JPH0718365A - Corrosion resistant and wear resistant chromium base alloy - Google Patents
Corrosion resistant and wear resistant chromium base alloyInfo
- Publication number
- JPH0718365A JPH0718365A JP16656893A JP16656893A JPH0718365A JP H0718365 A JPH0718365 A JP H0718365A JP 16656893 A JP16656893 A JP 16656893A JP 16656893 A JP16656893 A JP 16656893A JP H0718365 A JPH0718365 A JP H0718365A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- wear resistance
- base alloy
- corrosion
- wear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Sliding Valves (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、耐食・耐摩耗性クロム
基合金に関し、特に原子力発電プラント等の一次冷却材
系統に適用される同合金に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corrosion-resistant and wear-resistant chromium-based alloy, and more particularly to the alloy applied to a primary coolant system such as a nuclear power plant.
【0002】[0002]
【従来の技術】従来の原子力発電プラントにおける一次
冷却材系統に用いられる弁シートや炉内機器摺動部材に
は耐摩耗性に優れたコバルト基合金(あるいはコバルト
含有合金)であるステライトなどが肉盛材や鋳造材で用
いられている。これらのコバルト基合金(あるいはコバ
ルト含有合金)は耐摩耗性及び耐食性に優れているが、
使用中の摩耗や腐食により合金成分のコバルトが原子炉
一次冷却材中に取り込まれる。その冷却材中のコバルト
は炉心を循環する時、中性子照射を受けると放射性同位
元素のコバルト60に変換する。そのコバルト60が一
次冷却材系統機器表面に沈着し、プラント定検時におけ
る作業従事者の放射線被曝増大の一因となっている。一
方、下記表1に示す市販の耐摩耗ニッケル基合金では、
図1及び図2に示したように耐食性及び耐摩耗性がステ
ライトNo.6(TIG・・・Tungsten Inert Gas ar
c)よりも劣っている。2. Description of the Prior Art Stellite, which is a cobalt-based alloy (or cobalt-containing alloy) having excellent wear resistance, is used for the valve seats and in-core equipment sliding members used in the primary coolant system in conventional nuclear power plants. It is used in filling materials and casting materials. Although these cobalt-based alloys (or cobalt-containing alloys) have excellent wear resistance and corrosion resistance,
Cobalt as an alloy component is taken into the reactor primary coolant due to wear and corrosion during use. Cobalt in the coolant is converted to radioisotope cobalt-60 when it is irradiated with neutrons while circulating in the core. The cobalt 60 is deposited on the surface of the primary coolant system equipment, which is one of the causes of an increase in radiation exposure of workers during regular plant inspections. On the other hand, in the commercially available wear-resistant nickel-based alloys shown in Table 1 below,
As shown in FIGS. 1 and 2, the corrosion resistance and wear resistance of Stellite No. 6 (TIG ・ ・ ・ Tungsten Inert Gas ar
Inferior to c).
【0003】[0003]
【表1】 [Table 1]
【0004】[0004]
【発明が解決しようとする課題】上述したように、従
来、弁シートや炉内機器摺動部材には耐摩耗性に優れた
コバルト基合金(あるいはコバルト含有合金)であるス
テライトなどが用いられているが、定検作業従事者の放
射線被曝増大の一因となっている。そのため、電力業界
をはじめ関係方面からは原子力発電プラントにおける放
射線被曝量の低減策が望まれている。したがって、弁シ
ートや炉内機器摺動部材に起因する放射線被曝の低減の
ためには、コバルト基合金(あるいはコバルト含有合
金)であるステライトなどに替わる耐摩耗性に優れた低
コバルト合金または非コバルト合金を弁シートや炉内機
器摺動部材に適用することが必要となる。As described above, conventionally, the valve seat and the sliding member for the equipment in the furnace are made of Stellite which is a cobalt-based alloy (or cobalt-containing alloy) having excellent wear resistance. However, it is one of the causes of the increased radiation exposure of workers in regular inspection work. Therefore, from the related fields including the electric power industry, a measure for reducing the radiation exposure dose in a nuclear power plant is desired. Therefore, in order to reduce the radiation exposure caused by the valve seat and the sliding members in the reactor equipment, a low-cobalt alloy or a non-cobalt alloy with excellent wear resistance, which replaces the cobalt-based alloy (or alloy containing cobalt), such as stellite, is used. It is necessary to apply the alloy to valve seats and in-core equipment sliding members.
【0005】本発明は上記技術水準及び上記要望に応
じ、高温水中における耐食性及び耐摩耗性が市販のニッ
ケル基合金よりも優れた低コバルト合金または非コバル
ト合金を提供しようとするものである。According to the above-mentioned state of the art and the above-mentioned demands, the present invention aims to provide a low-cobalt alloy or a non-cobalt alloy which is superior in corrosion resistance and wear resistance in high temperature water to commercially available nickel-base alloys.
【0006】[0006]
【課題を解決するための手段】本発明の高温水中におけ
る耐食性及び耐摩耗性に優れた低コバルト合金または非
コバルト合金は以下に述べる観点から、Cr基−Ni−
W−Si−C系合金によることゝしたものである。 耐食性向上のため、基地中あるいは合金中のクロム
含有量を多くする。 耐摩耗性向上のため、基地中にクロム炭化物等の共
晶炭化物を多く析出させる。すなわち、合金中のクロム
含有量を多くするとともに炭素を含有させる。 耐摩耗性向上のため、合金の基地を強化するタング
ステンを含有させる。 耐摩耗性向上及び鋳造・肉盛性の改善のため、合金
にけい素を含有させる。The low cobalt alloy or the non-cobalt alloy excellent in corrosion resistance and wear resistance in high temperature water of the present invention is a Cr-based Ni-Ni-based alloy from the viewpoints described below.
This is due to the fact that it is made of a W-Si-C type alloy. To improve the corrosion resistance, increase the chromium content in the matrix or alloy. To improve wear resistance, a large amount of eutectic carbide such as chromium carbide is precipitated in the matrix. That is, the alloy contains a large amount of chromium and contains carbon. To improve wear resistance, it contains tungsten that strengthens the matrix of the alloy. Include silicon in the alloy to improve wear resistance and casting / buildup properties.
【0007】以上のことから、本発明のクロム基合金は
炭素(C)0.3〜2%、けい素(Si)0.9〜3
%、タングステン(W)2〜5%、ニッケル(Ni)3
4〜43%及び不可避不純物を含み、残部は実質的にク
ロム(Cr)からなり、オーステナイト基地中あるいは
オーステナイト及びフェライト二相基地中に共晶炭化物
を析出させていることを基本的特徴とするものである。From the above, the chromium-based alloy of the present invention has a carbon (C) content of 0.3-2% and a silicon (Si) content of 0.9-3.
%, Tungsten (W) 2 to 5%, nickel (Ni) 3
4 to 43% and unavoidable impurities, and the balance consisting essentially of chromium (Cr), which is basically characterized in that eutectic carbides are precipitated in the austenite matrix or in the austenite and ferrite two-phase matrix. Is.
【0008】[0008]
【作用】前述したように、本発明のクロム基合金は炭素
(C)0.3〜2%、けい素(Si)0.9〜3%、タ
ングステン(W)2〜5%、ニッケル(Ni)34〜4
3%及び不可避不純物を含み、残部は実質的にクロム
(Cr)からなり、オーステナイト基地中あるいはオー
ステナイト及びフェライト二相基地中に共晶炭化物を析
出させていることを基本的特徴としている。以上、本発
明で規定した各成分毎にその限定理由をのべる。炭素
(C)はオーステナイト基地を固溶硬化するとともに硬
質の共晶合金炭化物を析出し、合金の硬さを向上させ耐
摩耗性を向上させるのに有効である。しかし、炭素
(C)が0.3未満では硬さが低くなり、耐摩耗性が低
下するため好ましく、2%を超えて添加するともろくな
り、肉盛時に割れが発生することもあり好ましくない。
けい素(Si)は合金の耐摩耗性の向上及び鋳造性・肉
盛性を改善するのに有効である。しかし、けい素(S
i)が0.9未満では耐摩耗性等の改善効果が小さく、
3%を超えて添加すると高硬度かつ脆弱な相を形成しや
すくなるため好ましくない。タングステン(W)は合金
を固溶硬化し、耐摩耗性を向上させるのに有効である。
しかし、タングステン(W)が2%未満では硬さが低く
なり、耐摩耗性が低下するため好ましく、5%を超えて
添加するとじん性が低下するため好ましくない。ニッケ
ル(Ni)はクロム基合金のじん性を向上させるととも
に、耐食性を向上させるのに有効であると共にクロム
(Cr)等他成分量とのバランスを考慮して34〜43
%とする。クロム(Cr)は合金の耐食性を向上させる
とともに、炭素(C)と結合し硬質なクロム炭化物(C
r7 C3 やCr23C3 など)を形成し、耐摩耗性を向上
させるのに有効である。As described above, the chromium-based alloy of the present invention has carbon (C) of 0.3 to 2%, silicon (Si) of 0.9 to 3%, tungsten (W) of 2 to 5%, nickel (Ni). ) 34-4
3% and unavoidable impurities are contained, and the balance is substantially composed of chromium (Cr), and the basic feature is that eutectic carbide is precipitated in the austenite matrix or in the austenite and ferrite two-phase matrix. The reasons for limitation are given for each of the components specified in the present invention. Carbon (C) is effective in solid-solution hardening an austenite matrix and precipitating a hard eutectic alloy carbide, improving the hardness of the alloy and improving wear resistance. However, if the carbon (C) is less than 0.3, the hardness is low and the wear resistance is lowered, which is preferable, and if it is added in excess of 2%, it becomes brittle and cracks may occur during buildup, which is not preferable.
Silicon (Si) is effective for improving the wear resistance of the alloy and for improving the castability and build-up property. However, silicon (S
When i) is less than 0.9, the effect of improving wear resistance is small,
Addition in excess of 3% is not preferable because it tends to form a high hardness and brittle phase. Tungsten (W) is effective in solid solution hardening an alloy and improving wear resistance.
However, if the content of tungsten (W) is less than 2%, the hardness becomes low and the wear resistance decreases, and if it exceeds 5%, the toughness decreases, which is not preferable. Nickel (Ni) is effective in improving the toughness of the chromium-based alloy and also in improving the corrosion resistance, and in consideration of the balance with other components such as chromium (Cr), it is 34 to 43.
%. Chromium (Cr) improves the corrosion resistance of the alloy and combines with carbon (C) to form hard chromium carbide (C
r 7 C 3 , Cr 23 C 3, etc.) to improve wear resistance.
【0009】[0009]
【実施例】以下、本発明に関して行った実施例につき記
述する。表2に示す本発明の開発合金はそれぞれ50k
gを真空溶解し、ガスアトマイズ法により粉末化され
た。粉末はPTA( Plasma Transferrd Arc)法による
肉盛溶接として供するため、ふるい分けにより70〜3
50メッシュの粉末を選定した。表1に示す市販合金及
び表2に示す開発合金はそれぞれ粉末をPTA法によ
り、また、ステライトNo.6は棒をTIG( Tungste
n Inert Gas arc )法により、304ステンレス鋼(2
50リットル×150W×40tmm)に肉盛溶接(厚
み:約5〜7mm)した。次に、これら肉盛金属部から
試験片を採取し、後述の摺動摩耗試験及び全面腐食試験
を実施した。EXAMPLES Hereinafter, examples carried out in relation to the present invention will be described. The developed alloys of the present invention shown in Table 2 are each 50 k
g was vacuum melted and pulverized by the gas atomizing method. Since the powder is used as overlay welding by the PTA (Plasma Transferrd Arc) method, 70 to 3 is obtained by sieving.
A 50 mesh powder was selected. The commercially available alloys shown in Table 1 and the developed alloys shown in Table 2 were powdered by the PTA method and Stellite No. 6 TIG (Tungste
n Inert Gas arc) method, 304 stainless steel (2
Overlay welding (thickness: about 5 to 7 mm) was performed on 50 liters × 150 W × 40 tmm). Next, test pieces were taken from these built-up metal parts, and a sliding wear test and a general corrosion test described later were carried out.
【0010】[0010]
【表2】 [Table 2]
【0011】〔試験方法〕 〇摺動摩耗試験 高温水中で摺動摩耗試験を行い耐摩耗性を評価した。ま
た、摺動摩耗試験は同一合金から採取した運動片と固定
片とを用い実施した。この時の試験条件を表3に示す。
耐摩耗性は比摩耗量により評価を行った。 〇全面腐食試験 高温水中で全面腐食試験を行い耐全面腐食性を評価し
た。この時の腐食試験環境を表4に示す。耐全面腐食性
は腐食速度により評価を行った。[Test Method] 〇Sliding wear test A sliding wear test was conducted in high temperature water to evaluate the wear resistance. The sliding wear test was carried out using a moving piece and a fixed piece taken from the same alloy. Table 3 shows the test conditions at this time.
The wear resistance was evaluated by the specific wear amount. ○ General corrosion test A general corrosion test was performed in high temperature water to evaluate the general corrosion resistance. Table 4 shows the corrosion test environment at this time. The general corrosion resistance was evaluated by the corrosion rate.
【0012】[0012]
【表3】 [Table 3]
【0013】[0013]
【表4】 [Table 4]
【0014】以上の試験の内、摺動摩耗試験結果を図1
に、全面腐食試験結果を図2に示した。図1及び図2に
示したように、本発明合金の高温水中における耐摩耗性
及び耐全面腐食性は市販のニッケル基合金よりも優れて
いることがわかる。Of the above tests, the sliding wear test results are shown in FIG.
The general corrosion test results are shown in FIG. As shown in FIGS. 1 and 2, it is understood that the wear resistance and general corrosion resistance of the alloy of the present invention in high temperature water are superior to those of the commercially available nickel-base alloy.
【0015】[0015]
【発明の効果】本発明によれば、原子力発電プラントの
一次冷却系統に用いられる弁シートや炉内機器摺動部材
に関し、低コバルトで市販のニッケル基合金よりも高温
水中での耐摩耗性及び耐食性に優れたものが得られた。
したがって、本発明合金をステライトに替えて一次冷却
材系統の弁シートや炉内機器摺動部材に適用すれば、原
子力発電プラント定検時における作業従事者の放射線被
曝量を低減することができる。Industrial Applicability According to the present invention, a valve seat used in a primary cooling system of a nuclear power plant or a sliding member for in-core equipment, which has a wear resistance in high temperature water and a lower cobalt than a commercially available nickel-based alloy, A product having excellent corrosion resistance was obtained.
Therefore, if the alloy of the present invention is applied to the valve sheet of the primary coolant system or the sliding member of the in-core device in place of stellite, the radiation exposure dose of the worker during the regular inspection of the nuclear power plant can be reduced.
【図1】本発明の実施例の試作合金と比較合金の摺動摩
耗試験結果を示す図表。FIG. 1 is a chart showing the results of sliding wear test of trial alloys and comparative alloys of Examples of the present invention.
【図2】本発明の実施例の試作合金と比較合金の全面腐
食試験結果を示す図表。FIG. 2 is a chart showing the results of a general corrosion test of a trial alloy and a comparative alloy of Examples of the present invention.
Claims (1)
けい素(Si):0.9〜3%、タングステン(W):
2〜5%、ニッケル(Ni):34〜43%及び不可避
不純物を含み、残部は実質的にクロム(Cr)であるこ
とを特徴とする耐食・耐摩耗性クロム基合金。1. A weight ratio of carbon (C): 0.3 to 2%,
Silicon (Si): 0.9-3%, Tungsten (W):
2 to 5%, nickel (Ni): 34 to 43%, and unavoidable impurities, and the balance being substantially chromium (Cr).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16656893A JPH0718365A (en) | 1993-07-06 | 1993-07-06 | Corrosion resistant and wear resistant chromium base alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16656893A JPH0718365A (en) | 1993-07-06 | 1993-07-06 | Corrosion resistant and wear resistant chromium base alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0718365A true JPH0718365A (en) | 1995-01-20 |
Family
ID=15833680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16656893A Withdrawn JPH0718365A (en) | 1993-07-06 | 1993-07-06 | Corrosion resistant and wear resistant chromium base alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0718365A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004018724A1 (en) * | 2002-08-26 | 2004-03-04 | Hanyang Hak Won Co., Ltd. | Fe-based hardfacing alloy |
CN102896441A (en) * | 2012-10-29 | 2013-01-30 | 海门市威菱焊材制造有限公司 | Core soldering wire for spraying and preparation method thereof |
WO2014069180A1 (en) | 2012-10-31 | 2014-05-08 | 福田金属箔粉工業株式会社 | Ni-Cr-Co-BASED ALLOY HAVING HIGH-TEMPERATURE CORROSION RESISTANCE PROPERTIES, AND POPPET VALVE HAVING SURFACE MODIFIED WITH SAME |
CN112391566A (en) * | 2020-11-13 | 2021-02-23 | 杭州微熔科技有限公司 | Low-temperature micro-fusion welding anti-corrosion wear-resistant material and preparation method thereof |
-
1993
- 1993-07-06 JP JP16656893A patent/JPH0718365A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004018724A1 (en) * | 2002-08-26 | 2004-03-04 | Hanyang Hak Won Co., Ltd. | Fe-based hardfacing alloy |
CN102896441A (en) * | 2012-10-29 | 2013-01-30 | 海门市威菱焊材制造有限公司 | Core soldering wire for spraying and preparation method thereof |
WO2014069180A1 (en) | 2012-10-31 | 2014-05-08 | 福田金属箔粉工業株式会社 | Ni-Cr-Co-BASED ALLOY HAVING HIGH-TEMPERATURE CORROSION RESISTANCE PROPERTIES, AND POPPET VALVE HAVING SURFACE MODIFIED WITH SAME |
US9441287B2 (en) | 2012-10-31 | 2016-09-13 | Fukuda Metal Foil & Powder Co., Ltd. | Ni-Cr-Co-based alloy having high-temperature corrosion resistance, and poppet valve surface-modified with the same |
CN112391566A (en) * | 2020-11-13 | 2021-02-23 | 杭州微熔科技有限公司 | Low-temperature micro-fusion welding anti-corrosion wear-resistant material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4430297A (en) | Hard nickel-base alloy resistant to wear and corrosion | |
EP2059620B1 (en) | Welding alloy and articles for use in welding, weldments and method for producing weldments | |
EP2910663B1 (en) | Abrasion and corrosion resistant alloy and hardfacing/cladding applications | |
US4803045A (en) | Cobalt-free, iron-base hardfacing alloys | |
EP1732729B1 (en) | Chromium-free welding consumable | |
US4216015A (en) | Wear-resistant iron-nickel-cobalt alloys | |
US10233522B2 (en) | Low cobalt hard facing alloy | |
EP0300362B1 (en) | Fe-base build-up alloy excellent in resistance to corrosion and wear | |
CA1126989A (en) | Nickel-base wear-resistant alloy | |
JPH0718365A (en) | Corrosion resistant and wear resistant chromium base alloy | |
US5702668A (en) | Cobalt-free hardfacing alloys with improved welding characteristics | |
GB2039950A (en) | Hard alloys | |
US4931255A (en) | Nickel-cobalt based alloys | |
JPS5952228B2 (en) | Sliding structure for nuclear reactor | |
JP2832341B2 (en) | Ni-base overlay alloy | |
JPH04361A (en) | Build-up powder for atomic power plant equipment | |
JPH07305129A (en) | Device using cobalt-free alloy material | |
JP7011987B2 (en) | Ni-based weld metal and welded structure | |
JP2621855B2 (en) | Wear-resistant material | |
IE47383B1 (en) | Nickel-based alloy for nuclear power station | |
JPH08267275A (en) | Nickel alloy material for welding | |
JP2703552B2 (en) | Iron-based surface hardened alloy without cobalt | |
JPS5848654A (en) | Sliding mechanism | |
JPH1163251A (en) | Valve | |
JPH059631A (en) | Wear resistant zirconium alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20001003 |