JPH0226609A - Production and device for highly pure oxygen by pressure swing adsorption process - Google Patents
Production and device for highly pure oxygen by pressure swing adsorption processInfo
- Publication number
- JPH0226609A JPH0226609A JP63175763A JP17576388A JPH0226609A JP H0226609 A JPH0226609 A JP H0226609A JP 63175763 A JP63175763 A JP 63175763A JP 17576388 A JP17576388 A JP 17576388A JP H0226609 A JPH0226609 A JP H0226609A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- adsorption tower
- adsorption
- pressure swing
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001179 sorption measurement Methods 0.000 title claims abstract description 122
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 238000000034 method Methods 0.000 title abstract description 31
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 title 1
- 239000007789 gas Substances 0.000 claims description 146
- 239000002994 raw material Substances 0.000 claims description 51
- 239000003463 adsorbent Substances 0.000 claims description 42
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 30
- 239000001301 oxygen Substances 0.000 claims description 28
- 229910052760 oxygen Inorganic materials 0.000 claims description 28
- 238000004140 cleaning Methods 0.000 claims description 21
- 238000003795 desorption Methods 0.000 claims description 21
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 18
- 238000011084 recovery Methods 0.000 claims description 13
- 229910052786 argon Inorganic materials 0.000 claims description 10
- 239000006096 absorbing agent Substances 0.000 claims 1
- 229910021536 Zeolite Inorganic materials 0.000 abstract description 5
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 abstract description 5
- 238000005406 washing Methods 0.000 abstract description 5
- 239000010457 zeolite Substances 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 7
- 230000010287 polarization Effects 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000011915 haggis Nutrition 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、例えば合成ゼオライトなどの極性を有する
吸着材を用いて実質的に酸素(02)とアルゴン(Ar
)とからなる原料ガスから、02とA「とを分離して
高純度の02を製造する圧力スイング吸着式高純度酸素
製造方法とその装置に関するものである。Detailed Description of the Invention [Industrial Field of Application] This invention utilizes a polar adsorbent such as synthetic zeolite to substantially absorb oxygen (02) and argon (Ar).
This invention relates to a pressure swing adsorption type high purity oxygen production method and apparatus for producing high purity 02 by separating 02 and A'' from a raw material gas consisting of
従来、原料空気から02を分離回収する方法として第6
図に示すような圧力スイング吸着式02製造装置(以下
単に従来02−PSA装置という。Conventionally, the sixth method for separating and recovering 02 from raw air is
A pressure swing adsorption type 02 production apparatus as shown in the figure (hereinafter simply referred to as conventional 02-PSA apparatus).
)を用いる方法が知られている。これは空気プロア11
aにより加圧下の原料空気を原料ガス供給管路1aを通
して吸着材として合成ゼオライトが充填された吸着塔2
1a、22a、23aに供給し、この吸着材に原料空気
中のN2成分などを優先的に吸着させて残りの02−リ
ッチガスを02回収管路3aを通して02レシーバ4a
に回収しく吸着・回収工程)、吸着したN2成分を真空
ポンプ51aにより減圧脱着して脱着ガス排出管路5a
を通して排出しく脱着工程)、この後に02レシーバ4
a内の02ガスを蓄圧用ガス供給管路6aを通して吸着
塔21a、22a、23aに導入して昇圧しく蓄圧工程
)、上記吸着工程を繰返すようにするものである。すな
わち、02レシーバ4aと吸着塔21a、22a、23
aとの間で02ガスを循環させて02以外の成分を繰返
し吸着除去させることにより02純度が徐々に高くなる
ようにするものである。なお、3つの吸着塔21a、2
2a、23aと各管路1a、3a、5a。) is known. This is Air Proa 11
Adsorption tower 2 filled with synthetic zeolite as an adsorbent through which raw material air under pressure is passed through raw material gas supply pipe 1a by a.
1a, 22a, and 23a, the adsorbent preferentially adsorbs N2 components in the raw air, and the remaining 02-rich gas is passed through the 02 recovery pipe 3a to the 02 receiver 4a.
During the adsorption/recovery step), the adsorbed N2 component is desorbed under reduced pressure by the vacuum pump 51a, and the desorbed gas is discharged through the desorption gas discharge pipe 5a.
After this, the 02 receiver 4
The 02 gas in a is introduced into the adsorption towers 21a, 22a, 23a through the pressure accumulating gas supply pipe 6a to increase the pressure (pressure accumulating step) and repeating the above adsorption step. That is, the 02 receiver 4a and the adsorption towers 21a, 22a, 23
The purity of 02 is gradually increased by repeatedly adsorbing and removing components other than 02 by circulating 02 gas between a and a. In addition, three adsorption towers 21a, 2
2a, 23a and each pipe line 1a, 3a, 5a.
6aとをそれぞれ接続する図示しない切換え弁の切換え
操作により、上記吸着・回収〜脱着〜蓄圧の各工程を3
つの吸着塔21a、22a、23aで1工程ずつずらせ
て同時作動させ、これによって02レシーバ4aへの0
2成分ガスの回収が連続して行われるようにしている。By switching operation of switching valves (not shown) connected to 6a, each of the above steps of adsorption/recovery - desorption - pressure accumulation can be carried out in 3 steps.
The three adsorption towers 21a, 22a, and 23a are operated at the same time with one step at a time.
The two component gases are collected continuously.
上記従来の方法の吸着・回収工程においてArは吸着材
に吸着されないので、上記02ガス中にはA「が不純物
として残留することになる。したがって従来の圧力スイ
ング吸着方法において上記工程を繰返しても02純度の
向上には限界(例えば93〜95%)があり、製品02
には少なくとも5%のA「が含まれることになる。Since Ar is not adsorbed by the adsorbent in the adsorption/recovery step of the conventional method, A remains as an impurity in the 02 gas. Therefore, even if the above steps are repeated in the conventional pressure swing adsorption method, There is a limit (for example, 93-95%) in improving the purity of product 02.
will contain at least 5% A.
また従来、Arと02とを分離して高純度の02を製造
する方法としては、液化点まで冷却して沸点の差を利用
して分離する深冷分離法が一般に知られている。ところ
が、この方法では液化点まで冷却する必要があるご゛と
から設備が複雑化、大型化するという欠点を有している
。Conventionally, as a method for separating Ar and 02 to produce highly pure 02, a cryogenic separation method is generally known in which Ar is cooled to the liquefaction point and separated using the difference in boiling point. However, this method has the disadvantage that the equipment becomes complicated and large because it requires cooling to the liquefaction point.
このため設備の小型化などが図れる圧力スイング吸着方
法によりArを除去してさらに高純度の製品02を製造
する方法と装置との開発が要望されている。Therefore, there is a demand for the development of a method and apparatus for producing a product 02 with even higher purity by removing Ar using a pressure swing adsorption method that can reduce the size of equipment.
この発明は、このような従来の課題を解決するためにな
されたものであり、圧力スイング吸着法により従来より
さらに高純度の製品02を回収することができる圧力ス
イング吸着式高純度02製造方法と装置とを提供するも
のである。This invention was made in order to solve such conventional problems, and it is a pressure swing adsorption method for producing high purity 02 that can recover product 02 of higher purity than before by using the pressure swing adsorption method. and equipment.
上記目的を達成するために、この発明の請求項1では圧
力スイング吸着塔に極性を有する吸着材が充填され、こ
の圧力スイング吸着塔を用いて主として酸素とアルゴン
とからなる原料ガスから酸素を回収する圧力スイング吸
着式高純度酸素製造方法であって、原料ガスを上記吸着
塔に供給して02成分を上記吸着材に吸着させるととも
にアルゴン成分を排出する吸着工程と、この吸着工程の
終わった吸着塔に製品ガスを供給して残留しているアル
ゴン成分をこの製品ガスによって排出する洗浄工程と、
この洗浄工程の終わった吸着材から酸素成分を減圧脱着
する脱着工程とを有するように構成した。In order to achieve the above object, in claim 1 of the present invention, a pressure swing adsorption tower is filled with a polar adsorbent, and the pressure swing adsorption tower is used to recover oxygen from a raw material gas mainly consisting of oxygen and argon. A pressure swing adsorption method for producing high-purity oxygen, which comprises an adsorption step of supplying the raw material gas to the adsorption tower and adsorbing the 02 component to the adsorbent and discharging the argon component, and an adsorption step after this adsorption step. a cleaning step of supplying a product gas to the tower and discharging the remaining argon component with the product gas;
The present invention is configured to include a desorption step in which oxygen components are desorbed under reduced pressure from the adsorbent after this washing step.
またこの発明の請求項3では、上記請求項1の方法を実
施するための装置として、圧力スイング吸着塔に極性を
有する吸着材が充填され、この圧力スイング吸着塔を用
いて主として酸素とアルゴンとからなる原料ガスから酸
素を回収する圧力スイング吸着式高純度酸素製造装置で
あって、原料ガス供給管路と、排ガス排出管路と、洗浄
用ガス供給管路と、脱着ガス回収管路との一端が上記吸
着塔に接続され、上記脱着ガス回収管路と洗浄用ガス供
給管路との他端は高純度酸素を収容する製品酸素ホルダ
ーに接続されているように構成した。Further, in claim 3 of the present invention, as an apparatus for implementing the method of claim 1, a pressure swing adsorption tower is filled with a polar adsorbent, and this pressure swing adsorption tower is used to mainly absorb oxygen and argon. This is a pressure swing adsorption type high-purity oxygen production device that recovers oxygen from a raw material gas consisting of a raw material gas supply pipe, an exhaust gas discharge pipe, a cleaning gas supply pipe, and a desorption gas recovery pipe. One end was connected to the adsorption tower, and the other ends of the desorption gas recovery pipe and cleaning gas supply pipe were connected to a product oxygen holder containing high-purity oxygen.
上記構成によれば、吸着工程において実質的に02とA
rとからなる混合ガスを吸着材に接触させることにより
、02は吸着材に吸着され、A「は吸着されずに通過す
る。すなわち、02は2原子分子であるので電気四重極
のような分極が存在し、このため有極性の吸着材と引合
い、この結果02は吸着材に吸着される。これに対して
Ar分子は単原子分子であるので近似的に剛体球として
扱うことができ、電気四重極のような分極は存在しない
と考えられるので、Ar分子と上記吸着材との間には引
合う力は発生せず、したがってArは吸着材に吸着され
ることなく吸着塔を通過することになる。According to the above configuration, substantially 02 and A
By bringing a mixed gas consisting of Polarization exists, and as a result, 02 is attracted to the polar adsorbent, and as a result, 02 is adsorbed to the adsorbent.On the other hand, since Ar molecules are monoatomic molecules, they can be approximately treated as hard spheres. Since it is thought that there is no polarization like in an electric quadrupole, no attractive force is generated between Ar molecules and the adsorbent, and therefore Ar passes through the adsorption tower without being adsorbed by the adsorbent. I will do it.
洗浄工程では、洗浄用ガスとして供給される高純度の製
品ガス中の02によって吸着材の表面に残留するA「が
置換脱着されるので、この後に脱着回収される02の純
度は原料ガスからA「が除去された分だけ高純度となる
。In the cleaning process, A remaining on the surface of the adsorbent is replaced and desorbed by 02 in the high-purity product gas supplied as cleaning gas, so the purity of 02 desorbed and recovered after this is higher than that of the raw material gas. ``The higher the purity is, the more that is removed.
(実施例)
第1図には空気から高純度の製品02ガスを製造する装
置が示されている。この装置は空気を原料として所定の
02純度(例えば95%)を有する第1次製品02ガス
を製造する第1次圧力スイング式酸素製造装置(以下単
に第1次02−PSA装置という。)Iと、上記第1次
製品02ガスからArを分離除去してさらに高純度く例
えば96〜99%)の第2次製品02ガスを製造する第
2次圧力スイング吸着式酸素製造装置(以下単に第2次
02−PSA装置という。)■とから構成されている。(Example) FIG. 1 shows an apparatus for producing high purity product 02 gas from air. This device is a primary pressure swing type oxygen production device (hereinafter simply referred to as the primary 02-PSA device) I that uses air as a raw material to produce a primary product 02 gas having a predetermined 02 purity (for example, 95%). A secondary pressure swing adsorption type oxygen production device (hereinafter simply referred to as "secondary pressure swing adsorption oxygen production equipment") which separates and removes Ar from the primary product 02 gas to produce a secondary product 02 gas with even higher purity (for example, 96 to 99%) (referred to as the secondary 02-PSA device).
第1次02−PSA装置工は、第6図に示す従来02−
PSA装置と同じ構成のものが用いられ、この第1次0
2−PSAI置I装よる第1次製品02ガスの製造方法
も従来方法を適用して製造される。この第1次02−P
SA装ffTの02ホルダー7aと第2次02−PSA
装置■の原料ガスブロア10とが接続され、これによっ
て第1次製品02ガス(02:95%、A「:5%)が
第2次02−PSAVR置I[装原料02ガスとして供
給される。The first 02-PSA equipment engineering was performed using the conventional 02-PSA equipment shown in Figure 6.
The same configuration as the PSA device is used, and this first
The method for producing the primary product 02 gas using the 2-PSAI device I is also produced by applying the conventional method. This 1st 02-P
SA ffT 02 holder 7a and 2nd 02-PSA
The raw material gas blower 10 of the device (1) is connected, whereby the primary product 02 gas (02:95%, A':5%) is supplied to the second 02-PSAVR device I as the raw material 02 gas.
第2次02−PSA装置■は、3つの吸着塔21.22
.23と、原料ガスブロア10とを接続する原料ガス供
給管路1と、3つの吸着塔21゜22.23を互いに接
続する連絡管路31.32゜33と、吸着塔21.22
.23からA「排ガスを排出する排ガス排出管路4と、
吸着塔21,22.23に吸着された02を真空ポンプ
50を介して第2次製品02ガスホルダー6に脱着回収
する脱着ガス回収管路5と、第2次製品02ガスホルダ
ー6と吸着塔21.22.23とを接続する洗浄用ガス
供給管路7とより構成されている。The second 02-PSA device ■ consists of three adsorption towers 21.22
.. 23, the raw material gas supply pipe 1 that connects the raw material gas blower 10, the connecting pipe 31.32° 33 that connects the three adsorption towers 21.22.23, and the adsorption tower 21.22.
.. 23 to A "exhaust gas discharge pipe 4 for discharging exhaust gas,
A desorption gas recovery pipe 5 for desorbing and recovering 02 adsorbed in the adsorption towers 21, 22, and 23 to the secondary product 02 gas holder 6 via the vacuum pump 50, the secondary product 02 gas holder 6, and the adsorption tower. 21, 22, and 23.
各吸着塔21.22.23には極性を有する吸着材(例
えば合成ゼオライト)が断面積A(麓)の吸着塔に対し
て所定の高さだけ充填されている。Each adsorption tower 21, 22, 23 is filled with a polar adsorbent (for example, synthetic zeolite) to a predetermined height relative to the adsorption tower with a cross-sectional area A (foot).
そしてこの吸着材に対して原料02ガスは、上記断面積
A(麓)と速度V (1t/see )とに基いてU−
V/A
によって定義される所定の空塔速度U (77L/5(
IC)で供給されるように設定されている。Then, the raw material 02 gas is distributed to this adsorbent based on the above-mentioned cross-sectional area A (foot) and velocity V (1 t/see).
A predetermined superficial velocity U (77L/5(
IC).
つぎに、第1次製品02ガスを原料02ガスとして第2
次製品02ガスを製造する工程を第1図の装置と、第2
図の工程説明図と、第3図の各段階毎の説明図とに基い
て第1吸着塔21を中心にして説明する。前工程の脱着
工程によってほぼ100 Torrまで減圧された状態
の第1吸着塔21に、弁11を開いて第1次02−PS
A装置Iからの原料02ガスを原料ガス供給管路1を通
して上記所定の空塔速度Uで供給することによってほぼ
大気圧(760Torr)まで昇圧する。続いて弁41
を問いて第1吸@塔21内に吸着されずに残る△「をA
rリッチの排ガスとして徘がス排出管路4を通してAr
排ガスホルダー8に導入しつつ、原料02ガス中の02
成分を昇圧に引続いて吸着材に吸着させる(昇圧・吸着
工程)。この間、第2吸着塔22は脱着工程、第3吸着
塔23は休止工程にある。Next, the primary product 02 gas is used as the raw material 02 gas to produce the second product.
The process of producing the next product 02 gas is carried out using the equipment shown in Figure 1 and the second product.
The first adsorption tower 21 will be mainly explained based on the process explanatory diagram in the figure and the explanatory diagram for each stage in FIG. The valve 11 is opened to supply the first 02-PS to the first adsorption tower 21, which has been depressurized to approximately 100 Torr by the desorption process in the previous step.
The raw material 02 gas from the A device I is supplied through the raw material gas supply pipe 1 at the above-mentioned predetermined superficial velocity U, thereby raising the pressure to approximately atmospheric pressure (760 Torr). Next, valve 41
△" which remains without being adsorbed in the first absorption tower 21
Ar wanders as r-rich exhaust gas through the exhaust pipe 4.
02 in the raw material 02 gas is introduced into the exhaust gas holder 8.
Following the pressure increase, the components are adsorbed onto the adsorbent (pressure increase/adsorption step). During this time, the second adsorption tower 22 is in a desorption process, and the third adsorption tower 23 is in a rest process.
この後、上記弁11を閉じるとともに弁331と弁41
とを開いて洗浄工程にある第3吸着塔23からの出口ガ
スを連絡管路33を通して第1吸着塔21に導入すると
ともに、上記出口ガス中に含まれる02成分を第1吸着
塔21内の吸着材に吸着させて回収し、残りのガスを排
ガス排出管路4を通してA「排ガスホルダー8に導入す
る(回収工程)、この間、第2吸着塔22は引続いて脱
着工程にある。After that, the valve 11 is closed, and the valve 331 and the valve 41 are closed.
The outlet gas from the third adsorption tower 23 in the cleaning process is introduced into the first adsorption tower 21 through the connecting pipe 33, and the 02 component contained in the outlet gas is transferred to the first adsorption tower 21. The remaining gas is adsorbed onto an adsorbent and recovered, and the remaining gas is introduced into the exhaust gas holder 8 through the exhaust gas discharge pipe 4 (recovery process). During this time, the second adsorption tower 22 is continuously in the desorption process.
これらの工程においては、上記原料ガスおよび出口ガス
に含まれる02成分が吸着材に吸着され、Ar成分は吸
着されずに排ガス排出管路4がら排出され、吸着塔21
内にはごくわずかなAI’成分が吸着材の表面に残留す
る。これはっぎの作用による。すなわち、02は2原子
分子であるので電気四重槽のような分極が存在し、この
ため有極性の吸着材と引合い、この結果02は吸着材に
吸着される。これに対してA「分子は近似的に剛体球と
して扱うことができ、電気四重槽のような分極は存在し
ないと考えられるので、A「分子と上記吸着材との間に
は引合う力は発生せず、このためA「は吸着材に吸着さ
れることなく通過することになるからである。In these steps, the 02 component contained in the raw material gas and the outlet gas is adsorbed by the adsorbent, and the Ar component is discharged from the exhaust gas discharge pipe 4 without being adsorbed, and the
A very small amount of AI' component remains on the surface of the adsorbent. This is due to the action of Haggi. That is, since 02 is a diatomic molecule, there is polarization similar to an electric quadruple cell, and therefore it attracts a polar adsorbent, and as a result, 02 is adsorbed by the adsorbent. On the other hand, A: Molecules can be approximately treated as rigid spheres, and polarization as in an electric quadruple tank does not exist. is not generated, and therefore A' passes through without being adsorbed by the adsorbent.
したがって原料02ガスの02とA「とを効率よく分離
するために、空塔速度Uを比較的小さくして原料o2ガ
スと吸着材との見掛けの接触時間を長くすることによっ
て、原料02ガスからできるだけ多くの02を吸着材に
吸着させることが望ましい。またこの場合、原料02ガ
スと吸着材との接触時間が比較的長くなっても、吸着材
に共吸着されるA「は微量であり、その吸着も進行する
ことはなく吸着材の表面にとどまる。Therefore, in order to efficiently separate 02 and A' in the raw material 02 gas, the superficial velocity U is made relatively small and the apparent contact time between the raw material 02 gas and the adsorbent is lengthened. It is desirable to have as much 02 as possible adsorbed on the adsorbent.In this case, even if the contact time between the raw material 02 gas and the adsorbent is relatively long, the amount of A co-adsorbed on the adsorbent is small; The adsorption does not proceed and remains on the surface of the adsorbent.
つぎに、上記弁331.41を閏じることにより上記回
収工程は終了し、休止工程に入る。この間、第2吸看塔
は22は昇圧・吸着工程、第3吸着塔23は脱着工程に
ある。Next, by opening the valves 331 and 41, the recovery process is completed and a rest process is entered. During this time, the second absorption tower 22 is in the pressure increasing/adsorption step, and the third absorption tower 23 is in the desorption step.
上記休止工程の後、弁62と弁71と弁311と弁42
とを開くことにより第1吸着塔21は洗浄工程に入る。After the above-mentioned suspension process, the valve 62, the valve 71, the valve 311, and the valve 42
By opening the first adsorption tower 21, the first adsorption tower 21 enters a cleaning process.
これにより洗浄用ガスとして第2次製品02ガスホルダ
ー6内の第2次製品O2ガスが洗浄用ガス供給管路7を
通して第1吸着塔21に導入され、この洗浄用ガスによ
って吸着材の表面に共吸着されていた微量のA「は洗浄
用ガス中の02と置換脱着される。このA「を含んだ出
口ガスは連絡管路31を通して第2吸着塔22に供給さ
れ、この第2吸着塔22で上記出口ガス中の02成分が
回収されて残りのガスが排ガス排出管路4を通してAr
リッチの排ガスとしてAr排ガスホルダー8に導入され
る。As a result, the secondary product O2 gas in the secondary product 02 gas holder 6 is introduced as a cleaning gas into the first adsorption tower 21 through the cleaning gas supply pipe 7, and this cleaning gas is applied to the surface of the adsorbent. A trace amount of co-adsorbed A is desorbed by substitution with 02 in the cleaning gas. The outlet gas containing this A is supplied to the second adsorption tower 22 through the connecting pipe 31, and the second adsorption tower At step 22, the 02 component in the outlet gas is recovered, and the remaining gas is passed through the exhaust gas discharge pipe 4 to Ar
It is introduced into the Ar exhaust gas holder 8 as rich exhaust gas.
なお上記吸着工程および洗浄工程は、大気圧(760T
orr)よりわずかに高い圧力(例えば0゜1〜0.2
N9/caiG程度)下で行われる。Note that the above adsorption step and washing step are carried out at atmospheric pressure (760T
orr) slightly higher pressure (e.g. 0°1-0.2
It is performed under N9/caiG level).
つぎに上記弁62.71,311.42を閉じ、弁51
と弁61を開くとともに、真空ポンプ50を作動させる
ことにより、第1吸着塔21は脱着工程に入る。これに
よって吸着材に吸着されている02成分が脱着されて第
2次製品02ガスホルダー6に蓄圧される。これによっ
て第2次製品02ガスホルダー6には、第1次製品02
ガスからArが除去された分だけ02純度の向上した高
純度(例えば96〜99.5%)の第2次製品02ガス
が蓄圧される。この問、第2吸着塔22は洗浄工程、第
3吸着塔23は回収工程にある。Next, close the valves 62.71, 311.42, and close the valve 51.
By opening the valve 61 and operating the vacuum pump 50, the first adsorption tower 21 enters the desorption process. As a result, the 02 component adsorbed on the adsorbent is desorbed and pressure is accumulated in the secondary product 02 gas holder 6. As a result, the primary product 02 is placed in the secondary product 02 gas holder 6.
A secondary product 02 gas of high purity (for example, 96 to 99.5%) whose 02 purity is improved by the amount of Ar removed from the gas is accumulated. In this case, the second adsorption tower 22 is in the cleaning process, and the third adsorption tower 23 is in the recovery process.
この後、上記昇圧・吸着工程が再び繰返される。After this, the pressure increase/adsorption step is repeated again.
これらの工程が、第2図に示すように他の第2吸着塔お
よび第3吸着塔で互いに工程をずらせて繰返され、これ
ら3つの吸着塔21.22.23から上記第2次製品0
2ガスが連続的に脱着回収される。These steps are repeated in other second adsorption towers and third adsorption towers with the steps shifted from each other as shown in FIG.
Two gases are continuously desorbed and recovered.
上記方法において供給される原料02ガスの空塔速度U
は、次に示す関係式に基いて設定する。Superficial velocity U of raw material 02 gas supplied in the above method
is set based on the relational expression shown below.
すなわち、吸着材の充填長さしく扉)と空塔速度Ll
(m/sec )とから
T−L/U
によって定義される平均接触時間T (sec )の値
が比較的大きくなるように定めればよい。ここで、充填
長さしとは原料ガスブロア10によって供給される原料
02ガスと吸着材とが接触する接触長さであり、上記実
施例においては一つの吸着塔21.22.23内に充填
されている吸着材の充填高さΩに相当する。但し、吸着
材の充填高さは大きくすればするほど装置が大型になり
、この装置の建設費が増大することから、充填高さを既
存の吸着塔に対応する一定の値にして空塔速度Uの値を
調整するようにする。なお、吸着塔を比較的小さくする
ために、一つの吸着塔ではなく、複数の吸着塔の吸着材
により所定の充填長さしとなるように、昇圧・吸着工程
における原料02ガスを複数の吸着塔に供給してもよい
。That is, the filling length of the adsorbent (length of the door) and the superficial velocity Ll
(m/sec) and T-L/U may be determined so that the value of the average contact time T (sec) is relatively large. Here, the filling length is the contact length between the raw material 02 gas supplied by the raw material gas blower 10 and the adsorbent, and in the above embodiment, one adsorption tower 21, 22, 23 is filled. This corresponds to the filling height Ω of the adsorbent. However, the larger the filling height of the adsorbent, the larger the equipment, which increases the construction cost of this equipment. Adjust the value of U. In addition, in order to make the adsorption tower relatively small, the raw material 02 gas in the pressurization and adsorption process is adsorbed in multiple adsorption towers so that a predetermined filling length is achieved with the adsorbent of multiple adsorption towers instead of one adsorption tower. May be supplied to the tower.
上記平均接触時間Tと第2次製品02ガスの02純度と
の関係は、第4図に示される。これは、吸着塔(直径8
0M×高さ2500 m )に合成ゼオライト5A型を
1塔当たり8.5/(y充填し、原料02ガスとして0
2が95%、Arがほぼ5%の組成を有する第1次製品
02ガスを吸着塔21゜22.23に対して供給し、こ
の原料02ガスの空塔速度Uを種々変化させることによ
り平均接触時間Tを種々変化させて供給し、得られた第
2次製品02ガスの02純度を測定したものである。The relationship between the average contact time T and the O2 purity of the secondary product O2 gas is shown in FIG. This is an adsorption tower (diameter 8
Synthetic zeolite type 5A was packed at 8.5/(y) per column in 0M x height 2500 m, and 0 as raw material 02 gas.
The primary product 02 gas having a composition of 95% 2 and approximately 5% Ar is supplied to the adsorption tower 21°22.23, and by varying the superficial velocity U of this raw material 02 gas, the average The 02 purity of the secondary product 02 gas obtained by supplying the gas while varying the contact time T was measured.
これによれば、平均接触時間Tがほぼ100秒の時に0
2純度は96%、同様にほぼ180秒の時に97%、は
ぼ280秒の時に98%、はぼ400秒の時に99%を
示している。したがって例えば97%以上の02純度が
要求される溶断用02ガスとして第2次製品ガスを製造
するには、平均接触時間Tが180秒以上となるように
空塔速度Uを設定すればよい。According to this, when the average contact time T is approximately 100 seconds, 0
2 purity is 96%, similarly 97% at about 180 seconds, 98% at about 280 seconds, and 99% at about 400 seconds. Therefore, for example, in order to produce a secondary product gas as an 02 gas for fusing that requires an 02 purity of 97% or more, the superficial velocity U may be set so that the average contact time T is 180 seconds or more.
なお、上記実施例における原料02ガスである第1次製
品02ガスは、95%の02を除けば残りの5%の成分
は実質的にはArであるが、ごく微量のN2 (窒素
)が含まれる場合もある。この場合においても上記実施
例と同様に高純度の第2次製品02ガスを製造すること
ができる。In addition, in the primary product 02 gas, which is the raw material 02 gas in the above example, except for 95% of 02, the remaining 5% is essentially Ar, but a very small amount of N2 (nitrogen) is present. It may be included. In this case as well, high purity secondary product 02 gas can be produced as in the above embodiment.
また上記実施例では、第1次02−PSA装置装置用2
次02−PSA装置■とを互いに接続した装置を示した
が、これに限らず、上記第2次02−PSA装置■のみ
によって装置を構成し、実質的に02とArとからなる
原料02ガスを用い、この原料02ガスからA「を分離
除去することによりその原料o2ガスより高い02純度
の製品O2ガスを製造することもできる。また上記実施
例では原料02ガスや洗浄用ガスなどを各吸着塔21.
22.23の下端から供給し、吸着塔内を上昇流となる
ように構成しているが、これに限らず、吸着塔内に上記
原料02ガスなどが下降流となるように各管路と吸着塔
とを構成してもよい。In addition, in the above embodiment, the first 02-PSA device 2
Although a device in which the following 02-PSA device (■) and the above-mentioned second 02-PSA device (■) are connected to each other is shown, the device is not limited to this. By separating and removing A from this raw material 02 gas, it is also possible to produce a product O2 gas with a higher 02 purity than that of the raw material 02 gas.In addition, in the above example, the raw material 02 gas, cleaning gas, etc. Adsorption tower 21.
22. The configuration is such that the gas is supplied from the lower end of 23 and flows upward in the adsorption tower, but this is not the only option. It may also be configured with an adsorption tower.
さらに上記実施例では昇圧・吸着工程において吸着塔2
1.22.23内がほぼ大気圧となるまで原料02ガス
を供給しているが、例えば第5図に示すように昇圧と吸
着とに工程を分けて第2次製品02ガスホルダー6内の
第2次製品02ガスを吸着塔に供給することにより昇圧
させ、この後、原料02ガスを供給することにより吸着
工程を行うようにしてもよい。Furthermore, in the above embodiment, the adsorption tower 2 is
1.22.23 The raw material 02 gas is supplied until the pressure in the secondary product 02 gas holder 6 reaches almost atmospheric pressure.For example, as shown in Fig. The pressure of the secondary product 02 gas may be increased by supplying it to the adsorption tower, and then the adsorption step may be performed by supplying the raw material 02 gas.
すなわち第5図において、前工程の脱着工程によってほ
ぼ1QQTorrまで減圧された状態の第1吸着塔21
に、弁62と弁71とを開いて第2次製品02ガスホル
ダー6から第2次製品o2ガスを洗浄用ガス供給管路7
を通して供給し、第1吸着塔21内をほぼ大気圧(76
0Torr)まで昇圧させる(昇圧工程)。この後に上
記弁62.71を閉じ、弁11と弁41とを開くととも
に原料ガスブロア10を作動させて第1次02−PSA
装置装置用の原料02ガスを原料ガス供給管路1を通し
て上記所定の空塔速度Uで供給することによって、この
原料02ガス中の02成分を吸着材に吸着させる(吸着
工程)。これら昇圧工程と吸着工程との間、第2吸着塔
22は脱着工程、第3工程は休止工程にある。That is, in FIG. 5, the first adsorption tower 21 is in a state where the pressure has been reduced to approximately 1QQTorr by the desorption step in the previous step.
, the valve 62 and the valve 71 are opened to supply the secondary product O2 gas from the secondary product 02 gas holder 6 to the cleaning gas supply pipe 7.
, and the inside of the first adsorption tower 21 is brought to approximately atmospheric pressure (76
The pressure is increased to 0 Torr (pressure increase step). After this, the valves 62 and 71 are closed, the valves 11 and 41 are opened, and the raw material gas blower 10 is operated to perform the first 02-PSA.
By supplying the raw material 02 gas for the apparatus through the raw material gas supply pipe 1 at the predetermined superficial velocity U, the 02 component in this raw material 02 gas is adsorbed by the adsorbent (adsorption step). Between the pressure increasing step and the adsorption step, the second adsorption tower 22 is in the desorption step, and the third step is in the rest step.
このようにすることにより、吸着工程の開始時には、吸
着塔内はすでに高純度の第2次製品o2ガスによって満
たされ、この状態から吸着、回収、洗浄などが行なわれ
て脱着されるために、最終的に得られる第2次製品02
ガスの到達純度は、原料02ガスにより吸着塔内を昇圧
する場合よりも高くすることができる。By doing this, at the start of the adsorption process, the inside of the adsorption tower is already filled with high-purity secondary product O2 gas, and from this state, adsorption, recovery, washing, etc. are performed and desorption is performed. Finally obtained secondary product 02
The purity achieved by the gas can be higher than that in the case where the pressure inside the adsorption tower is increased using the raw material 02 gas.
第1図に示す第1次02−PSA装置装置用られる第1
次製品02ガス(02が95%、A「がほぼ5%の組成
を有するガス)を原料02ガスとして用い、この原料0
2ガスによって脱着工程後の吸着塔を昇圧する上記実施
例に基いて、供給圧力を200履AQ、脱着圧力を10
0〜150T。The first 02-PSA device shown in FIG.
The next product 02 gas (a gas with a composition of 95% 02 and approximately 5% A) is used as the raw material 02 gas, and this raw material 0
Based on the above example in which the adsorption tower is pressurized after the desorption step using two gases, the supply pressure is 200 AQ, and the desorption pressure is 10 AQ.
0-150T.
「「に設定して上記原料02ガスを2ON1t/hの供
給量で、φ850x3000履の吸着塔に対して平均接
触時間Tが300秒間となるように供給した。The raw material 02 gas was supplied at a rate of 2ON1 t/h to an adsorption tower of φ850 x 3000 so that the average contact time T was 300 seconds.
この結果、02純度が98%で、16N1t/hの第2
次製品02ガスを回収することができた。As a result, the purity of 02 was 98%, and the second
The next product 02 gas could be recovered.
また上記具体例と同じ組成の第1次製品02ガスを原料
02ガスとして用い、供給圧力および脱着圧力を上記具
体例と同じにして上記原料02ガスを2ON1t/hの
供給量で、φ1000X3000履の吸着塔に対して平
均接触時間Tが400秒間となるように吸着させた。In addition, the primary product 02 gas having the same composition as the above specific example is used as the raw material 02 gas, the supply pressure and the desorption pressure are the same as in the above specific example, and the above raw material 02 gas is supplied at a supply rate of 2ON1 t/h. Adsorption was carried out in an adsorption tower such that the average contact time T was 400 seconds.
この結果、02純度が99%で、16Nd/hの第2次
製品02ガスを回収することができた。As a result, 16 Nd/h of secondary product 02 gas with 02 purity of 99% could be recovered.
この発明の圧力スイング吸着式高純度酸素製造方法とそ
の装置とによれば、圧力スイング吸着塔の吸着材に対し
て、実質的に02とArとからなる混合ガスを極性を有
する吸着材と接触させることにより、極性を有する02
は吸着材と引合うので吸着され、A「は吸着されずに通
過する。洗浄工程では、洗浄用ガス中の02によって吸
着材の表面に残留するA「が置換脱着されるので、この
後に吸着された02を脱着回収することによって上記原
料02ガスからArが除去された分だGj^純度の製品
02ガスを得ることができる。したがって圧力スイング
吸着法により従来よりさらに高純度の製品02を製造す
ることができる。According to the pressure swing adsorption type high purity oxygen production method and apparatus of the present invention, a mixed gas consisting essentially of 02 and Ar is brought into contact with the polar adsorbent in the pressure swing adsorption tower. 02 with polarity by
is attracted to the adsorbent, so it is adsorbed, and A' passes through without being adsorbed. In the cleaning process, A' remaining on the surface of the adsorbent is replaced and desorbed by 02 in the cleaning gas, so it is adsorbed after this. By desorbing and recovering the 02, it is possible to obtain a product 02 gas with a purity equivalent to the amount of Ar removed from the raw material 02 gas.Therefore, the pressure swing adsorption method can produce a product 02 with higher purity than before. can do.
第1図はこの発明の装置の実施例を示す説明図、第2図
は第1図の装置の各吸着塔の工程説明図、第3図は第1
吸着塔の各工程の説明図、第4図は平均接触時間■と0
2純度との関係図、第5図は第2図の昇圧・吸着工程の
他の例を示す第3図相当図、第6図は従来の02−PS
A装置を示す説明図である。
1・・・原料ガス供給管路、4・・・排ガス排出管路、
5・・・脱着ガス回収管路、6・・・第2次製品02ガ
スホルダー<m品ガスホルダー)、7・・・洗浄用ガス
供給管路、21.22.23・・・吸着塔、31.32
.33・・・連絡管路。FIG. 1 is an explanatory diagram showing an embodiment of the apparatus of the present invention, FIG. 2 is an explanatory diagram of the process of each adsorption tower of the apparatus of FIG. 1, and FIG.
An explanatory diagram of each process of the adsorption tower, Figure 4 shows the average contact time ■ and 0
Fig. 5 is a diagram corresponding to Fig. 3 showing another example of the pressurization/adsorption process in Fig. 2, and Fig. 6 is a diagram of the conventional 02-PS.
It is an explanatory view showing A device. 1... Raw material gas supply pipe line, 4... Exhaust gas discharge pipe line,
5...Desorption gas recovery pipe, 6...Secondary product 02 gas holder<m product gas holder), 7...Cleaning gas supply pipe, 21.22.23...Adsorption tower, 31.32
.. 33...Connection pipe.
Claims (1)
れ、この圧力スイング吸着塔を用いて主として酸素とア
ルゴンとからなる原料ガスから酸素を回収する圧力スイ
ング吸着式高純度酸素製造方法であって、原料ガスを上
記吸着塔に供給してO_2成分を上記吸着材に吸着させ
るとともにアルゴン成分を排出する吸着工程と、この吸
着工程の終わつた吸着塔に製品ガスを供給して残留して
いるアルゴン成分をこの製品ガスによつて排出する洗浄
工程と、この洗浄工程の終わつた吸着材から酸素成分を
減圧脱着する脱着工程とを有することを特徴とする圧力
スイング吸着式高純度酸素製造方法。 2、吸着工程において、減圧状態の吸着塔内に製品ガス
を供給することにより吸着塔内を昇圧した後に、原料ガ
スを供給するようにしたことを特徴とする請求項1記載
の圧力スイング吸着式高純度酸素製造方法。 3、圧力スイング吸着塔に極性を有する吸着材が充填さ
れ、この圧力スイング吸着塔を用いて主として酸素とア
ルゴンとからなる原料ガスから酸素を回収する圧力スイ
ング吸着式高純度酸素製造装置であって、原料ガス供給
管路と、排ガス排出管路と、洗浄用ガス供給管路と、脱
着ガス回収管路との一端が上記吸着塔に接続され、上記
脱着ガス回収管路と洗浄用ガス供給管路との他端は高純
度酸素を収容する製品酸素ホルダーに接続されているこ
とを特徴とする圧力スイング吸着式高純度酸素製造装置
。 4、複数の吸着塔により構成され、これらの吸着塔は連
絡管路によつて互いに接続されていることを特徴とする
請求項3記載の圧力スイング吸着式高純度酸素製造装置
。[Claims] 1. A pressure swing adsorption type high-purity system in which a pressure swing adsorption tower is filled with a polar adsorbent and the pressure swing adsorption tower is used to recover oxygen from a raw material gas mainly consisting of oxygen and argon. The method for producing oxygen includes an adsorption step of supplying raw material gas to the adsorption tower to adsorb the O_2 component to the adsorbent and exhausting the argon component, and supplying the product gas to the adsorption tower after this adsorption step. A pressure swing adsorption type high-pressure absorber characterized by having a cleaning step in which residual argon components are discharged using the product gas, and a desorption step in which oxygen components are desorbed under reduced pressure from the adsorbent after this cleaning step. Purity oxygen production method. 2. The pressure swing adsorption type according to claim 1, wherein in the adsorption step, the product gas is supplied into the adsorption tower in a reduced pressure state to increase the pressure inside the adsorption tower, and then the raw material gas is supplied. High purity oxygen production method. 3. A pressure swing adsorption type high purity oxygen production device in which a pressure swing adsorption tower is filled with a polar adsorbent, and the pressure swing adsorption tower is used to recover oxygen from a raw material gas mainly consisting of oxygen and argon. , one ends of the raw material gas supply pipe, the exhaust gas discharge pipe, the cleaning gas supply pipe, and the desorption gas recovery pipe are connected to the adsorption tower, and the desorption gas collection pipe and the cleaning gas supply pipe are connected to the adsorption tower. A pressure swing adsorption type high-purity oxygen production device, characterized in that the other end of the line is connected to a product oxygen holder containing high-purity oxygen. 4. The pressure swing adsorption type high-purity oxygen production apparatus according to claim 3, characterized in that it is constituted by a plurality of adsorption towers, and these adsorption towers are connected to each other by connecting pipes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63175763A JPH0226609A (en) | 1988-07-14 | 1988-07-14 | Production and device for highly pure oxygen by pressure swing adsorption process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63175763A JPH0226609A (en) | 1988-07-14 | 1988-07-14 | Production and device for highly pure oxygen by pressure swing adsorption process |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0226609A true JPH0226609A (en) | 1990-01-29 |
Family
ID=16001830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63175763A Pending JPH0226609A (en) | 1988-07-14 | 1988-07-14 | Production and device for highly pure oxygen by pressure swing adsorption process |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0226609A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5505765A (en) * | 1993-07-27 | 1996-04-09 | Sumitomo Seika Chemicals Co., Ltd. | Method and apparatus for separating nitrogen-enriched gas |
WO2004069755A1 (en) * | 2003-02-04 | 2004-08-19 | E1 Biotech Co., Ltd | Method for producing a useful compound and treating a wastewater using pure oxygen |
-
1988
- 1988-07-14 JP JP63175763A patent/JPH0226609A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5505765A (en) * | 1993-07-27 | 1996-04-09 | Sumitomo Seika Chemicals Co., Ltd. | Method and apparatus for separating nitrogen-enriched gas |
WO2004069755A1 (en) * | 2003-02-04 | 2004-08-19 | E1 Biotech Co., Ltd | Method for producing a useful compound and treating a wastewater using pure oxygen |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR960004606B1 (en) | Process for producing high purity oxygen gas from air | |
US4578089A (en) | Method of separating highly adsorbable components in a gas stream in a pressure-sensing adsorber system | |
US4566881A (en) | Process and apparatus for producing oxygen with a low proportion of argon from air | |
JPH0429601B2 (en) | ||
JPH0477681B2 (en) | ||
JP3902416B2 (en) | Gas separation method | |
JP3477280B2 (en) | Gas adsorption separation method | |
KR970008347B1 (en) | Method and apparatus for separating argon and hydrogen from purge gas of nh3 synthesis | |
JP5721834B2 (en) | Method for recovering ethylene from fluid catalytic cracking exhaust gas | |
WO2002051524A1 (en) | Method for separating hydrogen gas | |
JP4481112B2 (en) | Pressure fluctuation adsorption type gas separation method and apparatus | |
JP2004066125A (en) | Method of separating target gas | |
JPH0226609A (en) | Production and device for highly pure oxygen by pressure swing adsorption process | |
JPH07110762B2 (en) | Method for producing high concentration oxygen | |
KR0173399B1 (en) | Method for manufacturing carbon dioxide by pressure swing absorption | |
JP3219612B2 (en) | Method for co-producing carbon monoxide and hydrogen from mixed gas | |
JPH0555171B2 (en) | ||
JP4611514B2 (en) | Hydrogen gas separation method | |
JP4761635B2 (en) | Nitrogen gas generation method | |
KR100228239B1 (en) | Apparatus and process for producing nitrogen using psa system depending on nitrogen concentration in the product | |
JP2587334B2 (en) | Method of separating CO gas not containing CH4 | |
JPH0525801B2 (en) | ||
KR102439732B1 (en) | Method of Removing Argon and Concentrating Nitrogen by Adsorbing and Separating Nitrogen from Gas Mixture of Argon and Nitrogen | |
JPH08165104A (en) | Separation of high purity hydrogen gas | |
JPH04362002A (en) | Industrial separation and recovery of chlorine |