JPS58171526A - Manufacture of steel for extra-low temperature use - Google Patents

Manufacture of steel for extra-low temperature use

Info

Publication number
JPS58171526A
JPS58171526A JP5097282A JP5097282A JPS58171526A JP S58171526 A JPS58171526 A JP S58171526A JP 5097282 A JP5097282 A JP 5097282A JP 5097282 A JP5097282 A JP 5097282A JP S58171526 A JPS58171526 A JP S58171526A
Authority
JP
Japan
Prior art keywords
steel
less
rolling
toughness
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5097282A
Other languages
Japanese (ja)
Inventor
Hiroshi Tamehiro
為広 博
Yasumitsu Onoe
尾上 泰光
Yasuo Sogo
十河 泰雄
Katsuo Kako
加来 勝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5097282A priority Critical patent/JPS58171526A/en
Publication of JPS58171526A publication Critical patent/JPS58171526A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To obtain a steel having superior brittle cracking resistance and superior properties of stopping the propagation of brittle cracks, by treating a steel billet contg. specified percentages of C, Si, Mn, P, S, Al, Ni, Nb and N under specified rolling and cooling conditions. CONSTITUTION:A steel billet consisting of 0.005-0.08% C, <=0.6% Si, 0.2-2.0% Mn, <=0.020% P, <=0.006% S, 0.005-0.08% Al, 1.0-0.6% Ni, 0.005-0.03% Nb, <=0.005% N and the balance Fe with inevitable impurities is heated to 900- 1,000 deg.C in the final stage of hot rolling and rolled in a temp. region where austenite grains are recrystallized. It is further rolled sufficiently so as to adjust the draft at <=900 deg.C at which no recrystallization is caused to >=60% and the finishing temp. to 650-850 deg.C. Thus, the austenite grains are made thoroughly fine. The rolled steel is cooled to <=550 deg.C by accelerated cooling at 3-40 deg.C/sec cooling rate, and it is allowed to cool.

Description

【発明の詳細な説明】 本発明は鋼の成分に特別な条件を設ける゛とともに加熱
圧延条件及び圧延直後の冷却条件を制御することによシ
、−50〜−120’Cの極低温域において、優れた耐
脆性亀裂発生特性と脆性亀裂停止特性を具備する鋼の製
造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides special conditions for the composition of steel, and by controlling hot rolling conditions and cooling conditions immediately after rolling. The present invention relates to a method for producing steel having excellent brittle crack initiation and brittle crack arrest properties.

近年におけるエネルギー需要の増大に伴い、LNG、 
 LEG等の低温貯槽あるいは輸送に使用される極低温
用鋼の需要は着実な増加を示している。低温貯槽、輸送
に使用される圧力容器用鋼に対しては内容物が低温であ
るため、極低温域での優れた靭性(母材及び溶接部)と
作業性の面から優れた溶接性が要求される。しかし、こ
れらの要求特性を十分に満たすことは現在の製造法では
極めて困難でらる。
With the increase in energy demand in recent years, LNG,
Demand for cryogenic steel used in low-temperature storage tanks such as LEG and transportation has been steadily increasing. Steel for pressure vessels used in low-temperature storage tanks and transportation has low-temperature contents, so it has excellent weldability in terms of excellent toughness (base metal and welded parts) and workability in the extremely low temperature range. required. However, it is extremely difficult to fully satisfy these required characteristics using current manufacturing methods.

これらの特性を不十分ながら満足する鋼の現在の製造法
としては、ラインパイプ材に広く使用されている制御圧
延法(CR法)と、圧延後熱処理を行なう方法が良く知
られているが、いずれも極低温域での靭性向上に限界が
l)、高Ni化すると溶接性が劣化しコスト高になると
いう欠点を持っている。
Current manufacturing methods for steel that satisfy these properties, although insufficient, are the controlled rolling method (CR method), which is widely used for line pipe materials, and the method of heat treatment after rolling. All of these have the disadvantage that there is a limit to improving toughness at extremely low temperatures (l), and increasing the Ni content deteriorates weldability and increases costs.

本発明者らは新しい極低温用鋼を開発すべく、極低温用
鋼の製造法に適した成分系、加熱・圧延・冷却プロセス
について鋭意研究の結果、鋼板の強度、靭性は勿論であ
るが、溶接性・HAZ靭性が優れた全く新しい強靭鋼の
製造法を発明するに至った。
In order to develop a new cryogenic steel, the present inventors conducted intensive research on the composition system, heating, rolling, and cooling processes suitable for the manufacturing method of cryogenic steel. This led to the invention of a completely new method for manufacturing strong steel with excellent weldability and HAZ toughness.

以下この点について詳しく説明する。This point will be explained in detail below.

本発明の特徴は、不純物でるるP、S、N含有量を極端
に下げるとともに微量Nb及び1%以上のNIを含有す
る鋼片を極低温加熱(900’〜1000℃)し、オー
ステナイト粒の再結晶域の圧延に加えて、900℃以下
の未再結晶域で十分な圧下(60%以上)を加え、65
0〜850℃で圧延を終了し十分にオーステナイト粒を
細粒化した後、冷却速度(3〜b 以下任意の温度まで冷却するところPCI)る。
The feature of the present invention is to extremely reduce the contents of impurities such as P, S, and N, and to heat a steel slab containing a trace amount of Nb and 1% or more of NI at a cryogenic temperature (900' to 1000°C) to form austenite grains. In addition to rolling in the recrystallized region, sufficient rolling (60% or more) is applied in the non-recrystallized region below 900°C, and 65
After finishing the rolling at 0 to 850° C. and sufficiently refining the austenite grains, the cooling rate (PCI) is set at a cooling rate of 3 to 850° C. or less to an arbitrary temperature.

なお、上記の条件は加熱・圧延工程の最終工程における
もので1、連続鋳造スラブを直接上記の条件で圧延して
もよく、また種々の条件で一度以上加熱・圧延・冷却(
加速冷却を含む)したスラブを上記の条件で圧延しても
よい。
Note that the above conditions are for the final step of the heating and rolling process 1. The continuous casting slab may be directly rolled under the above conditions, or it may be heated, rolled, cooled (
(including accelerated cooling) may be rolled under the above conditions.

本発明に従えば冷却後の組織は微細なフェライトと微細
なパーライトあるいは微細なベイナイトが混在した混合
組織となるため強度・靭性に優れている。
According to the present invention, the structure after cooling becomes a mixed structure in which fine ferrite, fine pearlite, or fine bainite are mixed, so that it has excellent strength and toughness.

本発明鋼における強度の向上は、■適切なC9Si+M
rzNiの添加と析出硬化元素Nbの有効利用、■Nb
添加及び圧延後の加速冷却によるミクロ組織の細粒化及
びベイナイトの生成の結果として得られる。
The improvement in strength in the steel of the present invention is due to: ■ Appropriate C9Si+M
Addition of rzNi and effective use of precipitation hardening element Nb, ■Nb
It is obtained as a result of microstructure refinement and bainite formation due to accelerated cooling after addition and rolling.

また、靭性の向上は1.0%以以上上Ni添加に加えて
ミクロ組織の細粒化によって得られ、■極低温加熱(9
00〜1000℃)、および微細Nb CNのオーステ
ナイト粒成長抑制による加熱オーステナイト粒の細粒化
、■Nb(C,N)による圧延中に再結晶したオーステ
ナイト粒の成長抑制、■圧延中に析出した微細なNb(
C,N)がオーステナイトの再結晶を抑制し、十分な低
温累積圧下(900℃以下で圧下量が60%以上)ヲ加
えるため、オーステナイト粒が十分延伸化することによ
るフェライト変態核の増大、■圧延後の加速冷却による
γ/α変換比の増大といった細粒化プロセスの総合効果
として得られる。
In addition, the toughness can be improved by adding 1.0% or more of Ni and by refining the microstructure.
00 to 1000℃), and refinement of heated austenite grains by suppressing austenite grain growth with fine Nb CN, ■ suppressing the growth of austenite grains recrystallized during rolling by Nb(C,N), and ■ suppressing the growth of austenite grains precipitated during rolling. Fine Nb (
C, N) suppresses recrystallization of austenite and applies sufficient low-temperature cumulative reduction (reduction amount of 60% or more at 900°C or less), so austenite grains are sufficiently stretched, resulting in an increase in ferrite transformation nuclei, This is obtained as a comprehensive effect of the grain refining process, such as an increase in the γ/α conversion ratio due to accelerated cooling after rolling.

本発明に従えば、上記のNi添加ミクロ組織微細化と不
純物P、S、Nの減少によシ破面遷移温度と衝撃吸収エ
ネルギーが両者共非常に優れ、かつセパーレションも発
生しにくい極低温用鋼の製造が可能でるる。
According to the present invention, due to the Ni addition microstructure refinement and reduction of impurities P, S, and N, both fracture surface transition temperature and shock absorption energy are excellent, and separation is difficult to occur for cryogenic use. It is possible to manufacture steel.

本発明に従って製造した鋼は従来の鋼材に比1ち べ、Ni +低Ceqで優れた強度、靭性が得られるた
め、安価であることはもちろん溶接時の硬化性、割れ感
受性が低く、また溶接部の靭性が極めて良好である。
The steel manufactured according to the present invention has superior strength and toughness with Ni + low Ceq compared to conventional steel materials, so it is not only inexpensive, but also has low hardenability and cracking susceptibility during welding. The toughness of the parts is extremely good.

以下本発明における加熱圧延冷却条件の限定理由につい
て詳細に説明する。
The reasons for limiting the hot rolling cooling conditions in the present invention will be explained in detail below.

加熱温度を900〜1000℃に限定した理由は、加熱
時のオーステナイト粒を可及的に小さく保ち、圧延組織
の細粒化をはかるためでろる。
The reason why the heating temperature is limited to 900 to 1000°C is to keep the austenite grains as small as possible during heating and to refine the rolled structure.

1000℃は加熱時のオーステナイト粒が混粒化しない
上限温度であって、加熱温度がこれを超えるとオーステ
ナイト粒が粗大混粒化し、冷却後のミクロ組織も混粒化
するため鋼の靭性が劣化する。
1000℃ is the upper limit temperature at which austenite grains do not become mixed grains during heating, and if the heating temperature exceeds this temperature, austenite grains become coarse mixed grains, and the microstructure after cooling also becomes mixed grains, which deteriorates the toughness of the steel. do.

一方加熱温度が余シに低すぎると、鋼の内質の劣化およ
び圧延終段の温度の下が多過ぎのため、制御冷却による
十分な材質向上効果が期待できない。このため下限を9
00℃とする必要がある。
On the other hand, if the heating temperature is too low, the internal quality of the steel deteriorates and the temperature at the final stage of rolling is too low, making it impossible to expect a sufficient effect of improving material quality through controlled cooling. Therefore, the lower limit is 9
It is necessary to set the temperature to 00°C.

しかしながら、加熱温度を上記のように低く制限しても
圧延条件が不適当でるると、よい材質を得ることができ
ないため、900℃以下の未再結晶温度域での圧下量を
60%以上とし、仕上温度を650〜850℃の範囲と
する。これは未再結晶温度域での十分な圧延を加えるこ
とによってオーステナイト粒の細粒化・延伸化を徹底し
、冷却後に生成する変態組織な細粒均一化するためであ
る。
However, even if the heating temperature is limited to a low level as described above, if the rolling conditions are inappropriate, good material cannot be obtained. , the finishing temperature is in the range of 650 to 850°C. This is to thoroughly refine and stretch the austenite grains by applying sufficient rolling in the non-recrystallization temperature range, and to make the fine grains of the transformed structure formed after cooling uniform.

このように細粒オーステナイトを十分延伸化することに
よシ、圧延冷却後生成するミクロ組織を十分細粒化する
と、靭性が大巾に向上する。
By sufficiently stretching the fine-grained austenite in this manner, the microstructure formed after rolling and cooling is sufficiently refined, and the toughness is greatly improved.

しかし、仕上温度が不適当であると良好な強度、靭性が
得られない。仕上温度の下限を650℃としたのは、過
度の変態点以下の(γ+α)域圧延によって延靭性を劣
化させないためでらる。また、仕上温度が650℃未満
であると制御冷却による十分な強度上昇効果が期待でき
ない。
However, if the finishing temperature is inappropriate, good strength and toughness cannot be obtained. The lower limit of the finishing temperature is set to 650° C. in order to prevent deterioration of rolling toughness due to excessive rolling in the (γ+α) region below the transformation point. Furthermore, if the finishing temperature is less than 650°C, a sufficient strength increase effect cannot be expected due to controlled cooling.

一方、仕上温度は余シにも高すぎると制御圧延によるオ
ーステナイト粒の細粒化効果が期待できず靭性が低下す
る。このため上限を850℃とする必要がある。
On the other hand, if the finishing temperature is too high, the effect of refining austenite grains due to controlled rolling cannot be expected and the toughness decreases. Therefore, it is necessary to set the upper limit to 850°C.

次に冷却であるが圧延終了直後から550℃以下まで3
〜b る必要がある。この理由は3℃/sec未満ではミクロ
組織の細粒化等が不十分で靭性向上が十分に期待できな
いためでラシ、また40℃/sec超では多量に低温変
態生成物が生成し、靭性の劣化を来たすためである。
Next is cooling, from immediately after rolling to 550℃ or less.
~b It is necessary to The reason for this is that if the temperature is less than 3°C/sec, the microstructure will not be refined sufficiently and toughness cannot be expected to be improved sufficiently, and if it exceeds 40°C/sec, a large amount of low-temperature transformation products will be produced, which will reduce the toughness. This is to cause deterioration.

冷却停止温度を550℃以下の任意の温度と指定したの
は、余シにも低温まで冷却してしまうと脱水素効果や十
分な析出硬化が得られないためである。この場合350
〜550℃前後で冷却をやめ、空冷することが望ましい
。しかし、冷却停止温度が550℃以上では十分な強度
靭性向上が望めない。なお冷却媒体としては一般的には
噴霧水あるいは水が適当である。
The reason why the cooling stop temperature was specified as an arbitrary temperature of 550° C. or less is because dehydrogenation effect and sufficient precipitation hardening cannot be obtained if the material is further cooled to a low temperature. In this case 350
It is desirable to stop cooling at around ~550°C and air-cool. However, if the cooling stop temperature is 550° C. or higher, sufficient improvement in strength and toughness cannot be expected. Note that spray water or water is generally suitable as the cooling medium.

また本発明に従って製造した鋼を脱水素などの目的で再
加熱する場合600℃以上では強度の劣化を招き好まし
くない。しかし、約600℃以下の温度に再加熱するこ
とは若干の強度低下はあるものの本発明鋼の特徴を失う
ものではない。
Furthermore, when the steel manufactured according to the present invention is reheated for the purpose of dehydrogenation or the like, it is not preferable to heat the steel at 600° C. or higher, as this leads to deterioration in strength. However, reheating to a temperature of about 600° C. or lower does not result in the loss of the characteristics of the steel of the present invention, although there is a slight decrease in strength.

以下成分範囲の限定理由について説明する。The reason for limiting the component range will be explained below.

上記特徴を持つ本発明鋼中第1発明の鋼の成分範囲はC
0,05〜0.08%、St O,6%以下、MnO1
2〜2.0%、Po、020%以下、80.006%以
下、A10.005〜0.08%、Ni 1.0〜6.
0%、Nb O,005〜0.03%、NO,005%
以下を含有させたものである。
Among the steels of the present invention having the above characteristics, the composition range of the steel of the first invention is C
0.05-0.08%, St O, 6% or less, MnO1
2-2.0%, Po, 0.020% or less, 80.006% or less, A10.005-0.08%, Ni 1.0-6.
0%, Nb O, 005-0.03%, NO, 005%
It contains the following:

Cの下限0.005%は母材及び溶接部の侑度確保及び
Nb、Vの効果を十分に発揮させるための最少量で、あ
る。しかしC含有量が多過ぎると、制御冷却した場合島
状マルテンサイトが生成し、延靭性に悪影響を及ぼすば
かシか、内質、溶接性及びHAZ靭性も劣化させるため
、上限を0.08%とした。
The lower limit of 0.005% of C is the minimum amount in order to ensure the beauty of the base metal and the welded part and to fully exhibit the effects of Nb and V. However, if the C content is too high, island-shaped martensite will be generated when controlled cooling is performed, which will not only adversely affect ductility but also deteriorate internal quality, weldability, and HAZ toughness, so the upper limit is set at 0.08%. And so.

Stは脱酸上鋼に必然的に含まれる元素でらるが、Si
もまた溶接性及びHAZA2部製性化させるため上限な
0.6%とした(鋼の脱酸はAlだけでも可能でラシ好
ましくは02%以下が望ましい)。
St is an element that is naturally included in deoxidized steel, but Si
Also, in order to improve weldability and HAZA two-part manufacturing properties, the upper limit was set at 0.6% (steel can be deoxidized with Al alone, and it is preferably 0.2% or less).

Mnは本発明鋼において低温加熱圧延−制御冷却による
材質向上効果を高め、強度、靭性な同時に向上せしめる
極めて重要な元素でるる。
Mn is an extremely important element that enhances the effect of improving material quality by low-temperature heating rolling and controlled cooling in the steel of the present invention, and simultaneously improves strength and toughness.

Mnが02%未満では強度、靭性が確保できず、靭性改
善効果も少ないため下限を02%とした。
If Mn is less than 0.2%, strength and toughness cannot be ensured, and the effect of improving toughness is also small, so the lower limit was set at 0.2%.

しかしMnが多過ぎて焼入性が増加するとマルテンサイ
トなど低温変態生成物が多量に生成し易くなシ、母材及
びHAZの靭性を劣化させるため、その上限を2.0%
とした。
However, if the hardenability increases due to too much Mn, low-temperature transformation products such as martensite tend to be generated in large quantities, and the toughness of the base metal and HAZ deteriorates, so the upper limit is set at 2.0%.
And so.

本発明鋼において不純物でろるP、sを0.020%以
下、0.006%以下に限定した理由は低い程母材、溶
接部靭性、溶接性及び内質は向上するからである。(p
、sはそれぞれ0.010.0.002%以下が望まし
い) Alは脱酸上この種のキルド鋼に必然的に含有される元
素でるるが、A10.005%未満では脱酸が不十分と
なシ、母材靭性が劣化するため下限を01005%とし
た。一方Alが0.08%を超えると鋼の清浄度及びH
AZ靭性が劣化するため上限を0.08%にした。
The reason why P and s, which are impurities, are limited to 0.020% or less and 0.006% or less in the steel of the present invention is that the base metal, weld zone toughness, weldability, and internal quality improve as the content is lower. (p
, s are preferably 0.010 and 0.002% or less, respectively.) Al is an element that is inevitably contained in this type of killed steel for deoxidation, but if Al is less than 0.005%, deoxidation is insufficient. However, since the toughness of the base material deteriorates, the lower limit was set at 01005%. On the other hand, when Al exceeds 0.08%, the cleanliness of steel and H
Since AZ toughness deteriorates, the upper limit was set to 0.08%.

Niは本発明鋼に不可欠の元素でHAZの硬化性及び靭
性に悪影響を与えることなく母材の強度、靭性な向上さ
せる特性を持つが、1.0%未満では極低温域において
、必要な脆性亀裂停止性性等を得ることが難しい。また
6、0%を超えるとT(AZの硬化性及び靭性上好まし
くないため、下限を1.0%、上限を6.0%とした。
Ni is an essential element for the steel of the present invention and has the property of improving the strength and toughness of the base metal without adversely affecting the hardenability and toughness of the HAZ, but if it is less than 1.0%, it may cause the necessary brittleness in the cryogenic region It is difficult to obtain crack stopping properties. Moreover, if it exceeds 6.0%, it is unfavorable in terms of the hardenability and toughness of T(AZ), so the lower limit was set to 1.0% and the upper limit was set to 6.0%.

Nbは前述の如く本発明において必須の元素でラシ、材
質に対する効果は極めて大きい。Nbはミクロ組織の細
粒化と析出硬化のため含有させるもので、強度、靭性を
共に向上させる重要な元素であるが、制御冷却材では0
.03%超えて添加しても材質上大きな効果はなく、ま
た溶接性及びHAZ靭性に有害であるため上限を0.0
3%に限定した。また、下限0005%は材質上の効果
を有する最少量である。
As mentioned above, Nb is an essential element in the present invention and has an extremely large effect on the quality of the material. Nb is included to refine the microstructure and harden the precipitation, and is an important element that improves both strength and toughness.
.. Adding more than 0.03% has no significant effect on the material quality, and is harmful to weldability and HAZ toughness, so the upper limit is set at 0.0%.
It was limited to 3%. Further, the lower limit of 0005% is the minimum amount that has an effect on the material.

Nは溶鋼中に不可避的に混入し、鋼の靭性を劣化させる
。特に多量−<7)freeNはHAZ部に島状マルテ
ンサイトを発生させ易く、HAZ靭性な大巾に劣化させ
る。このため0.005%以丁に限定した。
N inevitably mixes into molten steel and deteriorates the toughness of the steel. In particular, a large amount of freeN (<7) tends to generate island-like martensite in the HAZ, which greatly deteriorates the HAZ toughness. For this reason, it was limited to 0.005% or less.

次に第2の発明においては、第1の発明の鋼の成分及び
製造プロセスにさらにVo、01〜0.05%、TiO
,005〜0.03%、Bo、0005〜0.0030
%、Cu O,1〜1.0%、Cr O,1〜1.0%
、Mo 0.05〜030%、Ca O,0005〜0
.005%、REM 0.003〜003%の1種また
は2種以上を含有させたものでるる。
Next, in the second invention, Vo, 01 to 0.05%, TiO
,005~0.03%,Bo,0005~0.0030
%, CuO, 1-1.0%, CrO, 1-1.0%
, Mo 0.05-030%, Ca O, 0005-0
.. 005% and REM 0.003 to 003%.

これらの元素を含有させる主たる目的は本発明鋼の特徴
を損なうことなく、強度、靭性の向上及び製造板厚の拡
大を可能にするところにろシ、その添加量は溶接性及び
HAZ靭性等の面から自ずと制限されるべき性質のもの
でるる。
The main purpose of adding these elements is to improve the strength and toughness of the steel of the present invention, and to increase the thickness of manufactured plates without impairing the characteristics of the steel. There are things that naturally have to be restricted.

■はNbとほぼ同様の効果を持つが0.01%以下では
顕著な効果が無く、上限は0.05%まで許容できる。
(2) has almost the same effect as Nb, but there is no significant effect below 0.01%, and an upper limit of 0.05% is permissible.

Tiは添加量が少ない範囲(Ti 0.005〜0.0
3%)では微細なTiNを形成し、圧延組織及びHAZ
の細粒化、つまシ靭性向上に効果的である。この場合N
 (!−Tiは化学量論的に当量近傍が望ましある。T
i添加量の上限は材質上の効果が発揮される最少量でラ
シ、上限は微細なTiNが鋼片中に通常製造法で得られ
また、TiCによる靭性劣化が起きない条件から0.0
3%とした。
Ti is added in a small amount range (Ti 0.005 to 0.0
3%), fine TiN is formed and the rolled structure and HAZ
It is effective in making the grains finer and improving the toughness of the grain. In this case N
(!-Ti is preferably near equivalent stoichiometrically.T
The upper limit of the amount of i added is the minimum amount that produces the effect on the material, and the upper limit is 0.0 under the conditions that fine TiN can be obtained in the steel billet by the normal manufacturing method and that no deterioration of toughness due to TiC occurs.
It was set at 3%.

Bは圧延中にオーステナイト粒界に偏析し、焼入性を上
げベイナイト組織を生成しやすくする他、B+Ti+N
等の添加量によってはNと結合し、微細なりNとなって
溶接部の靭性な向上させるというTiと類似した効果を
有する。しかし、0.0005%未満では顕著な焼入性
改善効果や靭性向上効果が無く、0.003%超になる
と、B constituentを生成するようKなる
ためかえって母材及びHAZの靭性を劣化させる。この
ため下限を0.0005%、上限を0.003.%とし
た。
B segregates at austenite grain boundaries during rolling, improves hardenability and facilitates the formation of bainite structure, and also
Depending on the amount added, it combines with N, becomes fine N, and has an effect similar to that of Ti, in that it improves the toughness of the welded joint. However, if it is less than 0.0005%, there is no significant hardenability improvement effect or toughness improvement effect, and if it exceeds 0.003%, K will generate B constituent, which will actually deteriorate the toughness of the base material and HAZ. Therefore, the lower limit is 0.0005% and the upper limit is 0.003%. %.

Cu FiNtとほぼ同様の効果を持つと共に、耐食性
、耐水素誘起割れ特性等にも効果がある。
It has almost the same effect as Cu FiNt, and is also effective in corrosion resistance, hydrogen-induced cracking resistance, etc.

しかし、0.1%未満ではNi同様顕著な効果が無く、
1.0%を超えると本発明の如き低温加熱圧延において
も圧延中にCu−クラックが発生し製造が難しくなる。
However, if it is less than 0.1%, there is no noticeable effect like Ni,
If it exceeds 1.0%, Cu-cracks will occur during rolling even in low-temperature hot rolling as in the present invention, making manufacturing difficult.

このため下限を0.1%、上限を1.0%とした。Therefore, the lower limit was set to 0.1% and the upper limit was set to 1.0%.

Crは母材の強度を高め、耐水素誘起割れ特性等にも効
果を有するが、01%未満では顕著な効果がなく、1.
0%を超えるとHAZの硬化性を増大させ、靭性及び溶
接性の低下が犬きくなシ好ましくない。このため下限を
0.1%、上限を1.0%とした。
Cr increases the strength of the base material and has an effect on hydrogen-induced cracking resistance, etc., but if it is less than 0.1%, there is no significant effect, and 1.
If it exceeds 0%, it increases the hardenability of the HAZ and deteriorates toughness and weldability, which is undesirable. Therefore, the lower limit was set to 0.1% and the upper limit was set to 1.0%.

Mo1ti母材の強度、靭性を共に向上させる元素であ
るが、0.05%未満では顕著な効果がない。
Mo1ti is an element that improves both the strength and toughness of the base material, but if it is less than 0.05%, it has no significant effect.

一方、多過ぎるとCrと同様に焼入性を増大させ母材、
溶接部靭性及び溶接性の劣化を招き好ましくなく、この
上限が0.30%である。このため下限を0.05%、
上限を0.30%とした。
On the other hand, if the amount is too high, it increases the hardenability like Cr,
This is undesirable as it causes deterioration of weld toughness and weldability, and the upper limit is 0.30%. For this reason, the lower limit is set to 0.05%,
The upper limit was set at 0.30%.

Ca、REMはMnSを球状化させ、シャルピー吸収エ
ネルギーを向上させる他、圧延によって延伸化したMn
Sと水素による内部欠陥の発生を防止する。REMの含
有量については0.001%未満でるると実用上効果が
なく、また0、03%を超えて添加すると、REM−8
またはREM−0−8が大量に生成して大型介在物とな
シ、鋼の靭性のみならず清浄度を害し、また溶接性に悪
影響を及ぼす。このため上限を0.03%とした。Ca
についても、REMと同様の効果をもち、その有効範囲
は0.0005〜0.005%である。
Ca, REM makes MnS spheroidal and improves the Charpy absorbed energy, as well as Mn stretched by rolling.
Prevents internal defects caused by S and hydrogen. Regarding REM content, if it is less than 0.001%, it has no practical effect, and if it is added in excess of 0.03%, REM-8
Alternatively, a large amount of REM-0-8 is generated and becomes large inclusions, impairing not only the toughness but also the cleanliness of the steel, and also having an adverse effect on the weldability. For this reason, the upper limit was set at 0.03%. Ca
It also has the same effect as REM, and its effective range is 0.0005 to 0.005%.

次に本発明の実施例を述べる。Next, examples of the present invention will be described.

転炉一連鋳工程で製造した種々の化学成分の鋳片を用い
、製造プロセスを変えて板厚15〜351+1の鋼板を
製造した。母材及び溶接部の機械的性質の例を表1に示
した。本発明法で製造した鋼板はいずれも優れた母材及
び溶接部特性を有しているのに対して、本発明によらな
い比較鋼は母材ろるいは溶接部特性のいずれかが不満足
で溶接用鋼材としてのバランスにかけている。
Steel plates with thicknesses of 15 to 351+1 were manufactured using slabs of various chemical compositions manufactured in a continuous converter casting process and by changing the manufacturing process. Table 1 shows examples of mechanical properties of base metals and welded parts. All of the steel plates manufactured by the method of the present invention have excellent base metal and weld zone properties, whereas comparative steels not according to the present invention are unsatisfactory in either the base metal strength or the weld zone properties. We are trying to balance it as a steel material for welding.

第1表(つづき) 注1)圧延方向、シャルピー値は%板厚位置の値。Table 1 (continued) Note 1) Charpy value in rolling direction is the value at % plate thickness position.

注2)入熱35000J/cIIL相当の再現熱サイク
ル試験による値。
Note 2) Value based on a simulated thermal cycle test equivalent to a heat input of 35,000 J/cIIL.

比較鋼中、鋼6,7は加熱圧延等の条件は適切であるが
、鋼6ではNbを含有しないため、母材の低温靭性が劣
っておシ、また鋼7ではP。
Among the comparative steels, Steels 6 and 7 were subjected to appropriate hot rolling conditions, but since Steel 6 did not contain Nb, the low-temperature toughness of the base metal was poor, and Steel 7 had P.

Nが高いため溶接部の靭性が劣っている。The toughness of the weld is poor due to the high N content.

鋼8〜10は本発明鋼1と同一成分であるが、加熱圧延
等の条件が不適切であるため、鋼1に比較して母材の低
温靭性が劣っている。
Although Steels 8 to 10 have the same composition as Steel 1 of the present invention, the low-temperature toughness of the base metal is inferior to Steel 1 because the conditions such as hot rolling are inappropriate.

鋼8,9ではそれぞれ加熱温度が高<、900℃以下の
圧下量が低いためミクロ組織の細粒化が不十分でるる。
In Steels 8 and 9, the heating temperature is high and the reduction amount is low at 900° C. or less, respectively, so that the microstructure is insufficiently refined.

鋼10では冷却停止温度が高いため、これまたミクロ組
織の均一、細粒化が不十分で靭性が劣シ、強度も低い。
In Steel 10, since the cooling stop temperature is high, the microstructure is insufficiently uniform and grain refinement is insufficient, resulting in poor toughness and low strength.

Claims (1)

【特許請求の範囲】 1、  CO,005〜0.08%、St O,6%以
下、MnO2〜2.0%、Po、020%以下、80.
006%以下、AIo、005〜0.08%、Ni 1
.0〜6.0%、Nb O,005〜0.03%、NO
,005%以下残部Fe及び不可避的不純物からなる鋼
片を加熱圧延工程の最終工程において、900〜100
0℃の温度範囲に加熱し、900℃以下の圧下量が60
%以上、かつ仕上温度が650℃〜850℃になるよう
に圧延を行い、圧延終了後3〜bで加速冷却その後放冷
することを特徴とする極低温用鋼の製造法。 2、  C0,005〜0.08%、Si O,6%以
下、Mn0.2〜2.0%、Po、020%以下、80
.006%以下、AlO,005〜0.08%、Ni 
1.0〜6.0%、Nb O,005〜0.03%、N
O,005%以下に加えて、vo、oi〜0.05%、
TiO,005〜0.03%、B  O,0005〜0
.0030%、 Cu  O,1〜1.0%、Cr O
,1〜1.0%、 Mo  0.05〜0.30%、 
Ca0.0005〜0005%、 REM 0.003
〜0.03%の1種または2種以上を含有させ、残部F
e及び不可避的不純物からなる鋼片を、加熱圧延工程の
最終工程において、900〜1000℃の温度範囲に加
熱し、900℃以下の圧下量の60%以上、かつ仕上温
度が650℃〜850℃になるように圧延を行い、圧延
終了後3〜bで加速冷却その後放冷することを特徴とす
る極低温用鋼の製造法。
[Claims] 1. CO, 005 to 0.08%, St O, 6% or less, MnO 2 to 2.0%, Po, 020% or less, 80.
006% or less, AIo, 005-0.08%, Ni 1
.. 0-6.0%, NbO, 005-0.03%, NO
,005% or less of the remaining Fe and unavoidable impurities.
Heating to a temperature range of 0℃, reduction of 60℃ below 900℃
% or more and a finishing temperature of 650° C. to 850° C., and after the rolling is completed, accelerated cooling is performed at 3 to 3 b, and then allowed to cool. 2. C0,005~0.08%, SiO, 6% or less, Mn0.2~2.0%, Po, 020% or less, 80
.. 006% or less, AlO, 005-0.08%, Ni
1.0-6.0%, NbO, 005-0.03%, N
In addition to 0,005% or less, vo, oi ~ 0.05%,
TiO, 005~0.03%, BO, 0005~0
.. 0030%, CuO, 1-1.0%, CrO
, 1-1.0%, Mo 0.05-0.30%,
Ca0.0005-0005%, REM 0.003
~0.03% of one or more types, and the remainder F
In the final step of the hot rolling process, the steel billet consisting of E and inevitable impurities is heated to a temperature range of 900 to 1000°C, and the rolling reduction is 60% or more of 900°C or less, and the finishing temperature is 650°C to 850°C. 1. A method for producing cryogenic steel, which comprises rolling the steel so as to achieve the desired temperature, and after the rolling is completed, accelerated cooling is performed at 3-b, and then allowed to cool.
JP5097282A 1982-03-31 1982-03-31 Manufacture of steel for extra-low temperature use Pending JPS58171526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5097282A JPS58171526A (en) 1982-03-31 1982-03-31 Manufacture of steel for extra-low temperature use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5097282A JPS58171526A (en) 1982-03-31 1982-03-31 Manufacture of steel for extra-low temperature use

Publications (1)

Publication Number Publication Date
JPS58171526A true JPS58171526A (en) 1983-10-08

Family

ID=12873722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5097282A Pending JPS58171526A (en) 1982-03-31 1982-03-31 Manufacture of steel for extra-low temperature use

Country Status (1)

Country Link
JP (1) JPS58171526A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140355A (en) * 1983-01-31 1984-08-11 Sumitomo Metal Ind Ltd Extremely thick steel plate with high toughness and tension
JPS61560A (en) * 1984-06-12 1986-01-06 Nippon Steel Corp Steel having superior toughness at welded joint
EP0190312A1 (en) * 1984-08-06 1986-08-13 The Regents Of The University Of California Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes
JPS61238911A (en) * 1985-04-12 1986-10-24 Nippon Steel Corp Manufacture of steel for low temperature superior in toughness of weld heat affected zone
JPS61238940A (en) * 1985-04-12 1986-10-24 Nippon Steel Corp Low-temperature tough hardening steel excelling in toughness in weld zone
JPS621842A (en) * 1985-06-26 1987-01-07 Nippon Steel Corp Tough, high tension steel having superior toughness in weld zone
US4936926A (en) * 1987-10-29 1990-06-26 Nkk Corporation Method for manufacturing steel article having high toughness and high strength
JPH02298216A (en) * 1989-05-12 1990-12-10 Kobe Steel Ltd Production of steel having high strength and high toughness
JPH05255744A (en) * 1992-03-11 1993-10-05 Nippon Steel Corp Production of high tensile strength steel plate excellent in toughness at low temperature
US5858130A (en) * 1997-06-25 1999-01-12 Bethlehem Steel Corporation Composition and method for producing an alloy steel and a product therefrom for structural applications
WO2008058410A1 (en) * 2006-11-17 2008-05-22 Swiss Steel Ag Method for the continuous production of steel wire or bar
KR100843844B1 (en) 2006-11-10 2008-07-03 주식회사 포스코 Steel plate for linepipe having ultra-high strength and excellent crack propagation resistance and manufacturing method of the same
KR100957970B1 (en) 2007-12-27 2010-05-17 주식회사 포스코 High-strength and high-toughness thick steel plate and method for producing the same
CN103088269A (en) * 2013-02-06 2013-05-08 武汉钢铁(集团)公司 Pressure container steel having high toughness at -120DEG C, and its production method
CN103103441A (en) * 2013-02-06 2013-05-15 武汉钢铁(集团)公司 Pressure container steel with high toughness at -140 DEG C and production method thereof
CN103509999A (en) * 2012-06-20 2014-01-15 鞍钢股份有限公司 Manufacturing method of high-nickel steel for low-temperature storage tank
CN103898418A (en) * 2014-03-07 2014-07-02 舞阳钢铁有限责任公司 High-thickness Ni series steel plate for low-temperature vessels and production method for steel plate
JP2016003385A (en) * 2014-06-19 2016-01-12 新日鐵住金株式会社 CONTINUOUS CASTING SLAB OF Ni-CONTAINING STEEL
CN110396646A (en) * 2019-07-23 2019-11-01 北京科技大学 A kind of preparation of low carbon high-strength ship steel and the regulation and appraisal procedure of yield tensile ratio
CN111705268A (en) * 2020-07-01 2020-09-25 东北大学 Steel for low-yield-ratio ultrahigh-strength high-toughness pressure-resistant shell and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687622A (en) * 1979-12-19 1981-07-16 Nippon Steel Corp Production of nonquenched high toughness high tensile steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687622A (en) * 1979-12-19 1981-07-16 Nippon Steel Corp Production of nonquenched high toughness high tensile steel

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140355A (en) * 1983-01-31 1984-08-11 Sumitomo Metal Ind Ltd Extremely thick steel plate with high toughness and tension
JPH0210219B2 (en) * 1983-01-31 1990-03-07 Sumitomo Metal Ind
JPS61560A (en) * 1984-06-12 1986-01-06 Nippon Steel Corp Steel having superior toughness at welded joint
EP0190312A1 (en) * 1984-08-06 1986-08-13 The Regents Of The University Of California Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes
JPS61238911A (en) * 1985-04-12 1986-10-24 Nippon Steel Corp Manufacture of steel for low temperature superior in toughness of weld heat affected zone
JPS61238940A (en) * 1985-04-12 1986-10-24 Nippon Steel Corp Low-temperature tough hardening steel excelling in toughness in weld zone
JPH0359134B2 (en) * 1985-04-12 1991-09-09 Nippon Steel Corp
JPH0440411B2 (en) * 1985-04-12 1992-07-02 Nippon Steel Corp
JPS621842A (en) * 1985-06-26 1987-01-07 Nippon Steel Corp Tough, high tension steel having superior toughness in weld zone
US4936926A (en) * 1987-10-29 1990-06-26 Nkk Corporation Method for manufacturing steel article having high toughness and high strength
US4952250A (en) * 1987-10-29 1990-08-28 Nkk Corporation Method for manufacturing steel article having high toughness and high strength
JPH02298216A (en) * 1989-05-12 1990-12-10 Kobe Steel Ltd Production of steel having high strength and high toughness
JPH05255744A (en) * 1992-03-11 1993-10-05 Nippon Steel Corp Production of high tensile strength steel plate excellent in toughness at low temperature
US5858130A (en) * 1997-06-25 1999-01-12 Bethlehem Steel Corporation Composition and method for producing an alloy steel and a product therefrom for structural applications
KR100843844B1 (en) 2006-11-10 2008-07-03 주식회사 포스코 Steel plate for linepipe having ultra-high strength and excellent crack propagation resistance and manufacturing method of the same
WO2008058410A1 (en) * 2006-11-17 2008-05-22 Swiss Steel Ag Method for the continuous production of steel wire or bar
KR100957970B1 (en) 2007-12-27 2010-05-17 주식회사 포스코 High-strength and high-toughness thick steel plate and method for producing the same
CN103509999A (en) * 2012-06-20 2014-01-15 鞍钢股份有限公司 Manufacturing method of high-nickel steel for low-temperature storage tank
CN103088269A (en) * 2013-02-06 2013-05-08 武汉钢铁(集团)公司 Pressure container steel having high toughness at -120DEG C, and its production method
CN103103441A (en) * 2013-02-06 2013-05-15 武汉钢铁(集团)公司 Pressure container steel with high toughness at -140 DEG C and production method thereof
CN103103441B (en) * 2013-02-06 2015-04-15 武汉钢铁(集团)公司 Pressure container steel with high toughness at -140 DEG C and production method thereof
CN103898418A (en) * 2014-03-07 2014-07-02 舞阳钢铁有限责任公司 High-thickness Ni series steel plate for low-temperature vessels and production method for steel plate
JP2016003385A (en) * 2014-06-19 2016-01-12 新日鐵住金株式会社 CONTINUOUS CASTING SLAB OF Ni-CONTAINING STEEL
CN110396646A (en) * 2019-07-23 2019-11-01 北京科技大学 A kind of preparation of low carbon high-strength ship steel and the regulation and appraisal procedure of yield tensile ratio
CN111705268A (en) * 2020-07-01 2020-09-25 东北大学 Steel for low-yield-ratio ultrahigh-strength high-toughness pressure-resistant shell and preparation method thereof

Similar Documents

Publication Publication Date Title
JPS58171526A (en) Manufacture of steel for extra-low temperature use
JPH0127128B2 (en)
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
JPS601929B2 (en) Manufacturing method of strong steel
JPS6155572B2 (en)
JPS5814848B2 (en) Manufacturing method of non-tempered high-strength, high-toughness steel
JPS605647B2 (en) Method for manufacturing boron-containing non-thermal high tensile strength steel with excellent low-temperature toughness and weldability
JP4112733B2 (en) Method for producing 50 kg (490 MPa) to 60 kg (588 MPa) thick high-tensile steel sheet having excellent strength and low temperature toughness
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
KR100723201B1 (en) High strength and toughness steel having superior toughness in multi-pass welded region and method for manufacturing the same
JPS5877527A (en) Manufacture of high-strength and high-toughness steel
JPH0541683B2 (en)
JPH08283906A (en) High tensile strength steel plate for fitting material, excellent in hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance
JPH02125812A (en) Manufacture of cu added steel having superior toughness of weld heat-affected zone
JPH0225968B2 (en)
JPS62174324A (en) Manufacture of high yield point steel for low temperature superior in toughness welding heat affected-zone
JPS63210235A (en) Manufacture of steel excellent in toughness at low temperature in welding heat affected zone
JPH09302445A (en) Nickel-containing steel for low temperature use and its production
JPH10168516A (en) Production of low yield ratio high tensile strength steel excellent in weldability and low temperature toughness
JPH03207814A (en) Manufacture of low yield ratio high tensile strength steel plate
JPS6293312A (en) Manufacture of high tensile steel stock for stress relief annealing
JPH0211652B2 (en)
JPH1180832A (en) Production of high tensile strength steel with low yield ratio, excellent in weldability and toughness at low temperature
JPH10183241A (en) Production of low yield ratio high tensile strength steel excellent in weldability and low temperature toughness
JPS6289815A (en) Manufacture of high yield point steel for low temperature