JPH02267220A - Production of steel sheet for flash butt welding excellent in toughness at low temperature - Google Patents

Production of steel sheet for flash butt welding excellent in toughness at low temperature

Info

Publication number
JPH02267220A
JPH02267220A JP8580989A JP8580989A JPH02267220A JP H02267220 A JPH02267220 A JP H02267220A JP 8580989 A JP8580989 A JP 8580989A JP 8580989 A JP8580989 A JP 8580989A JP H02267220 A JPH02267220 A JP H02267220A
Authority
JP
Japan
Prior art keywords
steel
toughness
less
slab
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8580989A
Other languages
Japanese (ja)
Inventor
Kiyoshi Nishioka
潔 西岡
Hiroshi Tamehiro
為広 博
Nobutaka Yurioka
百合岡 信孝
Hiroshi Tachikawa
博 立川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8580989A priority Critical patent/JPH02267220A/en
Publication of JPH02267220A publication Critical patent/JPH02267220A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To easily obtain a steel sheet for flash butt welding excellent in toughness at low temp. in large quantities by subjecting a slab of a steel in which respective contents of C, Si, Mn, P, S, Al, N, O, Nb, Ti, and Zr are specified to reheating at the prescribed temp. CONSTITUTION:A steel which has a composition consisting of, by weight, 0.03-0.1% C, <=0.5% Si, 1.4-2% Mn, <=0.025% P, <=0.005% S, <=0.004% Al, 0.001-0.0035% N, 0.0015-0.005% O, 0.03-0.06% Nb, 0.005-0.025% Ti and/or 0.005-0.025% Zr so that the total content of Ti and Zr is regulated to 0.005-0.025%, and the balance Fe is refined. This steel is formed into a slab by a continuous casting method, reheated at <=1250 deg.C, and then formed into a steel sheet.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はとくにフラッシュバット溶接(FBW)に適し
た鋼の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing steel particularly suitable for flash butt welding (FBW).

(従来の技術) 最近、溶接施工能率向上の観点からFBWを大規模なス
ケール(例えばラインパイプ)で適用する例が急速に増
加しつつある。しかしFBWに適した鋼の開発は殆どな
されておらず、接合部の低温靭性確保が大きな問題とな
っている。
(Prior Art) Recently, examples of applying FBW on a large scale (for example, line pipes) are rapidly increasing from the viewpoint of improving welding efficiency. However, there has been little development of steel suitable for FBW, and ensuring low-temperature toughness of joints has become a major problem.

これは、FBWにおいては鋼そのもの(母材)を溶融・
凝固して接合するため接合部の成分調整(組織制御)が
困難であることによる。今日まで溶接熱影響部(HAZ
)に関しては低温靭性を改善した鋼が数多く開発されて
いるが、これらの鋼ではFBW部の靭性を改善すること
は不可能である。
In FBW, the steel itself (base material) is melted and
This is because it is difficult to adjust the components (structure control) of the joint because it is solidified and joined. To date, welding heat affected zone (HAZ)
), many steels with improved low-temperature toughness have been developed, but with these steels it is impossible to improve the toughness of the FBW part.

例えば、TiNなど高温でも比較的に安定な窒化物を鋼
中に微細に分散させ、これによってHAZのオーステナ
イト(γ)粒の粗大化を抑制する技術が開発されている
が、鋼が溶融する接合部では、TiNも完全に溶解し、
全く役に立たない。
For example, a technology has been developed to finely disperse nitrides such as TiN, which are relatively stable even at high temperatures, into steel, thereby suppressing the coarsening of austenite (γ) grains in the HAZ. In this section, TiN is also completely dissolved,
Totally useless.

これに対してTI酸化物(主としてT l 20s )
を微細分散させた鋼(特願昭83−170998号)は
溶融線近傍でもHAZ組織を小さくすることができ、T
iN鋼に比較して優れた低温靭性が得られる。
In contrast, TI oxide (mainly T l 20s )
Steel in which finely dispersed T
Superior low-temperature toughness can be obtained compared to iN steel.

しかし、この鋼もFBWを意図して開発されたものでな
く、FBW接合部の組織制御には十分ではない。従来鋼
においては、FBW部の靭性が0℃でもシャルピー吸収
エネルギーで1kg−m以下と極めて悪く、靭性確保の
ためのFBW後の熱処理が必要等、溶接施工能率上大き
な問題となっていることから、新知見に基く新しい鋼の
開発が強く望まれている。
However, this steel was not developed with the intention of FBW, and is not sufficient for controlling the structure of FBW joints. In conventional steel, the toughness of the FBW part is extremely poor, with Charpy absorbed energy of less than 1 kg-m even at 0℃, and heat treatment after FBW is required to ensure toughness, which poses a major problem in terms of welding efficiency. There is a strong desire to develop new steels based on new knowledge.

(発明が解決しようとする課題) 本発明はFBWに適した鋼を安価に製造する技術を提供
するものである。本発明法で製造した鋼は溶接部(接合
部、熱影響部)の組織が微細化し、後熱処理なしでも全
域で優れた低温靭性を示す。
(Problems to be Solved by the Invention) The present invention provides a technique for manufacturing steel suitable for FBW at low cost. The steel produced by the method of the present invention has a finer structure in the welded zone (joint zone, heat affected zone), and exhibits excellent low-temperature toughness throughout the entire region even without post-heat treatment.

(課題を解決するための手段) 本発明の要旨は、重量%で、C: 0.03〜0,10
%、Si:0.5%以下、Mn:1.4〜2.0%、P
 :0.025%以下、S :0.005%以下、Al
 :0.004%以下、N : 0.0010〜0.0
035%、O: 0.0015〜0.0050%、N 
b:o、03〜o、oa%で、T i+0.005〜0
.025%、Zr:0.005〜0.025%のいずれ
か一方又は 両方で0.005≦TI +Zr≦0.0
25%とし、残部が鉄および不可避的不純物からなる実
質的にAi)を含有しない鋼、あるいはこの鋼にさらに
V :0.005〜o、oao%、N i:0.05〜
2.0%、Cu:0.05〜1.0%、Cr:0.05
〜1.0%、Mo:0.05〜0.40%、B : 0
.0003〜0.0015%、Ca:0.0005〜0
.005%のうちいずれか1種または2種以上を含有さ
せ、残部が鉄および不可避的不純物からなる実質的にA
lを含有しない鋼を連続鋳造法によってスラブとし、こ
れを1250℃以下の温度で再加熱後、鋼を製造するこ
とにある。
(Means for Solving the Problems) The gist of the present invention is that, in weight%, C: 0.03 to 0.10
%, Si: 0.5% or less, Mn: 1.4-2.0%, P
: 0.025% or less, S: 0.005% or less, Al
: 0.004% or less, N: 0.0010 to 0.0
035%, O: 0.0015-0.0050%, N
b: o, 03~o, oa%, Ti+0.005~0
.. 025%, Zr: 0.005≦TI for either or both of 0.005 to 0.025% +Zr≦0.0
25%, and the balance is iron and inevitable impurities, which is substantially free of Ai, or this steel is further supplemented with V: 0.005~o, oao%, Ni: 0.05~
2.0%, Cu: 0.05-1.0%, Cr: 0.05
~1.0%, Mo: 0.05~0.40%, B: 0
.. 0003-0.0015%, Ca: 0.0005-0
.. Substantially A containing one or more of 005% and the remainder consisting of iron and inevitable impurities.
The purpose of this method is to form a slab of steel that does not contain l by a continuous casting method, reheat the slab at a temperature of 1250° C. or lower, and then manufacture steel.

(作  用) 発明者らの研究によれば、FBW接合部の靭性は、1)
鋼の化学成分、2)組ta(結晶粒の大きさと硬化相の
分布状!りに大きく依存し、鋼成分の適正化とこれによ
る結晶粒の微細化が高靭性化に不可欠であると考えられ
た。
(Function) According to the inventors' research, the toughness of the FBW joint is as follows: 1)
The chemical composition of steel is highly dependent on the 2) group ta (crystal grain size and hardening phase distribution!), and it is believed that optimization of steel composition and the resulting refinement of grain size are essential for achieving high toughness. It was done.

そこで鋼中にTiないしはZr酸化物、あるいはTl−
Zrの複合酸化物を微細に分散させ、これによって組織
を微細化する新しい方法を発明した。
Therefore, Ti or Zr oxides or Tl-
We have invented a new method for finely dispersing a Zr complex oxide and thereby refining its structure.

FBW接合部では鋼は溶融するので、これらの酸化物で
さえも溶解してしまうが、凝固冷却中に再析出する。そ
してγ−α変態時にγ粒内に再析出したT i  OZ
 r O2、あるいは(Ti゜2 3 ′ Z「)0を核として、放射状に微細なアシキュラーフェ
ライト(AF)が生成するので、接合部の組織は著しく
微細化する。
Since the steel melts in FBW joints, even these oxides dissolve, but they re-precipitate during solidification cooling. Then, T i OZ re-precipitated within the γ grains during the γ-α transformation.
Since fine acicular ferrite (AF) is generated radially with rO2 or (Ti゜2 3'Z'')0 as the nucleus, the structure of the joint becomes extremely fine.

さらに、これらの酸化物は溶融線近傍の高温に加熱され
る領域(粗粒域HAZ)では溶解せずに安定であり、こ
の領域でも組織の微細化に効果を発揮する。その結果、
接合部は全域にわたって微細化し、極めて優れた低温靭
性が得られる。
Further, these oxides are stable without being dissolved in the region heated to high temperatures near the melting line (coarse grain region HAZ), and are effective in refining the structure even in this region. the result,
The joint is made finer over the entire area, resulting in extremely excellent low-temperature toughness.

上記のようにTiないしはZ「の添加は、高温でも安定
で、かつ溶融部においても凝固過程で再析出するTl、
Zrの単独あるいは複合酸化物による組織微細化を実現
する上で必須であるが、その適正添加量には注意を要す
る。
As mentioned above, the addition of Ti or Z is stable even at high temperatures, and Tl, which is reprecipitated during the solidification process even in the molten zone,
Zr is essential for realizing microstructure using Zr alone or as a composite oxide, but care must be taken to determine the appropriate amount of Zr added.

すなわち、有効な酸化物の生成を確保するための下限値
として0.005%以上のTiないしはZrの添加が必
須である(0.005%≦Tt+Zr)。また、Tiあ
るいはZrの適量添加はTICあるいはZrCの生成を
助長し靭性の劣化を引き起こすため、その上限値の規制
が必要である。発明者らの研究によれば、靭性の劣化を
招かない”rt、zrの単独あるいは複合添加の上限量
は0.025%であり、TI +Zr≦0.025%と
した。
That is, it is essential to add 0.005% or more of Ti or Zr as a lower limit to ensure effective oxide production (0.005%≦Tt+Zr). Further, since addition of an appropriate amount of Ti or Zr promotes the formation of TIC or ZrC and causes deterioration of toughness, it is necessary to regulate the upper limit thereof. According to the inventors' research, the upper limit of the addition of rt and zr alone or in combination without causing deterioration of toughness is 0.025%, and TI + Zr≦0.025%.

なお、TI、Zrの添加によって、上記の酸化物の生成
による接合部の組織微細化以外に、窒化物(TiNある
いはZrN)の生成によるHAZ亜粗粒域(1350℃
以下に加熱されたHAZ)のγ粒の粗大化抑制効果も期
待できる。
In addition, the addition of TI and Zr not only refines the structure of the joint due to the formation of oxides, but also refines the HAZ sub-coarse grain region (at 1350°C) due to the formation of nitrides (TiN or ZrN).
The effect of suppressing the coarsening of γ grains in the heated HAZ) can also be expected.

そのためには、Ti、Zr、O,Nのバランスを適正に
確保することが必要である。
For this purpose, it is necessary to ensure an appropriate balance of Ti, Zr, O, and N.

N、Ojlについては酸化物としての’ri2o3゜Z
 rO2,(Ti.Zr)0あるいは窒化物としてのT
iN、ZrNの生成を確保するため、下限値をそれぞれ
N≧0.0010%、0≧0.0015%とする必要が
ある。また、Nの上限は固溶Nによる靭性の劣化を防止
するためにN≦0.0035%に、0の上限は非金属介
在物の生成による鋼の清浄度、靭性の劣化を防止するた
めO≦0.0050%とした。
For N and Ojl, 'ri2o3゜Z as an oxide
rO2, (Ti.Zr)0 or T as nitride
In order to ensure the generation of iN and ZrN, it is necessary to set the lower limits to N≧0.0010% and 0≧0.0015%, respectively. In addition, the upper limit of N is set to N≦0.0035% to prevent deterioration of toughness due to solid solution N, and the upper limit of 0 is set to O to prevent deterioration of cleanliness and toughness of steel due to the formation of nonmetallic inclusions. ≦0.0050%.

しかしながら、たとえTI 、Zr、N、Oiを適正に
制御し、鋼中にTi.Zr酸化物あるいは窒化物を微細
に分散させても、基本成分が適当でないと優れた靭性は
得られない。
However, even if TI, Zr, N, and Oi are properly controlled, Ti. Even if Zr oxide or nitride is finely dispersed, excellent toughness cannot be obtained unless the basic components are appropriate.

以下、この点について説明する。This point will be explained below.

Cの下限0.03%は、母材および溶接部の強度の確保
ならびにNb、Vなどの添加時に、これらの効果を発揮
させるための最小量である。しかしC量が多すぎると、
接合部の低温靭性に悪影響をおよぼすだけでなく母材靭
性、溶接性をも劣化させるので、上限を0.10%とし
た。Cff1が多いと接合部に島状マルテンサイト(M
n) 、疑似パーライト(P′)が生成して低温靭性を
著しく劣化させる。
The lower limit of 0.03% of C is the minimum amount to ensure the strength of the base metal and the welded part and to exhibit these effects when adding Nb, V, etc. However, if the amount of C is too large,
Since it not only adversely affects the low-temperature toughness of the joint but also deteriorates the toughness and weldability of the base material, the upper limit was set at 0.10%. When Cff1 is abundant, island-like martensite (M
n) Pseudo pearlite (P') is generated and the low temperature toughness is significantly deteriorated.

Slは脱酸上、鋼に含まれる元素であるが、多く添加す
ると溶接性、接合部の靭性が劣化するため、上限を0.
5%に限定した。鋼の脱酸はTiのみでも十分可能であ
り、Mnの生成を防止して靭性を改善する観点から0.
15%以下が望ましい。
Sl is an element contained in steel for deoxidation purposes, but if too much is added, weldability and toughness of joints will deteriorate, so the upper limit should be set at 0.
It was limited to 5%. It is possible to deoxidize steel by using only Ti, and from the viewpoint of preventing the formation of Mn and improving toughness, it is possible to deoxidize steel with 0.
15% or less is desirable.

Mnは強度、靭性を確保する上で不可欠な元素である。Mn is an essential element for ensuring strength and toughness.

FBW接合部の靭性を改善するためには、γ粒界に生成
する粗大な初析フェライトを防止する必要があり、Mn
添加はこれを抑制する効果がある。
In order to improve the toughness of FBW joints, it is necessary to prevent coarse pro-eutectoid ferrite from forming at the γ grain boundaries.
Addition has the effect of suppressing this.

FBW接合部の(溶接後の)冷速は比較的遅く、初析フ
ェライトの生成を防止し、AFの生成を促進するための
Mnの下限値は1.5%である。しかし、Mn量が多す
ぎると焼入性が増加して溶接性、接合部の靭性を劣化さ
せるだけでなく、スラブの中心偏析を助長するので上限
を2.0%とした。
The cooling rate of the FBW joint (after welding) is relatively slow, and the lower limit of Mn to prevent the formation of pro-eutectoid ferrite and promote the formation of AF is 1.5%. However, if the amount of Mn is too large, the hardenability not only increases and the weldability and toughness of the joint are deteriorated, but also promotes segregation at the center of the slab, so the upper limit was set at 2.0%.

本発明鋼において不純物であるP、Sをそれぞれ0.0
25%以下、0.005%以下とした理由は、母材、接
合部の低温靭性をより一層向上させるためである。P量
の低減は、接合部における粒界破壊傾向を減少させ、5
ffiの低減は粒界フェライトの生成を抑制する傾向が
ある。最も好ましいP、Slは、それぞれ0.010%
、 0.0020%以下である。
In the steel of the present invention, the impurities P and S are each 0.0
The reason why the content is 25% or less and 0.005% or less is to further improve the low-temperature toughness of the base material and the joint. Reducing the amount of P reduces the tendency for intergranular fracture at the joint, 5
Reducing ffi tends to suppress the formation of grain boundary ferrite. The most preferable P and Sl are each 0.010%
, 0.0020% or less.

AJは、一般に脱酸上鋼中に含まれる元素であるが、本
発明鋼では好ましくない元素であり、その上限を0.0
04%とした。これはA、IJが鋼中に含まれていると
酸素と結合してTi2O3゜T Z r O2あるいは
TI、Zrの複合酸化物ができないためである。脱酸は
Ti.Zrだけでも可能である、本発明においては11
量は少ないほど良く、0.002%以下が望ましい。
AJ is an element that is generally included in deoxidized steel, but it is an element that is not preferred in the steel of the present invention, and its upper limit is set to 0.0.
04%. This is because if A and IJ are contained in steel, they combine with oxygen to form Ti2O3°TZrO2 or a composite oxide of TI and Zr. Deoxidation is Ti. In the present invention, it is possible to use Zr alone.
The smaller the amount, the better, and preferably 0.002% or less.

Nbは本発明鋼において重要な元素であり、高強度鋼に
おいてはNbを添加することなく優れた接合部の靭性を
得ることは困難である。Nbはγ粒界に生成するフェラ
イトを抑制し、Ti2O3゜Z r O2あるいはTI
、Zrの複合酸化物を核とする微細なAFの生成を促進
する働きがある。
Nb is an important element in the steel of the present invention, and it is difficult to obtain excellent joint toughness in high-strength steel without adding Nb. Nb suppresses ferrite generated at the γ grain boundaries, and reduces Ti2O3゜Z r O2 or TI
, has the function of promoting the generation of fine AF with the composite oxide of Zr as the core.

FBWにおいて、この効果を得るためには最低0.03
%のNb添加が必要である。しかしながら、Nb量が多
すぎると、逆に微細なAFの生成を妨げるのでその上限
を0.06%とした。
In FBW, minimum 0.03 to obtain this effect.
% Nb addition is required. However, if the amount of Nb is too large, the formation of fine AF will be hindered, so the upper limit was set at 0.06%.

つぎに、V、Ni 、Cu、Cr、Mo、B。Next, V, Ni, Cu, Cr, Mo, and B.

Caを添加する理由について説明する。The reason for adding Ca will be explained.

基本となる成分にさらに、これらの元素を添加する主た
る目的は本発明鋼の優れた特徴を損なうことなく、強度
、靭性などの特性の向上をはかるためである。したがっ
て、その添加量は自ら制限されるべき性質のものである
The main purpose of adding these elements to the basic ingredients is to improve properties such as strength and toughness without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount added should be limited.

VはNbとほぼ同じ効果をもつ元素であるが、0.00
5%以下では効果が少なく、上限は0.060%まで許
容できる。
V is an element that has almost the same effect as Nb, but 0.00
If it is less than 5%, the effect is small, and an upper limit of 0.060% is permissible.

Niは溶接性、接合部靭性に悪影響をおよぼすことなく
、母材の強度、靭性を向上させるが、2.0%を超える
と溶接性に好ましくないため上限を2,0%とした。
Ni improves the strength and toughness of the base metal without adversely affecting weldability and joint toughness, but if it exceeds 2.0%, it is unfavorable for weldability, so the upper limit was set at 2.0%.

CuはNiとほぼ同様の効果とともに耐食性、耐水素誘
起割れ性などにも効果があるが、1,0%を超えると熱
間圧延時にCu−クラックが発生し、製造困難となる。
Cu has almost the same effects as Ni, as well as corrosion resistance, hydrogen-induced cracking resistance, etc., but if it exceeds 1.0%, Cu-cracks will occur during hot rolling, making manufacturing difficult.

このため上限を1.0%とした。For this reason, the upper limit was set at 1.0%.

Crは母材、溶接部の強度を高めるが、多すぎると溶接
性や接合部靭性を劣化させる。その上限は1.0%であ
る。
Cr increases the strength of the base metal and the welded part, but too much Cr deteriorates weldability and joint toughness. Its upper limit is 1.0%.

Moは母材の強度、靭性をともに向上させる元素である
が、多すぎるとCrと同様に母材、接合部の靭性、溶接
性の劣化を招き好ましくない。その上限は0,40%で
ある。
Mo is an element that improves both the strength and toughness of the base metal, but if it is present in too much, it causes deterioration of the toughness and weldability of the base metal and joints, similar to Cr, and is therefore undesirable. Its upper limit is 0.40%.

なお、Cr、Moの添加量の下限は、材質上の効果が得
られるための最小量とすべきで、いずれも0.05%で
ある。
Note that the lower limit of the amount of Cr and Mo added should be the minimum amount in order to obtain the effect on the material, and both are 0.05%.

Bは焼入性を増大させ強度を増加させる元素である。接
合部のγ粒界に偏析した固溶Bはフェライトの生成を抑
制し、Tl2O3,ZrO2あるいはTl、Zrの複合
酸化物からの微細なAFの生成を助ける。また、Nと結
合したBNはフェライト発生核としての作用をもちHA
Z組織を微細化する。
B is an element that increases hardenability and strength. The solid solution B segregated at the γ grain boundaries of the joint suppresses the formation of ferrite and helps the formation of fine AF from Tl2O3, ZrO2 or the composite oxide of Tl and Zr. In addition, BN combined with N acts as a ferrite generation nucleus and HA
Refine the Z structure.

このようなりの効果を得るためには、最低0.0003
%のB量が必要である。しかし、Bflが多すぎるとF
e  (CB)eなどの粗大な析出物がγ粒界に析出し
て低温靭性を劣化させる。このためB量の上限を0.0
015%に制限する必要がある。
To obtain this kind of effect, a minimum of 0.0003
% B amount is required. However, if there are too many Bfl, F
Coarse precipitates such as e (CB)e precipitate at the γ grain boundaries and deteriorate low temperature toughness. Therefore, the upper limit of the amount of B is set to 0.0
It is necessary to limit it to 0.015%.

Caは硫化物(MnS)の形態を制御し、低温靭性を向
上(シャルピー吸収エネルギーを増加)させるほか、耐
水素誘起割れ性の改善にも効果を発揮する。しかし、C
a量0.0005%以下では実用上効果がなく、また0
、005%を超えて添加するとCab、CaSが多量に
生成して大型介在物となり、鋼の靭性のみならず清浄度
も害し、また溶接性にも悪影響を与える。このため添加
量を0.0005〜0.005%に制限した。
Ca controls the morphology of sulfide (MnS), improves low-temperature toughness (increases Charpy absorbed energy), and is also effective in improving hydrogen-induced cracking resistance. However, C
If the a content is less than 0.0005%, there is no practical effect, and
If added in excess of 0.005%, a large amount of Cab and CaS will be generated and become large inclusions, which will impair not only the toughness but also the cleanliness of the steel, and will also have an adverse effect on the weldability. For this reason, the amount added was limited to 0.0005 to 0.005%.

鋼の成分を上記のように限定しても、製造法が適切でな
ければ溶接前の鋼中に微細なT l 203゜Z r 
02あるいはTI、Zrの複合酸化物を分散させること
は出来ない。このため製造条件についても限定する必要
がある。まず、この鋼は連続鋳造法で製造することが必
須である。この理由は、連続鋳造法では溶鋼の凝固速度
が速くスラブ中に微細なT iOZ r O2あるいは
Ti、Zr2 3 ′ の複合酸化物が多量に得られるためである。
Even if the composition of the steel is limited as above, if the manufacturing method is not appropriate, fine particles of T l 203°Z r may be present in the steel before welding.
It is not possible to disperse composite oxides of 02, TI, and Zr. For this reason, it is also necessary to limit the manufacturing conditions. First, this steel must be manufactured using a continuous casting method. The reason for this is that in the continuous casting method, the solidification rate of molten steel is fast and a large amount of fine TiOZ r O2 or Ti, Zr2 3 ' composite oxide is obtained in the slab.

大型鋼塊による造塊−分塊法では、Ti2O3゜Z「0
2あるいはTI、Zrの複合酸化物をスラブ中に微細に
分散させることは難しい。連続鋳造法の場合、スラブ厚
によって冷却速度が異なるが、接合部靭性の観点からそ
の厚みは3501以下が望ましい。
In the ingot-blooming method using large steel ingots, Ti2O3゜Z'0
It is difficult to finely disperse composite oxides of 2, TI, and Zr in a slab. In the case of continuous casting, the cooling rate varies depending on the thickness of the slab, but from the viewpoint of joint toughness, the thickness is preferably 350 mm or less.

さらにスラブの再加熱温度を1250℃以下とする必要
がある。これ以上の温度で再加熱するとTfN、ZrN
が粗大化して、溶接前の胴中に微細なTiN、ZrNが
なくなり、接合部の境界やHA Zにおける組織の微細
が不可能になるためである。また、再加熱温度の下限値
は特に規定しないが、tooo℃以上とすることが好ま
しい。
Furthermore, the reheating temperature of the slab needs to be 1250°C or lower. If reheated at a temperature higher than this, TfN, ZrN
This is because the fine TiN and ZrN are lost in the shell before welding, making it impossible to create a fine structure at the boundary of the joint and in the HAZ. Further, the lower limit of the reheating temperature is not particularly specified, but it is preferably set to 0.degree. C. or higher.

なお、本発明においCは、スラブの再加熱は必ずしも実
施する必要はなく、通常スラブあるいは薄スラブ(スラ
ブ厚み100■以下)からのホットチャージ圧延あるい
はダイレクト圧延を行なっても全く問題ない。
In the present invention, it is not necessary to reheat the slab for C in the present invention, and hot charge rolling or direct rolling from a normal slab or a thin slab (slab thickness of 100 mm or less) may be performed without any problem.

本発明ではスラブ再加熱後の圧延法などについてはとく
に限定しないが、いわゆる加工熱処理や焼入焼戻、焼な
らし処理が母材の強度、靭性を確保する上で適切である
。これは、たとえ優れた接合部靭性が得られても母材の
靭性が劣っていると鋼材としては不十分なためである。
In the present invention, the rolling method after reheating the slab is not particularly limited, but so-called processing heat treatment, quenching and tempering, and normalizing treatment are appropriate for ensuring the strength and toughness of the base material. This is because even if excellent joint toughness is obtained, if the toughness of the base material is poor, the steel is insufficient.

母材の低温靭性を優れたものとするには鋼の結晶粒を微
細化する必要がある。加工熱処理の方法としては、l)
制御圧延、2)制御圧延−加速冷却、3)圧延直接焼入
−焼戻などが挙げられるが、最も好ましいのは制御圧延
と加速冷却の組合せである。
In order to improve the low-temperature toughness of the base material, it is necessary to refine the grains of steel. As a method of processing heat treatment, l)
Examples include controlled rolling, 2) controlled rolling-accelerated cooling, and 3) rolling direct quenching-tempering, but the most preferred is a combination of controlled rolling and accelerated cooling.

なお、この鋼を製造後、脱水素などの目的でA c 1
変態点以下の温度に再加熱しても本発明の特徴を損なう
ものではない。
Note that after manufacturing this steel, A c 1 is used for purposes such as dehydrogenation.
Reheating to a temperature below the transformation point does not impair the features of the present invention.

さらに木屑はFBWままで優れた低温靭性を得ることを
目的とした鋼であるが、FBW後の熱処理は従来鋼と同
様行なうことについては全く問題ない。
Furthermore, although wood chips are steel intended to obtain excellent low-temperature toughness with FBW as is, there is no problem in performing heat treatment after FBW in the same manner as conventional steel.

本発明は厚板ミルに適用することが最も好ましいが、ホ
ットコイル、形鋼、線材などにも適用可能である。また
、この方法で製造した厚鋼板は圧力容器、海洋構造物、
ラインパイプなと厳しい環境下で使用される溶接鋼構造
物に用いることができる。
The present invention is most preferably applied to plate mills, but can also be applied to hot coils, shaped steel, wire rods, etc. In addition, the thick steel plates manufactured using this method are used for pressure vessels, offshore structures,
It can be used for welded steel structures such as line pipes that are used in harsh environments.

(実 施 例) 転炉一連続鋳造−厚板工程で種々の鋼成分の鋼板を製造
し、フラッシュバット溶接して接合部の靭性を2mmV
ノツチシャルピー試験によって調査した。
(Example) Steel plates of various steel compositions are produced in the converter-continuous casting-thick plate process, and the toughness of the joint is reduced to 2mmV by flash butt welding.
It was investigated by the Notch Charpy test.

試験片はl/2 を位置から採取し、ノツチ位置は接合
部の中心とした。表1、表2に実施例を示す。
The test piece was taken from the l/2 position, and the notch position was set at the center of the joint. Examples are shown in Tables 1 and 2.

m2−8は選択元素をla、m9〜33ハ2PHJ上含
む実施例を示しており、本発明鋼で製造した鋼板(本発
明鋼)は全て良好な母材特性および接合部靭性を有する
m2-8 indicates an example in which selected elements are la, m9-33c2PHJ, and all steel plates manufactured using the steel of the present invention (steel of the present invention) have good base material properties and joint toughness.

本発明法によらない比較鋼34ではAgが0.0010
%と高いため、TI、Zr系酸化物の生成が不十分でF
BW接合部の靭性が悪い。比較鋼35ではMn、Nb量
が低く、また比較鋼36ではTI。
Comparative steel 34, which is not based on the method of the present invention, has Ag of 0.0010
%, the generation of TI and Zr-based oxides is insufficient and F
The toughness of the BW joint is poor. Comparative Steel 35 has low Mn and Nb contents, and Comparative Steel 36 has TI.

ZrgS加量が過剰なため靭性が悪い。比較鋼37゜3
8は成分は適正であるが、前者は造塊法であること、ま
た後者は加熱温度が1300℃と高すぎることによりF
BW接合部の靭性が劣る。
Toughness is poor due to excessive addition of ZrgS. Comparative steel 37゜3
8 has appropriate ingredients, but the former uses an agglomeration method, and the latter has a too high heating temperature of 1300°C, resulting in F.
The toughness of the BW joint is poor.

(発明の効果) 本発明により、母材はもとよりフラッシュバット溶接の
接合部の全域において優れた低温靭性を有する鋼を大量
、かつ安価に製造することが可能になった。その結果、
ラインパイプあるいは溶接構造物の施工能率が著しく向
上するとともに、その安全性を大きく向上させることが
できた。
(Effects of the Invention) According to the present invention, it has become possible to manufacture steel in large quantities and at low cost, which has excellent low-temperature toughness not only in the base material but also in the entire area of the flash-butt welded joint. the result,
The construction efficiency of line pipes or welded structures has been significantly improved, as well as their safety.

−11,3−-11,3-

Claims (1)

【特許請求の範囲】 1、重量%で C:0.03〜0.10%、 Si:0.5%以下、 Mn:1.4〜2.0%、 P:0.025%以下、 S:0.0050%以下、 Al:0.004%以下、 N:0.0010〜0.0035%、 O:0.0015〜0.0050%、 Nb:0.03〜0.06%、 かつ、 Ti:0.005〜0.025%、 Zr:0.005〜0.025% のいずれか又は両方を0.005≦Ti+Zr≦0.0
25%を含み、残部Fe及び不可避的不純物からなる実
質Alを含有しない鋼を連続鋳造法によってスラブとし
、これを1250℃以下の温度で再加熱後、鋼板を製造
することを特徴とする低温靭性の優れたフラッシュバッ
ト溶接用鋼板の製造方法。 2、重量%で V:0.005〜0.060%、 Ni:0.05〜2.0%、 Cu:0.05〜1.0%、 Cr:0.05〜1.0%、 Mo:0.05〜0.40%、 B:0.0003〜0.0015%、 Ca:0.0005〜0.005%、 のうちいずれか1種又は2種以上を更に含有させ、残部
Fe及び不可避的不純物からなる実質Alを含有しない
鋼である請求項1記載の低温靭性に優れたフラッシュバ
ット溶接用鋼板の製造方法。
[Claims] 1. C: 0.03 to 0.10%, Si: 0.5% or less, Mn: 1.4 to 2.0%, P: 0.025% or less, S : 0.0050% or less, Al: 0.004% or less, N: 0.0010 to 0.0035%, O: 0.0015 to 0.0050%, Nb: 0.03 to 0.06%, and Ti: 0.005 to 0.025%, Zr: 0.005 to 0.025%, or both 0.005≦Ti+Zr≦0.0
Low-temperature toughness characterized by producing a steel plate by forming a slab by a continuous casting method into a steel containing 25% Al and the balance consisting of Fe and unavoidable impurities, and then reheating the slab at a temperature of 1250°C or less. A method of manufacturing excellent steel plates for flash butt welding. 2. V: 0.005-0.060%, Ni: 0.05-2.0%, Cu: 0.05-1.0%, Cr: 0.05-1.0%, Mo : 0.05 to 0.40%, B: 0.0003 to 0.0015%, Ca: 0.0005 to 0.005%. 2. The method for producing a flash butt welding steel plate having excellent low-temperature toughness according to claim 1, wherein the steel is substantially free of Al, which is an unavoidable impurity.
JP8580989A 1989-04-06 1989-04-06 Production of steel sheet for flash butt welding excellent in toughness at low temperature Pending JPH02267220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8580989A JPH02267220A (en) 1989-04-06 1989-04-06 Production of steel sheet for flash butt welding excellent in toughness at low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8580989A JPH02267220A (en) 1989-04-06 1989-04-06 Production of steel sheet for flash butt welding excellent in toughness at low temperature

Publications (1)

Publication Number Publication Date
JPH02267220A true JPH02267220A (en) 1990-11-01

Family

ID=13869197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8580989A Pending JPH02267220A (en) 1989-04-06 1989-04-06 Production of steel sheet for flash butt welding excellent in toughness at low temperature

Country Status (1)

Country Link
JP (1) JPH02267220A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130216170A1 (en) * 2010-07-02 2013-08-22 Thore Lund Flash-butt welded bearing component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210235A (en) * 1987-02-27 1988-08-31 Nippon Steel Corp Manufacture of steel excellent in toughness at low temperature in welding heat affected zone
JPS6415321A (en) * 1987-07-08 1989-01-19 Nippon Steel Corp Production of steel for electron beam welding having excellent low-temperature toughness

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210235A (en) * 1987-02-27 1988-08-31 Nippon Steel Corp Manufacture of steel excellent in toughness at low temperature in welding heat affected zone
JPS6415321A (en) * 1987-07-08 1989-01-19 Nippon Steel Corp Production of steel for electron beam welding having excellent low-temperature toughness

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130216170A1 (en) * 2010-07-02 2013-08-22 Thore Lund Flash-butt welded bearing component
US9080608B2 (en) * 2010-07-02 2015-07-14 Aktiebolaget Skf Flash-butt welded bearing component

Similar Documents

Publication Publication Date Title
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
JPS601929B2 (en) Manufacturing method of strong steel
JPS58171526A (en) Manufacture of steel for extra-low temperature use
JP4891836B2 (en) Steel plate with excellent toughness of weld heat affected zone in high heat input welding
JPH03202422A (en) Production of thick high tensile steel plate excellent in toughness in weld heat-affected zone
JPS5814848B2 (en) Manufacturing method of non-tempered high-strength, high-toughness steel
JP4112733B2 (en) Method for producing 50 kg (490 MPa) to 60 kg (588 MPa) thick high-tensile steel sheet having excellent strength and low temperature toughness
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JP2653594B2 (en) Manufacturing method of thick steel plate with excellent toughness of weld heat affected zone
JPH03236419A (en) Production of thick steel plate excellent in toughness in weld heat-affected zone and lamellar tear resistance
JPH0541683B2 (en)
JPH01159356A (en) High tension steel having superior tougeness at weld heat-affected zone
JPH02125812A (en) Manufacture of cu added steel having superior toughness of weld heat-affected zone
JPH03162522A (en) Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone
JP3599556B2 (en) High-strength steel sheet excellent in toughness of base material and heat-affected zone of large heat input welding and method of manufacturing the same
JPH0694569B2 (en) Manufacturing method of steel with excellent low temperature toughness in the heat affected zone
JPH09194990A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JPS63145745A (en) Hot rolled high tensile steel plate and its production
JP3882701B2 (en) Method for producing welded structural steel with excellent low temperature toughness
JPH10168516A (en) Production of low yield ratio high tensile strength steel excellent in weldability and low temperature toughness
JPH02267220A (en) Production of steel sheet for flash butt welding excellent in toughness at low temperature
JP2688067B2 (en) Tensile strength for electron beam welding 60 ▲ kg ▼ f / ▲ mm2 ▼ class Mo-added steel manufacturing method
JPS6293312A (en) Manufacture of high tensile steel stock for stress relief annealing
JPH02175815A (en) Manufacture of high tensile steel stock for welded construction excellent in toughness