Si:0
.15%以下、Mn:0.1〜1%、Cr:20〜30
%、Mo:10%以下、Ti:3.5%以下、Nb:3
.5〜7%、Fe:15%以下、Al:2%以下、N:
0.3%以下、残部はNiと不可避的不純物から成り、
不純物としてのCoが0.02%以下である原子力プラ
ント機器肉盛り用合金粉末。
(1) In weight%, C: 0.05-0.15%, Si: 0
.. 15% or less, Mn: 0.1-1%, Cr: 20-30
%, Mo: 10% or less, Ti: 3.5% or less, Nb: 3
.. 5-7%, Fe: 15% or less, Al: 2% or less, N:
0.3% or less, the remainder consisting of Ni and unavoidable impurities,
An alloy powder for overlaying nuclear power plant equipment containing 0.02% or less of Co as an impurity.
(2)請求項(1)に記載した合金粉末に金属元素の窒
化物、炭化物および酸化物の1種以上の粉末を70重量
%以下混合した原子力プラント機器肉盛り用複合粉末。
(2) A composite powder for overlaying nuclear power plant equipment, which is obtained by mixing the alloy powder according to claim (1) with powder of one or more types of nitrides, carbides, and oxides of metal elements in an amount of 70% by weight or less.
JP2100710A 1990-04-17 1990-04-17 Build-up powder for atomic power plant equipment Pending JPH04361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2100710A JPH04361A (en) 1990-04-17 1990-04-17 Build-up powder for atomic power plant equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2100710A JPH04361A (en) 1990-04-17 1990-04-17 Build-up powder for atomic power plant equipment

Publications (1)

Publication Number Publication Date
JPH04361A true JPH04361A (en) 1992-01-06

Family

ID=14281233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2100710A Pending JPH04361A (en) 1990-04-17 1990-04-17 Build-up powder for atomic power plant equipment

Country Status (1)

Country Link
JP (1) JPH04361A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681114A (en) * 1992-03-06 1994-03-22 Praxair St Technol Inc Anti-corrosive nickel chrome coating and production thereof
DE102008062061A1 (en) * 2008-12-12 2010-06-17 Mahle International Gmbh Wear protective layer useful for sliding element, comprises a matrix containing chromium, aluminum, nitrogen, oxygen and/or carbon, where metallic niobium is stored in the matrix in the form of a solid solution
CN102828138A (en) * 2012-09-14 2012-12-19 兰州理工合金粉末有限责任公司 Nickel-chrome-molybdenum-tungsten alloy powder for plasma surfacing
WO2013005764A1 (en) * 2011-07-05 2013-01-10 日産自動車株式会社 Rolling body, method for producing rolling body, and dynamic force transmission device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681114A (en) * 1992-03-06 1994-03-22 Praxair St Technol Inc Anti-corrosive nickel chrome coating and production thereof
DE102008062061A1 (en) * 2008-12-12 2010-06-17 Mahle International Gmbh Wear protective layer useful for sliding element, comprises a matrix containing chromium, aluminum, nitrogen, oxygen and/or carbon, where metallic niobium is stored in the matrix in the form of a solid solution
WO2013005764A1 (en) * 2011-07-05 2013-01-10 日産自動車株式会社 Rolling body, method for producing rolling body, and dynamic force transmission device
JP5575335B2 (en) * 2011-07-05 2014-08-20 日産自動車株式会社 Rolling element, rolling element manufacturing method, and power transmission device
US9834836B2 (en) 2011-07-05 2017-12-05 Nissan Motor Co., Ltd. Rolling body, method for producing rolling body, and dynamic force transmission device
CN102828138A (en) * 2012-09-14 2012-12-19 兰州理工合金粉末有限责任公司 Nickel-chrome-molybdenum-tungsten alloy powder for plasma surfacing

Similar Documents

Publication Publication Date Title
EP0181570B1 (en) Valve
Ocken The galling wear resistance of new iron-base hardfacing alloys: a comparison with established cobalt-and nickel-base alloys
CN101421073B (en) Hard-facing alloys having improved crack resistance
US8640941B2 (en) Fine grained Ni-based alloys for resistance to stress corrosion cracking and methods for their design
EP2831300B1 (en) Abrasion and corrosion resistant alloy and hardfacing/cladding applications
EP2743361A1 (en) New product and use thereof
EP0300362B1 (en) Fe-base build-up alloy excellent in resistance to corrosion and wear
EP3814543B1 (en) Copper-based hardfacing alloy
EP2639324B1 (en) High-toughness cobalt-based alloy and engine valve coated with same
EA009108B1 (en) Duplex stainless steel alloy for use in seawater applications
US5495837A (en) Engine valve having improved high-temperature wear resistance
WO2019189532A1 (en) Wear-resistant component
EP0634245B1 (en) Wear resistant alloy
JPH04361A (en) Build-up powder for atomic power plant equipment
JP4412964B2 (en) Coating alloys with corrosion and wear resistance
Cockeram et al. Laboratory galling tests of several commercial cobalt-free weld hardfacing alloys
JPH0718365A (en) Corrosion resistant and wear resistant chromium base alloy
JP2832341B2 (en) Ni-base overlay alloy
JPH07305129A (en) Device using cobalt-free alloy material
JP2023112361A (en) Alloy material for nuclear reactor equipment, and channel member including the alloy material
JPH1163251A (en) Valve
JP3721300B2 (en) valve
JP2637296B2 (en) Light water reactor valve
JP2621855B2 (en) Wear-resistant material
JPH0852591A (en) Powder for build-up welding for equipment in nuclear power plant and valve for nuclear power plant