JPH02267192A - Production of single crystal and apparatus therefor - Google Patents

Production of single crystal and apparatus therefor

Info

Publication number
JPH02267192A
JPH02267192A JP8920989A JP8920989A JPH02267192A JP H02267192 A JPH02267192 A JP H02267192A JP 8920989 A JP8920989 A JP 8920989A JP 8920989 A JP8920989 A JP 8920989A JP H02267192 A JPH02267192 A JP H02267192A
Authority
JP
Japan
Prior art keywords
heater
single crystal
crucible
main heater
auxiliary heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8920989A
Other languages
Japanese (ja)
Inventor
Chiku Katano
片野 築
Yusaku Higuchi
樋口 祐作
Shinichiro Kawabata
紳一郎 川端
Fumio Orito
文夫 折戸
Fumikazu Yajima
矢島 文和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Polytec Co
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Mitsubishi Monsanto Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Mitsubishi Monsanto Chemical Co filed Critical Mitsubishi Kasei Corp
Priority to JP8920989A priority Critical patent/JPH02267192A/en
Publication of JPH02267192A publication Critical patent/JPH02267192A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prevent a twin or polycrystal from forming in crystal growth and grow a homogeneous crystal over the whole length by providing an apparatus with an auxiliary heater divided into plural parts in the circumferential direction in the form of a concentric circle with a main heater and independently controlling the heating value of the auxiliary heater. CONSTITUTION:In a rotating pulling up apparatus for a single crystal, a circular arc auxiliary heater 12 divided into >=2 parts is provided by partially or wholly dipping the heater 12 in a melt in a crucible 3 corresponding to a main heater 5. The divided auxiliary heater 12 is independently controlled to eliminate nonuniformity of temperature distribution caused by heat generation with the main heater 5. Thereby, asymmetry of the temperature distribution can be eliminated to carry out homogeneous crystal growth.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は均一性に優れた単結晶を収率良(製造すること
が可能な単結晶製造方法及び製造装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method and apparatus for producing a single crystal that can produce a single crystal with excellent uniformity in good yield.

〔従来の技術〕[Conventional technology]

周期律表第mb族、及び第vb族元素からなる無機化合
物(以下rm−v族化合物」と言う。)の単結晶、特に
ひ化ガリウム、りん化ガリウムの単結晶は、電界効果ト
ランジスタ、ショットキバリアダイオード、集積回路(
IC)等の各種半導体素子類の製造に広く用いられてい
る。
Single crystals of inorganic compounds (hereinafter referred to as rm-v group compounds) consisting of elements of groups MB and VB of the periodic table, especially single crystals of gallium arsenide and gallium phosphide, are used in field effect transistors and Schottky Barrier diode, integrated circuit (
It is widely used in the manufacture of various semiconductor devices such as ICs.

これらの半導体素子類の製造に用いられる単結晶は、固
体中で原子が空間的に規則正しい配列をしていることが
必要である。
Single crystals used in the manufacture of these semiconductor devices require atoms to be spatially regularly arranged in a solid state.

集積回路等の基板に用いられる■−■族化合物、特にひ
化ガリウムの単結晶は、三酸化二はう素を封止剤として
用いる、いわゆるLEC法により成長させたものが多く
使われている。これはLEC法によると不純物の混入が
少ないので、高純度の結晶が得られるからである。
■-■ group compounds, especially single crystals of gallium arsenide, used for substrates such as integrated circuits, are often grown by the so-called LEC method, which uses diboron trioxide as a sealant. . This is because the LEC method has less contamination with impurities, so that highly pure crystals can be obtained.

しかしながら、LEC法の引き上げ装置内部は複雑な構
造をしており、かつ容器内部には高圧の不活性ガスを充
填するので、装置内部は非定常で非対称な温度分布にな
っている。そのため、単結晶の育成中、液体から固体に
固化する際に異常な成長が起こり、結晶性が乱れてしば
しば双晶化、多結晶化が生ずる。双晶化、多結晶化が生
ずると、その部分は集積回路等の基板として使用できな
いため、双晶化、多結晶化は製品の歩留まりを大きく低
下させる原因となる。
However, the inside of the lifting device for the LEC method has a complicated structure, and the inside of the container is filled with high-pressure inert gas, so the inside of the device has an unsteady and asymmetrical temperature distribution. Therefore, during the growth of a single crystal, abnormal growth occurs when it solidifies from a liquid to a solid, and the crystallinity is disturbed, often resulting in twinning and polycrystalization. If twinning or polycrystalization occurs, that portion cannot be used as a substrate for integrated circuits or the like, so twinning or polycrystalization causes a significant decrease in product yield.

そのため、従来B2O3融液表面の温度分布を軸対称と
するように融液に環状のヒータを浮かべるようにしたも
の(特開昭55−62892号公報)、また環状のヒー
タをB2O3融液に浸漬させ、温度制御することにより
単結晶の直径を制御するようにしたもの(特開昭59−
232996号公報)等が提案されている。
Therefore, conventionally, an annular heater is floated on the melt so that the temperature distribution on the surface of the B2O3 melt is axially symmetrical (Japanese Patent Application Laid-open No. 1983-62892), and an annular heater is immersed in the B2O3 melt. A device in which the diameter of the single crystal is controlled by controlling the temperature and
232996) and the like have been proposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、融液の加熱に抵抗加熱体を使用する場合
、抵抗加熱体(自身は発熱体)は、構造上電極部近くで
低温、電極と電極の中間部で高温となる発熱分布をもっ
ている。この点について、第4図、第5図により説明す
る。
However, when a resistance heating element is used to heat the melt, the resistance heating element (itself a heating element) has a heat generation distribution in which the temperature is low near the electrode part and the temperature is high in the middle part between the electrodes due to its structure. This point will be explained with reference to FIGS. 4 and 5.

第4図は従来の単結晶引き上げ装置を示す図である。図
中、■は気密容器、2は保温剤、3はるつぼ、4はサセ
プター、5はヒータ、6は引き上げ軸、7はるつぼ支持
軸、8は種結晶、9は結晶、10は原料融液、11は封
止剤である。
FIG. 4 is a diagram showing a conventional single crystal pulling apparatus. In the figure, ■ is an airtight container, 2 is a heat insulator, 3 is a crucible, 4 is a susceptor, 5 is a heater, 6 is a pulling shaft, 7 is a crucible support shaft, 8 is a seed crystal, 9 is a crystal, 10 is a raw material melt , 11 is a sealant.

図において、原料融液10を液体封止剤11で封止して
サセプタ4で支持したるつぼ3に入れ、気密容器1内に
不活性ガスを充満させて高圧状態にし、ヒータ5に通電
しで加熱し、保温材2により熱の放散を防止して支持軸
7を回転させることによりるつぼ3を回転させ、先端に
種結晶を取りつけた引き上げ軸6を回転させながら引き
上げて結晶成長を行う。
In the figure, a raw material melt 10 is sealed with a liquid sealant 11 and placed in a crucible 3 supported by a susceptor 4, an airtight container 1 is filled with inert gas to create a high pressure state, and a heater 5 is energized. The crucible 3 is rotated by heating and preventing heat dissipation by the heat insulating material 2 and rotating the support shaft 7, and the crystal is grown by pulling the crucible 3 while rotating the pulling shaft 6 with a seed crystal attached to the tip.

ところで、第5図に示すようにヒータ5は通電させるた
めの電極5a、5bを有しており、電極を通しての伝熱
で熱が逃げるため電極部の温度が下がる。そのため、第
4図の装置の横断面における温度分布は第4図の破線に
示すようになる。即ち、るつぼ円中心部から周辺に向か
って代表的な等温曲線の温度をそれぞれT3、T2、T
3、またヒータ部分の代表的な等温曲線の温度をT4と
すると、T、>T3 >T2 >TIという関係になる
。即ち、ヒータ部分が一番高温であり、順次内部に向か
って温度が低下し、また、ヒータから外部に向かって温
度が低下する。そして、電極5a、5bの付近は電極を
通しての伝熱で熱が逃げるため低温となり、電極と電極
の中間部で高温になっている。そのため等温曲線は第5
図に示すような形となり非対称形となる。
By the way, as shown in FIG. 5, the heater 5 has electrodes 5a and 5b for energizing, and since heat is transferred through the electrodes and dissipates, the temperature of the electrode portion decreases. Therefore, the temperature distribution in the cross section of the apparatus shown in FIG. 4 becomes as shown by the broken line in FIG. That is, the temperatures of representative isothermal curves from the center of the crucible circle to the periphery are T3, T2, and T, respectively.
3. Also, if the temperature of a typical isothermal curve of the heater portion is T4, then the relationship is T,>T3>T2>TI. That is, the heater portion has the highest temperature, and the temperature gradually decreases toward the inside, and the temperature decreases from the heater toward the outside. The area near the electrodes 5a and 5b becomes low temperature because heat is transferred through the electrodes and escapes, and the area between the electrodes becomes high temperature. Therefore, the isotherm curve is the fifth
The shape shown in the figure is asymmetrical.

このように、従来の方法ではるつぼ内部の温度分布は非
対称となり、これを解消するのは困難であり、さらに、
抵抗加熱体の発熱量は結晶の成長量によって変化させて
いるが、発熱量を変化させると発熱分布も変化するので
、結晶成長の開始時から終了時まで同一の温度分布を達
成するのは不可能であった。
In this way, in the conventional method, the temperature distribution inside the crucible becomes asymmetrical, which is difficult to eliminate, and furthermore,
The amount of heat generated by the resistance heating element is changed depending on the amount of crystal growth, but since changing the amount of heat generated also changes the distribution of heat generation, it is difficult to achieve the same temperature distribution from the beginning to the end of crystal growth. It was possible.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、結晶育成中に起こる双晶化、多結晶化を
防止し、歩留まりを向上させ、かつ全長にわたって均一
な結晶を得ることを目的として鋭意研究を重ねた結果、
るつぼ内に主ヒータと同心円状に、円周方向に2個以上
に分割した補助ヒータを設置し、補助ヒータの発熱量を
制御することにより上記の問題点が解決できることを見
出し、本発明に到達したものである。
The present inventors have conducted intensive research aimed at preventing twinning and polycrystalization that occur during crystal growth, improving yield, and obtaining uniform crystals over the entire length.
We have discovered that the above problem can be solved by installing an auxiliary heater divided into two or more in the circumferential direction concentrically with the main heater in the crucible and controlling the amount of heat generated by the auxiliary heater, and have arrived at the present invention. This is what I did.

本発明の上記目的は、るつぼ内に主ヒータと同心円状に
、円周方向の位置に分割配置した独立して発熱量の制御
が可能な補助ヒータの発熱量を主ヒータの発熱に起因す
る温度分布の不均一を解消するように制御することによ
り達成することができる。
The above-mentioned object of the present invention is to reduce the amount of heat generated by the auxiliary heater, which is arranged concentrically with the main heater and divided into positions in the circumferential direction, and which can independently control the amount of heat generated, from the temperature caused by the heat generated by the main heater. This can be achieved by controlling to eliminate non-uniformity of distribution.

第1図は本発明の単結晶引き上げ装置の縦断面図、第2
図は横断面図であり、第4図と同一番号は同一内容を示
している。なお、12は補助ヒータである。
FIG. 1 is a longitudinal cross-sectional view of the single crystal pulling apparatus of the present invention, and FIG.
The figure is a cross-sectional view, and the same numbers as in FIG. 4 indicate the same contents. Note that 12 is an auxiliary heater.

本発明は、2つに分割した円弧状の補助ヒータ12を、
電極5a、5bに対応したるつぼ内の位置に融液に一部
または全部浸漬させて設けたものである。補助ヒータを
融液に浸けるため、不純物が溶出しないように、ヒータ
表面は窒化硼素で被覆することが望ましい。
The present invention provides an arcuate auxiliary heater 12 divided into two parts,
It is provided at a position in the crucible corresponding to the electrodes 5a, 5b, partially or completely immersed in the melt. Since the auxiliary heater is immersed in the melt, it is desirable to coat the surface of the heater with boron nitride to prevent impurities from eluting.

第5図で説明したように電極部分は電極を通しての伝熱
で熱が逃げるために温度が低下するが、補助ヒータ12
を設けて加熱することによりこの部分の温度を上昇させ
ることができ、その結果、第3図に示すようにるつぼ内
の等温曲線を略対称形にすることができる。補助ヒータ
の発熱量は、温度低下した分を上げ、温度分布の不均一
を解消できる程度であればよし)。
As explained in FIG. 5, the temperature of the electrode portion decreases due to heat escaping through heat transfer through the electrode, but the auxiliary heater 12
By providing and heating the crucible, the temperature of this portion can be increased, and as a result, the isothermal curve inside the crucible can be made approximately symmetrical, as shown in FIG. The amount of heat generated by the auxiliary heater should be enough to compensate for the temperature drop and eliminate uneven temperature distribution.)

なお、上記説明では補助ヒータは2分割したものを用い
たが、分割数はさらに増やすようにしてもよい。
In the above description, the auxiliary heater is divided into two parts, but the number of divisions may be further increased.

〔作用〕[Effect]

本発明は、るつぼ内の電極に対応した位置に補助し−タ
を設けるようにしたので、電極からの放熱による温度低
下を防止し、温度分布の非対称性を解消することができ
るので、均一な結晶成長を行わせることが可能となり、
双晶化、多結晶化の発生を防止することかできる。
In the present invention, since an auxiliary protector is provided at a position corresponding to the electrode in the crucible, it is possible to prevent temperature drop due to heat radiation from the electrode and eliminate asymmetry in temperature distribution. It becomes possible to cause crystal growth,
It is possible to prevent the occurrence of twinning and polycrystalization.

〔実施例〕〔Example〕

単結晶回転引き上げ装置は第1図に示す装置を使用し、
補助ヒータとして第2図に示したような2分割のものを
用いた。
The single crystal rotational pulling device uses the device shown in Figure 1.
A two-part heater as shown in FIG. 2 was used as the auxiliary heater.

るつぼはPBN製の外径15cm、高さ14cmのもの
を用いた。原料は高純度のGaAs多結晶5K g、 
B2O3600 gを用いた。原料融解後、20atm
のアルゴン雰囲気で6mm/hの引き上げ速度で75m
m径の結晶を成長させることができた。
The crucible was made of PBN and had an outer diameter of 15 cm and a height of 14 cm. The raw material is high-purity GaAs polycrystal 5Kg,
3600 g of B2O was used. After melting the raw material, 20 atm
75 m at a pulling speed of 6 mm/h in an argon atmosphere.
It was possible to grow crystals with a diameter of m.

主ヒータ9KW、補助ヒータ0.8KWの電力で加熱し
、100回の結晶成長で4回の双晶発生で済んだ。
Heating was performed with a power of 9KW for the main heater and 0.8KW for the auxiliary heater, and twinning occurred only 4 times in 100 crystal growths.

〔比較例〕[Comparative example]

補助ヒータを用いず、他は同じにして結晶成長させた。 Crystal growth was performed without using an auxiliary heater, with other conditions being the same.

補助ヒータを用いなものにおいては100回の成長で2
0回の双晶が発生した。
For those using an auxiliary heater, 100 times of growth will result in 2
0 twins occurred.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、製造したび化ガリウム結
晶のうち、双晶の発生率は従来の5分の1に低減化され
た。種付は直後に双晶が確認された場合、引き上げを中
止し、かかる双晶部分を再融解させ、再度種伺けの操作
を行うが、上記再融解させる操作の回数が従来の3分の
1に低減化された。
As described above, according to the present invention, the incidence of twins among the produced gallium crystals has been reduced to one-fifth of the conventional rate. If twins are confirmed immediately after seeding, pulling is stopped, the twins are melted again, and the seeding operation is performed again. However, the number of remelting operations is reduced by three times compared to the conventional method. It was reduced to 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の単結晶引き」二げ装置の縦1祈面図、
第2図横断面図、第3図は本発明における等温曲線を示
す図、第4図は従来の単結晶引き」こげ装置を示す図、
第5図は従来の単結晶引き」二げ装置における等温曲線
を示す図である。 1・・・気密容器、2・・保温剤、3・・・るつぼ、4
・サセプター、5・・・ヒータ、6・・・引き上げ軸、
7・るつぼ支持軸、8・・・種結晶、9・・・結晶、1
0・・・原料融液、11・・・封止剤、12・・・補助
ヒータ。 出 願 人  三菱モンザント化成株式会社(外1名)
Figure 1 is a vertical view of the single crystal pulling device of the present invention.
FIG. 2 is a cross-sectional view, FIG. 3 is a diagram showing an isothermal curve in the present invention, and FIG. 4 is a diagram showing a conventional single crystal drawing and burning device.
FIG. 5 is a diagram showing isothermal curves in a conventional single crystal drawing device. 1... Airtight container, 2... Heat insulator, 3... Crucible, 4
・Susceptor, 5... Heater, 6... Pulling shaft,
7. Crucible support shaft, 8... Seed crystal, 9... Crystal, 1
0... Raw material melt, 11... Sealing agent, 12... Auxiliary heater. Applicant Mitsubishi Monzanto Chemicals Co., Ltd. (1 other person)

Claims (6)

【特許請求の範囲】[Claims] (1)るつぼ内に原料融液、液体封止剤を入れて周囲に
設けられた主ヒータにより加熱し、回転させながら種結
晶を引き上げることにより結晶成長を行わせる単結晶製
造方法において、主ヒータの電極部に対応した位置に主
ヒータと同心円状に、円周方向に少なくとも2個以上に
分割し、発熱部分の一部または全部を封止剤中に浸漬し
て補助ヒータを設置し、分割した補助ヒータをそれぞれ
独立に発熱量を制御して発熱させることにより温度分布
の非対称性を改善することを特徴とする単結晶製造方法
(1) In a single crystal manufacturing method in which crystal growth is performed by putting a raw material melt and a liquid sealant in a crucible and heating it with a main heater installed around the crucible and pulling up a seed crystal while rotating, the main heater Divide into at least two parts in the circumferential direction concentrically with the main heater at positions corresponding to the electrode parts of the main heater, immerse part or all of the heat generating part in the sealant, install the auxiliary heater, A method for producing a single crystal, characterized in that asymmetry in temperature distribution is improved by independently controlling the amount of heat generated by each auxiliary heater.
(2)補助ヒータを窒化硼素でカバーした請求項1記載
の単結晶製造方法。
(2) The single crystal manufacturing method according to claim 1, wherein the auxiliary heater is covered with boron nitride.
(3)不活性ガスを充満させた気密容器中で単結晶を成
長させる請求項1または2記載の単結晶製造方法。
(3) The method for producing a single crystal according to claim 1 or 2, wherein the single crystal is grown in an airtight container filled with an inert gas.
(4)不活性ガスを充満させる気密容器と、気密容器内
に支持され、原料融液、液体封止剤を入れるるつぼと、
気密容器内でるつぼの周囲に設けられた環状主ヒータと
を備え、主ヒータによりるつぼ内を加熱し、種結晶を先
端に取りつけた引き上げ軸を回転させながら種結晶を引
き上げることにより結晶成長を行わせる単結晶製造装置
において、環状主ヒータの電極部に対応したるつぼ内の
位置に、主ヒータと同心円状に、円周方向に少なくとも
2個以上に分割されて配置され、かつそれぞれ独立に発
熱量を制御できるようにした補助ヒータを設置したこと
を特徴とする単結晶製造装置。
(4) an airtight container filled with an inert gas, a crucible supported within the airtight container and containing a raw material melt and a liquid sealant;
It is equipped with an annular main heater installed around the crucible in an airtight container, and the main heater heats the inside of the crucible, and crystal growth is performed by pulling up the seed crystal while rotating a pulling shaft with a seed crystal attached to the tip. In a single-crystal manufacturing apparatus, the annular main heater is divided into at least two parts in the circumferential direction, concentrically with the main heater, at a position in the crucible corresponding to the electrode part of the annular main heater, and each part has an independent calorific value. A single crystal manufacturing device characterized by being equipped with an auxiliary heater that can control.
(5)結晶成長時に補助ヒータの発熱部分の一部または
全部が封止剤のB_2O_3中に浸漬していることを特
徴とする請求項4記載の単結晶製造装置。
(5) The single crystal manufacturing apparatus according to claim 4, wherein part or all of the heat generating portion of the auxiliary heater is immersed in the sealant B_2O_3 during crystal growth.
(6)補助ヒータが窒化硼素でカバーされている請求項
5記載の単結晶製造装置。
(6) The single crystal manufacturing apparatus according to claim 5, wherein the auxiliary heater is covered with boron nitride.
JP8920989A 1989-04-08 1989-04-08 Production of single crystal and apparatus therefor Pending JPH02267192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8920989A JPH02267192A (en) 1989-04-08 1989-04-08 Production of single crystal and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8920989A JPH02267192A (en) 1989-04-08 1989-04-08 Production of single crystal and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH02267192A true JPH02267192A (en) 1990-10-31

Family

ID=13964330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8920989A Pending JPH02267192A (en) 1989-04-08 1989-04-08 Production of single crystal and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH02267192A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222453A (en) * 2007-03-08 2008-09-25 Ricoh Co Ltd Apparatus for manufacturing crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222453A (en) * 2007-03-08 2008-09-25 Ricoh Co Ltd Apparatus for manufacturing crystal

Similar Documents

Publication Publication Date Title
JP7025395B2 (en) Reflective screen of single crystal growth furnace and single crystal growth furnace
JP2011168447A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
US4664742A (en) Method for growing single crystals of dissociative compounds
JPH02267192A (en) Production of single crystal and apparatus therefor
JPH0570276A (en) Device for producing single crystals
JPH11246294A (en) Single crystal pulling-up equipment
JP3018738B2 (en) Single crystal manufacturing equipment
JP2734820B2 (en) Method for manufacturing compound semiconductor single crystal
JP2002274995A (en) Method of manufacturing silicon carbide single crystal ingot
JPH02217388A (en) Production of single crystal
JPH0214898A (en) Production unit for silicon single crystal
JP3492820B2 (en) Compound semiconductor single crystal manufacturing equipment
JP3557690B2 (en) Crystal growth method
JP2004010467A (en) Method for growing compound semiconductor single crystal
JPH08319189A (en) Production of single crystal and device therefor
JP4155085B2 (en) Method for producing compound semiconductor single crystal
JPS5957992A (en) Manufacture of single crystal of semiconductor of compound
JPH10167891A (en) Device for producing single crystal silicon and production of single crystal silicon, using the same
JPH03193689A (en) Production of compound semiconductor crystal
KR20030070477A (en) Crystal Growing Apparatus For Increasing GaAs Single Crystal Yield
JPH01122995A (en) Growth of compound semiconductor single crystal
JPH11322489A (en) Production of semiconductor single crystal
JPS58151398A (en) Method and device for pulling group 3-5 compound semiconductor single crystal
JP2005097032A (en) Apparatus for growing semiconductor single crystal and heater for the same
JP2005298252A (en) Apparatus for manufacturing compound semiconductor single crystal