JPH0211652B2 - - Google Patents

Info

Publication number
JPH0211652B2
JPH0211652B2 JP5521085A JP5521085A JPH0211652B2 JP H0211652 B2 JPH0211652 B2 JP H0211652B2 JP 5521085 A JP5521085 A JP 5521085A JP 5521085 A JP5521085 A JP 5521085A JP H0211652 B2 JPH0211652 B2 JP H0211652B2
Authority
JP
Japan
Prior art keywords
less
steel
rolling
fine
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5521085A
Other languages
Japanese (ja)
Other versions
JPS61213322A (en
Inventor
Michihiko Nagumo
Masazumi Hirai
Masakata Imagunbai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5521085A priority Critical patent/JPS61213322A/en
Publication of JPS61213322A publication Critical patent/JPS61213322A/en
Publication of JPH0211652B2 publication Critical patent/JPH0211652B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、均質かつ方向性のない強靭鋼板を鋳
造後再加熱することなしに熱間圧延によつて製造
する方法(直送圧延)に関する。すなわち、ライ
ンパイプ、低温用各種貯槽・圧力容器、造船・海
構、その他常温域あるいはそれ以下の温度域で使
用される各種の鋼構造物に使用される鋼を、鋳造
後直ちに熱間圧延によつて所定の寸法に仕上げた
のち、その冷却過程で加速冷却によつて、Ti酸
化物に起因する微細なウイツドマン=シユテツテ
ン状のベーナイト変態組織にすることにより、従
来の再加熱圧延材、あるいはそれを焼き入れ焼き
戻し、焼準、さらには圧延後直ちに加速冷却法に
よつて製造される鋼板と同等以上の強度と低温靭
性を賦与せんとするものであり、主として厚鋼板
の直送圧延において強靭鋼板を得ようとする要望
に対して有力な手段を提供するものである。 (従来の技術) 熱間圧延鋼板の製造技術においては工程の簡略
化や省略をすることが近年強く指向されてきてい
る。連続鋳造や制御冷却プロセスの導入により中
間製品の再加熱工程がなくなりつつあるのはその
表われである。このような技術的趨勢のなかで、
ホツトストリツプの製造技術分野においては連続
鋳造スラブを再加熱することなく直ちに圧延する
直送圧延が実用化されている。しかし厚鋼板の製
造技術についてはそのような直送圧延は実用化さ
れるには到つていない。 厚鋼板を直送圧延することは、鋼板の低温靭性
がそれほど厳しくは要求されない軟鋼や一般の普
通鋼分野では冶金学的には実施できることがよく
知られている。しかしながら、低温用鋼や低温靭
性の要求される高張力鋼などについては直送圧延
すると従来の製造法によるものに比べて低温靭性
が劣る。このために、これを補う手段として特開
昭57−131320号公報に開示されているように、ス
ラブ表面温度が1100〜750℃になつた時点で粗圧
延を開始し、次いでAr3以下まで仕上圧延を行
い、しかも圧延後鋼板温度が650℃から400℃まで
の間を所定の冷却速度で冷却する方法がある。 しかるに、このような強度の制御圧延を制御冷
却に先行させる方法は、圧延を低温域で十分な圧
下量を確保できるように行わなければならないの
と、圧延中の時間−温度管理を細かに実施しなけ
ればならないので、圧延工程の生産性を著しく低
下させてしまう。加えて、このプロセスで製造で
きる鋼板の種類はたとえばラインパイプ用素材の
ように板厚が比較的薄いものに限定される。その
理由は、このプロセスにおいては鋼板の低温靭性
を確保するために鋼組織の微細化をその達成手段
としているが、そのため圧延によりオーステナイ
ト粒の微細化やフエライト粒の微細化をさせなけ
ればならないためである。 (発明が解決しようとする問題点) 本発明は、低温靭性のすぐれた高張力鋼板を直
送圧延によつて製造するに際して、従来のような
圧延加工によつて結晶粒の微細化をはかる方法に
よるのではなく、鋼の溶製、鋳造過程で鋳片内に
微細に分散析出させたTi酸化物系析出物を利用
して鋼板の変態組織の微細化をはかろうとするも
のである。すなわち、本発明法においては鋼の変
態をγ粒界から生ぜしめるのではなく、γ粒界と
は独立に鋼材中に微細に分散析出したTi酸化物
系介在物から粒内変態の形で生ぜしめるので、鋼
の組織の微細化は圧延による結晶粒の微細化とは
全く独立のメカニズムによつて達せられる。 このような変態のメカニズムを利用することに
より、圧延工程における複雑かつ煩瑣な圧延プロ
セスの制御を必要とせず、圧延工程の生産性を飛
躍的に高めるとともに、生産できる鋼板厚につい
ても薄手のみならず鋳片厚に近い厚手の鋼板にも
適用できる直送圧延プロセスを可能にすることが
本発明の目的である。 (問題点を解決するための手段) 本発明は、上記の目的を達成するために、以下
の手段を採用した。 すなわち、凝固した状態における鋼の組織が重
量%濃度でC:0.001〜0.300%、Si:0.8%以下、
Mn:0.4〜2.0%、Ti:0.003〜0.050%、O:
0.0010〜0.0100%で、不純物元素として鋼の溶製
の過程で不可避に混入するAlを0.007%以下とし、
残部鉄および不純物元素を含み、しかも粒径が
3μm以下でTiO、Ti2O3のいずれか一種または二
種の複合した結晶相を含む酸化物系介在物を重量
%で0.004%以上0.100%以下の範囲で含有する鋳
片を、その凝固後の冷却途上において鋳片の実質
的な部分が900℃以上の温度であるうちに鋼板の
最終的な厚みにまで圧延したのち、900℃から500
℃の間を20秒以上100秒以下の時間で冷却する、
微細なウイツドマン=シユテツテン状のフエライ
トプレートから成る微細ベーナイト組織よりなる
鋼板の製造法、および、凝固した状態における鋼
の組成が重量%濃度でC:0.001〜0.300%、Si:
0.8%以下、Mn:0.4〜2.0%、Ti:0.003〜0.050
%、O:0.0010〜0.0100%を基本成分とし、Cu:
1.5%以下、Ni:10%以下、Cr:1%以下、
Mo:1%以下、Nb:0.2%以下、V:0.5%以
下、B:0.0025%以下、REM:0.05%以下、
Ca:0.008%以下のいずれか一種または二種以上
を含み、不純物元素として鋼の溶製の過程で不可
避に混入するAlを0.007%以下とし、残部鉄およ
び不純物元素を含み、しかも粒径が3μm以下で
TiO、Ti2O3のいずれか一種または二種の複合し
た結晶相を含む酸化物系介在物を重量%で0.004
%以上0.100%以下の範囲で含有する鋳片を、そ
の凝固後の冷却途上において鋳片の実質的な部分
が900℃以上の温度であるうちに鋼板の最終的な
厚みにまで圧延したのち、900℃から500℃の間を
20秒以上100秒以下の時間で冷却する、微細なウ
イツドマン=シユテツテン状のフエライトプレー
トから成る微細ベーナイト組織よりなる鋼板の製
造法である。 以下に、まず、本発明に関わる鋼材の成分組成
を限定する理由について述べる。 C、Si、Mnは鋼材の強度を高めるいつぽう
HAZ組織の硬化を促すので適量が必要であるが、
高すぎないようにしなければならない。本発明法
の適用が意図される鋼材では、このような観点か
らCについては0.001から0.300%、Siについては
0.8%以下、Mnについては0.4から2.0%の範囲と
した。 Al、TiおよびOは本発明法による鋼材の組織
を特徴づける微細なウイツドマン=シユテツテン
状フエライトプレートから成る微細ベーナイト組
織(以下、「微細ベーナイト組織」と呼ぶ)が生
成するための基本的なメカニズムに関与してい
る。Alが0.007%より高いと微細なウイツドマン
=シユテツテン状フエライトプレートの発生頻度
を支配しているTiO、Ti2O3のいずれか一種また
は二種の複合した結晶相を含む酸化物(以下
「Ti−Oxide系介在物」と呼ぶ)が鋼の溶製の段
階で形成されない。従つて、Alについては添加
せず、しかも合金鉄や耐火物から混入することを
防止することが必要であり、不可避に混入する量
を0.007%以下とした。Alを上記の範囲に抑えた
鋼にTiを添加するとTi−Oxide系介在物が形成
されるが、TiとOの量が多すぎると粗大化して
微細ベーナイト組織の発生頻度が低下しすぎて実
用上の効果を失なう。いつぽう、TiとOの量が
少なすぎるとTi−Oxide系介在物が形成されな
い。このため、Tiについては0.003〜0.050%、O
については0.0010〜0.0100%とし、しかもTi−
Oxide系介在物の総量を0.004%以上0.100%以下
とした。 これにより、通常の鋳造工程において凝固した
鋳片内には粒径が3μm以下で、TiO、Ti2O3のい
ずれか一種または二種の複合した酸化物系介在物
が形成される。これらの酸化物は、よく知られて
いるように、鋼のオーステナイトからの冷却過程
でオーステナイトの粒界とは独立して粒内から微
細フエライト=プレートが生じ、鋼の強靭化に資
する。 Cuは鋼材の耐食性と強度の向上に有効である
が、多すぎると溶接金属の熱間割れを起こすので
1.5%以下とした。 Niは鋼材の強度と低温靭性を同時に高めるの
でそのような目的には添加する程好ましいが、
Niが10%を超える鋼では本発明による経済的効
果が得にくい。したがつて、10%以下とした。 Cr、Mo、Bは鋼の焼き入れ性を高め、本発明
法によるプロセスでは微細ベーナイト組織の安定
化に有効である。しかしながら、多すぎるとγ相
からの変態過程で熱間割れを生ずる。したがつて
CrとMoについてはそれぞれ1%以下、Bについ
ては0.0025%以下とした。 Nb、Vは、本発明法においては圧延後の冷却
過程において微細な炭窒化物として析出して鋼の
強度を高めるが、多すぎると鋼材の低温靭性を損
なう。したがつて、Nbは0.2%以下、Vは0.5%以
下とした。 Ca、REMは鋼中のSを固定し、鋼材の延性や
切り欠き靭性に有害なMnSを低減する働きがあ
るのでそのような用途に対して添加される。ただ
し、多すぎると鋼の清浄度を低下させ、鋼板の内
部欠陥の原因になるので、Caについては上限を
0.008%、REMについては0.05%とした。 なお、P、SおよびNについては本発明法にお
ける技術的要件に対しては第一義的に重要な意味
はないが、溶接継手部(熱影響部:HAZ、およ
び、溶接金属部)の靭性にとつて好ましくないの
で低い程望ましく、P、Sについては0.025%以
下、Nについては0.0050%以下であることが望ま
しい。 つぎに、本発明法の圧延方法と圧延後の冷却条
件について限定する理由を述べる。 本発明法においては、以上述べたような要件を
満たした鋳片を、その鋳造後の冷却過程におい
て、鋳片の実質的な部分が900℃以上の温度にあ
るうちに圧延を終了してしまうように圧延しなけ
ればならない。その理由は、これ以下の温度で圧
延を行なうとγ粒の細粒化や、γ相に圧延加工組
織が残存するようになり、微細ベーナイト組織の
形成に有害であるからである。 また、上記圧延後の冷却速度は大きすぎると鋼
組織がマルテンサイト化し、逆に小さすぎるとフ
エライト=パーライト化して、いずれの場合も本
発明法の特徴となす微細ベーナイト組織が得られ
ない。このゆえに、900℃から500℃の間を20秒以
上100秒以下の時間で冷却する必要がある。 (作用) 本発明法によれば鋳造ままの極めて粗大なオー
ステナイト粒のままの鋳片を再加熱することな
く、しかも熱間圧延によつて結晶粒の細粒化をは
かることもなく、単に900℃から500℃の間を20秒
以上100秒以下の時間で冷却するだけで、均質か
つ方向性のない低温靭性のすぐれた鋼板の製造が
可能になる。 このように、鋳片の再加熱や圧延によるγ粒あ
るいはα粒の細粒化によらず低温靭性のすぐれた
鋼板が得られるのは次のような理由による。すな
わち、従来の方法、たとえば鋳片の再加熱や圧延
によるγ粒の細粒化をはかる方法や、これとγ/
α共存域における圧延とを組み合わせてα粒の圧
延再結晶による細粒化をはかる方法においては、
γ/α変態開始前のγ粒の細粒化をはかり、γ粒
界やγ粒界と同様な役割りをはたすと考えられて
いる変形帯からγ/α変態をさせ、微細なα粒構
成からなる圧延鋼板を得ようとするのに対して、
本発明法はγ粒界とは独立に、鋳造時に鋼中に微
細かつ多量に分散析出させたTi酸化物からγ/
α変態をさせる。このため、γ粒の再細粒化をは
かることは全く不要なばかりでなく、γ粒はむし
ろ粗大でなければならない。すなわち、本発明の
成分組成の要件を満す鋼であつてもγ粒が微細に
なるとγ粒界からの変態が優先して起きるように
なるため、γ粒内に微細かつ多量に存在している
Ti酸化物からのα変態は起きなくなる。このた
めに、本発明における圧延は、γ粒の細粒化を起
こさないよう鋼の実質的な部分が900℃以上の高
温にあるうちに終了しなければならない。 このように粗大なγ粒よりなる高温の鋼を900
℃から500℃の間を20秒以上100秒以下の時間で冷
却すると、Ti酸化物を核としてγ粒内からプレ
ート状のフエライトが生ずる。第1図は本発明法
による鋼板の組織を示す。 実施例 1 第1表は本願特許請求の範囲第1項に記載する
成分組成の要件を満す鋳片を、鋳造後の冷却過程
で本発明法による条件で圧延し冷却した場合と、
比較法の圧延法による場合との供試鋼とプロセス
条件を示す。 鋼板A,Cは本発明法によるものであり、通常
の厚板の圧延温度域に比べれば極めて高温域で圧
延されているにも拘わらず、圧延後の適切な冷却
により微細ベーナイト組織となり、すぐれた切り
欠き靭性を示す。 鋼板B,Dは圧延条件が本発明の要件を満足し
ているにも拘わらず、圧延後の冷却速度が鋼板B
では大きすぎ、鋼板Dでは逆に小さすぎて、いず
れの場合も微細ベーナイト組織とはならない。 いつぽう、鋼板Eでは圧延後の冷却条件は本発
明法の条件を満たしているが、圧延温度域が低す
ぎてγ粒が細粒化したため粒界からの変態が優先
し、微細ベーナイト組織が得られていない。
(Industrial Application Field) The present invention relates to a method (direct rolling) for producing a homogeneous, non-directional, strong steel plate by hot rolling without reheating after casting. In other words, steel used for line pipes, various low-temperature storage tanks/pressure vessels, shipbuilding/official structures, and other various steel structures used in the room temperature range or lower temperature range is immediately hot rolled after casting. Therefore, after finishing the material to a predetermined size, accelerated cooling is performed during the cooling process to create a fine Widmann-Schüttesten-like bainitic transformation structure caused by Ti oxide. The objective is to impart strength and low-temperature toughness equivalent to or higher than steel plates manufactured by quenching, tempering, normalizing, and accelerated cooling immediately after rolling, and is mainly used in direct rolling of thick steel plates. It provides a powerful means to meet the desire to obtain the desired results. (Prior Art) In recent years, there has been a strong trend towards simplifying or omitting processes in the manufacturing technology of hot rolled steel sheets. This is reflected in the elimination of reheating steps for intermediate products due to the introduction of continuous casting and controlled cooling processes. Amid these technological trends,
In the field of hot strip manufacturing technology, direct rolling has been put into practical use, in which continuously cast slabs are immediately rolled without being reheated. However, such direct rolling has not yet been put into practical use as a manufacturing technology for thick steel plates. It is well known that direct rolling of thick steel plates can be carried out metallurgically in the fields of mild steel and general ordinary steel, where the low-temperature toughness of the steel plate is not so strictly required. However, for low-temperature steels and high-strength steels that require low-temperature toughness, direct rolling results in inferior low-temperature toughness compared to conventional manufacturing methods. For this reason, as a means to compensate for this, as disclosed in JP-A-57-131320, rough rolling is started when the slab surface temperature reaches 1100 to 750°C, and then finishing is carried out to below Ar 3 . There is a method in which rolling is performed and the steel sheet temperature after rolling is cooled at a predetermined cooling rate between 650°C and 400°C. However, such a method in which high-intensity controlled rolling precedes controlled cooling requires that rolling be carried out in a low temperature range to ensure sufficient rolling reduction, and that time-temperature control during rolling must be carefully controlled. As a result, the productivity of the rolling process is significantly reduced. In addition, the types of steel plates that can be manufactured using this process are limited to those that are relatively thin, such as line pipe materials. The reason for this is that this process uses refinement of the steel structure to ensure the low-temperature toughness of the steel sheet, but this requires the refinement of austenite grains and ferrite grains through rolling. It is. (Problems to be Solved by the Invention) The present invention utilizes a method of refining grains through conventional rolling when producing high-strength steel sheets with excellent low-temperature toughness by direct rolling. Instead, the aim is to refine the transformed structure of the steel sheet by using Ti oxide precipitates that are finely dispersed and precipitated within the slab during the steel melting and casting process. In other words, in the method of the present invention, the transformation of steel does not occur from the γ grain boundaries, but instead occurs in the form of intragranular transformation from Ti oxide-based inclusions that are finely dispersed and precipitated in the steel material, independent of the γ grain boundaries. Therefore, the refinement of the steel structure is achieved by a mechanism that is completely independent of the grain refinement caused by rolling. By utilizing such a transformation mechanism, there is no need for complicated and complicated rolling process control in the rolling process, and the productivity of the rolling process is dramatically increased, and the thickness of the steel plate that can be produced is not only thin but also It is an object of the present invention to enable a direct rolling process that can be applied to steel plates as thick as slabs. (Means for solving the problems) In order to achieve the above object, the present invention employs the following means. That is, the structure of the steel in the solidified state has a weight percent concentration of C: 0.001 to 0.300%, Si: 0.8% or less,
Mn: 0.4-2.0%, Ti: 0.003-0.050%, O:
0.0010 to 0.0100%, and 0.007% or less of Al, which is unavoidably mixed in as an impurity element during the melting process of steel,
Contains the balance iron and impurity elements, and has a particle size of
After solidification, a cast slab containing oxide-based inclusions of 3 μm or less and containing a composite crystal phase of one or two of TiO and Ti 2 O 3 in a range of 0.004% to 0.100% by weight. After rolling to the final thickness of the steel plate while the substantial part of the slab is still at a temperature of 900℃ or higher during cooling, the slab is rolled from 900℃ to 500℃.
Cooling between ℃ in a time of 20 seconds or more and 100 seconds or less,
A method for manufacturing a steel plate having a fine bainitic structure consisting of fine Widmann-Schüttetten-like ferrite plates, and a composition of the steel in a solidified state in terms of weight percent concentration of C: 0.001 to 0.300%, Si:
0.8% or less, Mn: 0.4~2.0%, Ti: 0.003~0.050
%, O: 0.0010-0.0100% as the basic component, Cu:
1.5% or less, Ni: 10% or less, Cr: 1% or less,
Mo: 1% or less, Nb: 0.2% or less, V: 0.5% or less, B: 0.0025% or less, REM: 0.05% or less,
Contains one or more of Ca: 0.008% or less, Al, which is unavoidably mixed in as an impurity element during the melting process of steel, is 0.007% or less, and the balance contains iron and impurity elements, and the particle size is 3 μm. below
0.004% by weight of oxide inclusions containing a composite crystal phase of one or both of TiO and Ti 2 O 3
% or more and 0.100% or less is rolled to the final thickness of a steel plate while the substantial part of the slab is at a temperature of 900°C or more during cooling after solidification, and then Between 900℃ and 500℃
This is a method for manufacturing a steel plate with a fine bainite structure consisting of fine Widmann-Schüttesten-like ferrite plates, which is cooled for a period of 20 seconds or more and 100 seconds or less. Below, first, the reason for limiting the composition of the steel material related to the present invention will be described. C, Si, and Mn are used to increase the strength of steel materials.
An appropriate amount is required as it promotes hardening of the HAZ tissue.
It must not be too high. From this point of view, in steel materials to which the method of the present invention is intended, C should be set at 0.001 to 0.300%, and Si should be set at 0.001 to 0.300%.
0.8% or less, and Mn in the range of 0.4 to 2.0%. Al, Ti, and O play a fundamental role in the formation of the fine bainite structure (hereinafter referred to as the "fine bainite structure") consisting of fine Widmann-Schüttesten-like ferrite plates that characterize the structure of the steel produced by the method of the present invention. Involved. When Al is higher than 0.007%, oxides containing a composite crystal phase of one or two of TiO and Ti 2 O 3 (hereinafter referred to as "Ti- Oxide-based inclusions (called "oxide-based inclusions") are not formed during the steel melting process. Therefore, it is necessary to not add Al, and to prevent it from being mixed in from the ferroalloy or refractory, and the amount of Al that is unavoidably mixed is set to 0.007% or less. If Ti is added to steel with Al content within the above range, Ti-Oxide inclusions will be formed, but if the amounts of Ti and O are too large, they will become coarse and the frequency of occurrence of fine bainite structures will be too low for practical use. loses the above effect. On the other hand, if the amounts of Ti and O are too small, Ti-Oxide inclusions will not be formed. Therefore, Ti is 0.003~0.050%, O
0.0010 to 0.0100%, and Ti−
The total amount of oxide inclusions was set to 0.004% or more and 0.100% or less. As a result, oxide-based inclusions having a grain size of 3 μm or less and a composite of one or two of TiO and Ti 2 O 3 are formed in the slab solidified in the normal casting process. As is well known, these oxides produce fine ferrite=plates from within the grains, independent of the austenite grain boundaries, during the cooling process from austenite in the steel, contributing to toughening of the steel. Cu is effective in improving the corrosion resistance and strength of steel materials, but too much Cu can cause hot cracking in the weld metal.
It was set to 1.5% or less. Ni increases the strength and low-temperature toughness of steel materials at the same time, so it is preferable to add it for such purposes.
Steels containing more than 10% Ni are difficult to obtain the economic effects of the present invention. Therefore, it was set to 10% or less. Cr, Mo, and B improve the hardenability of steel, and are effective in stabilizing the fine bainite structure in the process according to the present invention. However, if the amount is too high, hot cracking will occur during the transformation process from the γ phase. Therefore
Cr and Mo were each 1% or less, and B was 0.0025% or less. In the method of the present invention, Nb and V precipitate as fine carbonitrides in the cooling process after rolling and increase the strength of the steel, but if they are in too large a quantity, they impair the low-temperature toughness of the steel material. Therefore, Nb was set to 0.2% or less, and V was set to 0.5% or less. Ca and REM have the function of fixing S in steel and reducing MnS, which is harmful to the ductility and notch toughness of steel materials, so they are added for such uses. However, if there is too much Ca, it will reduce the cleanliness of the steel and cause internal defects in the steel plate, so the upper limit should be set for Ca.
0.008%, and 0.05% for REM. Note that P, S, and N have no primary significance with respect to the technical requirements of the method of the present invention, but they are important for the toughness of the welded joint (heat affected zone: HAZ and weld metal). Since it is unfavorable for P and S, it is desirable that the content be as low as possible, and it is desirable that the content be 0.025% or less for P and S, and 0.0050% or less for N. Next, the reasons for limiting the rolling method and post-rolling cooling conditions of the present invention will be described. In the method of the present invention, rolling of a slab that satisfies the above-mentioned requirements is completed while a substantial portion of the slab remains at a temperature of 900°C or higher during the cooling process after casting. It must be rolled like this. The reason for this is that rolling at a temperature lower than this causes the γ grains to become finer and the rolled structure to remain in the γ phase, which is harmful to the formation of a fine bainite structure. Further, if the cooling rate after rolling is too high, the steel structure becomes martensite, and if it is too low, the steel structure becomes ferrite=pearlite, and in either case, the fine bainitic structure, which is a characteristic of the method of the present invention, cannot be obtained. Therefore, it is necessary to cool the temperature between 900°C and 500°C in a period of 20 seconds or more and 100 seconds or less. (Function) According to the method of the present invention, there is no need to reheat the as-cast slab with extremely coarse austenite grains, and there is no need to try to refine the crystal grains by hot rolling. By simply cooling from ℃ to 500℃ for 20 seconds or more and 100 seconds or less, it becomes possible to produce a homogeneous, non-directional steel plate with excellent low-temperature toughness. The reason why a steel plate with excellent low-temperature toughness can be obtained regardless of the refinement of the γ grains or α grains by reheating or rolling the slab is as follows. In other words, conventional methods, such as reheating or rolling slabs to refine the γ grains, and this method and γ/
In a method that aims at grain refinement by rolling recrystallization of α grains in combination with rolling in the α coexistence region,
This aims to refine the γ grains before the start of γ/α transformation, allowing γ/α transformation to occur from γ grain boundaries or deformation bands that are thought to play a role similar to γ grain boundaries, resulting in a fine α grain structure. In contrast to trying to obtain a rolled steel plate consisting of
The method of the present invention uses γ/
Cause alpha metamorphosis. For this reason, it is not only unnecessary to re-fine the γ grains, but the γ grains must be rather coarse. In other words, even in steel that satisfies the requirements for the composition of the present invention, when the γ grains become fine, transformation from the γ grain boundaries occurs preferentially, so that fine and large amounts of γ grains exist within the γ grains. There is
α transformation from Ti oxide no longer occurs. For this reason, rolling in the present invention must be completed while a substantial portion of the steel is at a high temperature of 900° C. or higher so as not to cause the γ grains to become finer. In this way, high-temperature steel made of coarse γ grains is
When cooled between ℃ and 500℃ for 20 seconds or more and 100 seconds or less, plate-shaped ferrite is generated from within the γ grains with Ti oxide as the core. FIG. 1 shows the structure of a steel plate produced by the method of the present invention. Example 1 Table 1 shows the case where a slab that satisfies the requirements for the composition described in claim 1 of the present application is rolled and cooled under the conditions according to the method of the present invention in the cooling process after casting, and
The test steel and process conditions for the comparative rolling method are shown. Steel plates A and C are produced by the method of the present invention, and although they are rolled at an extremely high temperature range compared to the rolling temperature range of ordinary thick plates, they become fine bainitic structures due to appropriate cooling after rolling, and have excellent properties. It shows notch toughness. Although the rolling conditions of steel plates B and D satisfy the requirements of the present invention, the cooling rate after rolling is lower than that of steel plate B.
In steel plate D, it is too large, and in both cases, it is too small to form a fine bainite structure. On the other hand, in steel plate E, the cooling conditions after rolling satisfy the conditions of the present invention, but the rolling temperature range was too low and the γ grains became finer, so transformation from the grain boundaries took priority and the fine bainite structure was formed. Not obtained.

【表】 実施例 2 第2表は本願特許請求の範囲第2項の記載に関
するものであり、鋼板FはNb添加の極低N鋼、
鋼板Gは極低NのCu−Ni−Mo−Nb−Ca添加
鋼、鋼板Hは極低NのCr−V−B−REM添加鋼
で、いずれも本発明の要件を満す成分組成と熱間
圧延プロセス条件となつている。いつぽう鋼板I
は、プロセス条件は本発明の要件を満すが、Al
が本発明の要件とする範囲から外れ、Ti酸化物
も含まないため鋼組織は粗大な上部ベーナイト組
織となり、シヤルピー切り欠き靭性が劣つてい
る。
[Table] Example 2 Table 2 is related to the statement in claim 2 of the present application, and the steel plate F is an ultra-low N steel with Nb addition,
Steel plate G is an extremely low N Cu-Ni-Mo-Nb-Ca additive steel, and steel plate H is an extremely low N Cr-V-B-REM additive steel. Inter-rolling process conditions. Itpo steel plate I
, the process conditions meet the requirements of the present invention, but Al
is out of the range required by the present invention, and does not contain Ti oxide, so the steel structure becomes a coarse upper bainitic structure, and the shear peace notch toughness is poor.

【表】【table】

【表】【table】

【表】【table】

【表】 (発明の効果) 本発明法は以上述べたようなメカニズムによつ
て鋼組織の細粒化をはかるために、従来の方法や
従来鋼に比べて次のようなすぐれた効果を有す
る。 (1) 鋳造ままの鋳片を再加熱することなく熱間圧
延する方法で低温靭性のすぐれた鋼板を製造す
ることが可能になる。 (2) 熱間圧延はγ粒の細粒化をはかるためのもの
ではなく、単に鋼板の最終的な寸法や形状、あ
るいは表面性状を得るため、ないしは鋳片のザ
ク、ポロシテイーの残存など内質の不十分な場
合にこれを圧着することが目的となるために、
鋼の熱間変形抵抗の小さな高温で行なえば良
く、そのため圧延機に過大な負荷をかける必要
がなく、したがつて圧延の生産性を著しく高め
ることができる。 (3) Ti酸化物を核としておこるプレート状フエ
ライトの粒内変態は、広範囲の冷速に対して安
定して起こるので、鋼板の表層部と内部の冷速
が大きく異なる厚手の鋼板であつても板厚方向
にみたときの組織のちがいが少なく、均質な材
質が得られる。したがつて、鋳造片に近い厚み
を有する鋼板であつて、低温靭性にすぐれ、均
質性のよい鋼板が得られる。
[Table] (Effects of the invention) Since the method of the present invention aims to refine the steel structure through the mechanism described above, it has the following superior effects compared to conventional methods and conventional steel. . (1) It becomes possible to produce steel sheets with excellent low-temperature toughness by hot rolling as-cast slabs without reheating them. (2) Hot rolling is not intended to refine the gamma grains, but merely to obtain the final dimensions, shape, or surface properties of the steel sheet, or to improve internal properties such as roughness and residual porosities in the slab. The purpose is to crimp this in case of insufficient
It is sufficient to carry out the rolling at a high temperature where the hot deformation resistance of the steel is small, so there is no need to apply an excessive load to the rolling mill, and therefore the productivity of rolling can be significantly increased. (3) The intragranular transformation of plate-shaped ferrite, which occurs with Ti oxide as the core, occurs stably over a wide range of cooling rates, so it is difficult to use thick steel plates where the cooling rate in the surface layer and the interior of the steel plate are significantly different. Also, there is little difference in the structure when viewed in the thickness direction, and a homogeneous material can be obtained. Therefore, a steel plate having a thickness close to that of a cast piece, excellent low-temperature toughness, and good homogeneity can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明法による鋼板の組織を示す顕微
鏡写真である。
FIG. 1 is a microscopic photograph showing the structure of a steel plate produced by the method of the present invention.

Claims (1)

【特許請求の範囲】 1 凝固した状態における鋼の組成が重量%濃度
で C:0.001〜0.300%、 Si:0.8%以下、 Mn:0.4〜2.0%、 Ti:0.003〜0.050% O:0.0010〜0.0100% で、不純物元素として鋼の溶製の過程で不可避に
混入するAlを0.007%以下とし、残部鉄および不
純物元素を含み、しかも粒径が3μm以下でTiO、
Ti2O3のいずれか一種または二種の複合した結晶
相を含む酸化物系介在物を重量%で0.004%以上
0.100%以下の範囲で含有する鋳片を、その凝固
後の冷却途上において鋳片の実質的な部分が900
℃以上の温度であるうちに鋼板の最終的な厚みに
まで圧延したのち、900℃から500℃の間を20秒以
上100秒以下の時間で冷却する、微細なウイツド
マン=シユテツテン状のフエライトプレートから
成る微細ベーナイト組織よりなる鋼板の製造法。 2 凝固した状態における鋼の組成が重量%濃度
で C:0.001〜0.300%、 Si:0.8%以下、 Mn:0.4〜2.0%、 Ti:0.003〜0.050%、 O:0.0010〜0.0100% を基本成分とし、 Cu:1.5%以下、 Ni:10%以下、 Cr:1%以下、 Mo:1%以下、 Nb:0.2%以下、 V:0.5%以下、 B:0.0025%以下、 REM:0.05%以下、 Ca:0.008%以下 のいずれか一種または二種以上を含み、不純物元
素として鋼の溶製の過程で不可避に混入するAl
を0.007%以下とし、残部鉄および不純物元素を
含み、しかも粒径が3μm以下でTiO、Ti2O3のい
ずれか一種または二種の複合した結晶相を含む酸
化物系介在物を重量%で0.004%以上0.100%以下
の範囲で含有する鋳片を、その凝固後の冷却途上
において鋳片の実質的な部分が900℃以上の温度
であるうちに鋼板の最終的な厚みにまで圧延した
のち、900℃から500℃の間を20秒以上100秒以下
の時間で冷却する、微細なウイツドマン=シユテ
ツテン状のフエライトプレートから成る微細ベー
ナイト組織よりなる鋼板の製造法。
[Claims] 1. The composition of the steel in the solidified state is C: 0.001 to 0.300%, Si: 0.8% or less, Mn: 0.4 to 2.0%, Ti: 0.003 to 0.050%, O: 0.0010 to 0.0100. %, Al, which is unavoidably mixed in as an impurity element during the steel melting process, is 0.007% or less, and the balance contains iron and impurity elements, and the particle size is 3 μm or less, including TiO,
0.004% or more by weight of oxide inclusions containing a composite crystal phase of one or two types of Ti 2 O 3
When a slab containing 0.100% or less is cooled after solidification, a substantial portion of the slab becomes 900%
From a fine Widmann-shaped ferrite plate, which is rolled to the final thickness of the steel plate while still at a temperature above ℃, and then cooled from 900℃ to 500℃ for a period of 20 seconds to 100 seconds. A method for producing a steel sheet with a fine bainite structure. 2 The composition of the steel in the solidified state has the following basic components in weight percent concentration: C: 0.001 to 0.300%, Si: 0.8% or less, Mn: 0.4 to 2.0%, Ti: 0.003 to 0.050%, O: 0.0010 to 0.0100%. , Cu: 1.5% or less, Ni: 10% or less, Cr: 1% or less, Mo: 1% or less, Nb: 0.2% or less, V: 0.5% or less, B: 0.0025% or less, REM: 0.05% or less, Ca : Contains 0.008% or less of one or more types of Al, which is unavoidably mixed in as an impurity element during the melting process of steel.
0.007% or less, the remainder contains iron and impurity elements, and the particle size is 3 μm or less and contains oxide-based inclusions containing a composite crystal phase of one or two of TiO and Ti 2 O 3 in weight percent. After rolling a slab containing in the range of 0.004% to 0.100% to the final thickness of a steel plate while the substantial part of the slab is at a temperature of 900℃ or higher during cooling after solidification. , a method for producing a steel sheet with a fine bainitic structure consisting of fine Widmann-Schutetzten-like ferrite plates, which is cooled between 900°C and 500°C for a period of 20 seconds or more and 100 seconds or less.
JP5521085A 1985-03-19 1985-03-19 Production of steel plate Granted JPS61213322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5521085A JPS61213322A (en) 1985-03-19 1985-03-19 Production of steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5521085A JPS61213322A (en) 1985-03-19 1985-03-19 Production of steel plate

Publications (2)

Publication Number Publication Date
JPS61213322A JPS61213322A (en) 1986-09-22
JPH0211652B2 true JPH0211652B2 (en) 1990-03-15

Family

ID=12992275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5521085A Granted JPS61213322A (en) 1985-03-19 1985-03-19 Production of steel plate

Country Status (1)

Country Link
JP (1) JPS61213322A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0288054B1 (en) * 1987-04-24 1993-08-11 Nippon Steel Corporation Method of producing steel plate with good low-temperature toughness
US5567250A (en) 1993-04-26 1996-10-22 Nippon Steel Corporation Thin steel sheet having excellent stretch-flange ability and process for producing the same
JP2000319750A (en) * 1999-05-10 2000-11-21 Kawasaki Steel Corp High tensile strength steel for large heat input welding excellent in toughness of heat-affected zone
AUPR047900A0 (en) 2000-09-29 2000-10-26 Bhp Steel (Jla) Pty Limited A method of producing steel
CN104962829B (en) * 2015-07-09 2017-06-20 东北大学 A kind of double roller continuous casting low-carbon micro steel-alloy and its manufacture method containing acicular ferrite

Also Published As

Publication number Publication date
JPS61213322A (en) 1986-09-22

Similar Documents

Publication Publication Date Title
EP0288054B1 (en) Method of producing steel plate with good low-temperature toughness
JPH0127128B2 (en)
JPH11140580A (en) Continuously cast slab for high strength steel excellent in toughness at low temperature, its production, and high strength steel excellent in toughness at low temperature
JPS601929B2 (en) Manufacturing method of strong steel
JPS58171526A (en) Manufacture of steel for extra-low temperature use
JPS6155572B2 (en)
JPS5814848B2 (en) Manufacturing method of non-tempered high-strength, high-toughness steel
JPS605647B2 (en) Method for manufacturing boron-containing non-thermal high tensile strength steel with excellent low-temperature toughness and weldability
JPH03236419A (en) Production of thick steel plate excellent in toughness in weld heat-affected zone and lamellar tear resistance
JPH0211652B2 (en)
JPH05263182A (en) Manufacture of low alloy rolled shape steel excellent in toughness
JPH02125812A (en) Manufacture of cu added steel having superior toughness of weld heat-affected zone
JPS63145745A (en) Hot rolled high tensile steel plate and its production
JPH0225968B2 (en)
JPH0941077A (en) High tensile strength steel plate excellent in crack propagating arrest characteristic and its production
JPH093591A (en) Extremely thick high tensile strength steel plate and its production
JP3212344B2 (en) Manufacturing method of structural steel plate for welding with excellent toughness at low temperature
JPH0757885B2 (en) Manufacturing method of steel plate with excellent low temperature toughness
JPS6337166B2 (en)
JPH05271757A (en) Manufacture of steel sheet for low temperature use
JP2626421B2 (en) Manufacturing method of high strength steel with excellent weldability
JP2688067B2 (en) Tensile strength for electron beam welding 60 ▲ kg ▼ f / ▲ mm2 ▼ class Mo-added steel manufacturing method
JP2627114B2 (en) Hot rolling method for steel with good toughness
JPH0353020A (en) Manufacture of steel having excellent low temperature toughness
JPH0232325B2 (en) ITAATSUHOKOTOKUSEINOSUGURETAHICHOSHITSUKOCHORYOKUKONOSEIZOHOHO

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees