JPH07110762B2 - Method for producing high concentration oxygen - Google Patents

Method for producing high concentration oxygen

Info

Publication number
JPH07110762B2
JPH07110762B2 JP5346320A JP34632093A JPH07110762B2 JP H07110762 B2 JPH07110762 B2 JP H07110762B2 JP 5346320 A JP5346320 A JP 5346320A JP 34632093 A JP34632093 A JP 34632093A JP H07110762 B2 JPH07110762 B2 JP H07110762B2
Authority
JP
Japan
Prior art keywords
oxygen
stage
gas
desorption
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5346320A
Other languages
Japanese (ja)
Other versions
JPH0733404A (en
Inventor
一生 春名
三郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP5346320A priority Critical patent/JPH07110762B2/en
Publication of JPH0733404A publication Critical patent/JPH0733404A/en
Publication of JPH07110762B2 publication Critical patent/JPH07110762B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は空気を原料としてプレッ
シャースイング法(以下PSAと呼ぶ)により高濃度酸
素を製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high concentration oxygen by using a pressure swing method (hereinafter referred to as PSA) using air as a raw material.

【0002】[0002]

【従来の技術・発明が解決しようとする課題】空気を原
料としてPSA法により酸素を得る方法は、従来5Åを
中心とした細孔径を有するゼオライトモレキュラーシー
ブを、2塔以上の吸着塔を用いて大気圧以上の圧力で吸
着させ大気圧以下の圧力で脱着再生させることによって
最高95%の酸素濃度を得ていた。
2. Description of the Related Art A method for obtaining oxygen by PSA method using air as a raw material is the conventional method of using a zeolite molecular sieve having a pore size centered at 5Å with two or more adsorption columns. Oxygen concentration of up to 95% was obtained by adsorbing at a pressure higher than atmospheric pressure and desorbing and regenerating at a pressure lower than atmospheric pressure.

【0003】5Åを中心とした細孔径を有するゼオライ
トモレキュラーシーブは酸素やアルゴンより窒素を優先
的に吸着する特性があり、空気中の酸素濃度20.9%
とアルゴン濃度0.9%を最高約5倍にまで濃縮し窒素
を完全に吸着除去できたとしてもアルゴンが約5%濃度
で存在する為に酸素は約95%以上には濃縮できなかっ
た。事実これ迄PSAにより濃度95%以上の酸素を得
る方法は知られていない。
Zeolite molecular sieves having a pore size centered on 5Å have the property of preferentially adsorbing nitrogen over oxygen and argon, and the oxygen concentration in the air is 20.9%.
Even if the argon concentration of 0.9% was concentrated up to about 5 times and nitrogen was completely adsorbed and removed, oxygen could not be concentrated to more than about 95% because argon was present at a concentration of about 5%. In fact, no method has so far been known for obtaining oxygen having a concentration of 95% or more by PSA.

【0004】[0004]

【課題を解決するための手段】本発明者らは、このアル
ゴンを除去すれば酸素濃度を更に上昇させることができ
ると考え、さきに本出願人が出願した昭和57年特開昭
59−92907号公報「高濃度アルゴンの製造方法」
に記載した方法を応用して95%以上の高濃度酸素を製
造する方法について鋭意検討した結果本発明に到達し
た。
Means for Solving the Problems The inventors of the present invention considered that it is possible to further increase the oxygen concentration by removing this argon, and the applicant of the present application filed Japanese Patent Application Laid-Open No. 59-92907. Publication "Production Method of High Concentration Argon"
The present invention has been achieved as a result of extensive studies on a method for producing high-concentration oxygen of 95% or more by applying the method described in 1.

【0005】即ちゼオライトモレキュラーシーブを用い
てPSA(以下第1段装置と呼ぶ)により得られたアル
ゴンを含む酸素を3〜4Åを中心とした細孔径を有する
カーボンモレキュラーシーブを充填した吸着塔に導入
し、3塔式の第2段装置でPSAを行うことにより、酸
素をカーボンモレキュラーシーブに優先的に吸着させ、
アルゴンを非吸着ガスとして分離除去することができ
た。
That is, oxygen containing argon obtained by PSA (hereinafter referred to as a first-stage apparatus) using zeolite molecular sieve is introduced into an adsorption tower filled with carbon molecular sieve having a pore size centered at 3 to 4Å. Then, by performing PSA in the three-column type second-stage device, oxygen is preferentially adsorbed to the carbon molecular sieve,
It was possible to separate and remove argon as a non-adsorbed gas.

【0006】カーボンモレキュラーシーブは1〜2分間
の短時間においては窒素やアルゴンより酸素を速く細孔
内に拡散させる性質があるので、この吸着速度差を利用
して酸素を優先的に吸着させ、これを脱着させることに
よって高濃度の酸素を回収することができた。この結果
我々は95%以上、さらには99%以上の高濃度酸素を
得ることに成功した。
Since carbon molecular sieve has a property of diffusing oxygen into pores faster than nitrogen and argon in a short time of 1 to 2 minutes, oxygen is preferentially adsorbed by utilizing this difference in adsorption rate, By desorbing this, a high concentration of oxygen could be recovered. As a result, we succeeded in obtaining high concentration oxygen of 95% or more, and even 99% or more.

【0007】本発明の目的は工業的に有利に高濃度の酸
素を製造する方法を提供することにあり、その要旨は、
ゼオライトモレキュラーシーブを充填した第1段吸着装
置を用い空気を原料としてプレッシャースイングを行な
い、酸素を主成分としアルゴンと窒素を含有する非吸着
ガスを得、これをカーボンモレキュラーシーブを充填し
た第2段吸着装置に導き、プレッシャースイングを行な
ってアルゴンと窒素を非吸着ガスとして分離除去し、吸
着された酸素を脱着して高濃度酸素を製造する方法にお
いて、前記第2段吸着装置を3塔式とし、その内の2塔
に第1段吸着装置より発生した前記の酸素を主成分とす
るガスを直列に通過させた後、該2塔のうち上流側の酸
素を飽和吸着した塔で脱着を行い、脱着初期のガスを第
2段吸着装置に導入される原料ガス中に回収すると共に
脱着後期のガスを高濃度酸素として取得することを特徴
とする高濃度酸素の製造方法である。なお、酸素の回収
率を増加させる目的で、さらに第3段吸着装置を設けて
もよい。
An object of the present invention is to provide a method for industrially producing highly concentrated oxygen, the gist of which is:
First-stage adsorption device packed with zeolite molecular sieves
Pressure swing using air as the raw material.
Non-adsorbing, containing oxygen and argon as main components
Get the gas and fill it with carbon molecular sieves
To the second stage adsorption device and perform a pressure swing.
To separate and remove argon and nitrogen as non-adsorbed gas.
In the method of producing high concentration oxygen by desorbing the deposited oxygen
The second-stage adsorption device is a three-column type, and two of them are
The main component is the oxygen generated from the first stage adsorption device.
Gas is passed in series, and then the acid on the upstream side of the two towers
Desorption is carried out in a tower that has saturated adsorption of elements, and the gas at the initial stage of desorption is
While recovering in the raw material gas introduced into the two-stage adsorption device,
Characterized by acquiring gas in the late stage of desorption as high-concentration oxygen
And a method for producing high-concentration oxygen . In addition, oxygen recovery
For the purpose of increasing the rate, install a third stage adsorption device
Good.

【0008】従来のPSA法では最高95%濃度の酸素
しか得られなかった為、液体酸素が用いられている産業
分野にPSAで得られた酸素がすべて適用されることは
不可能であったが、今や、PSAのみで簡単に空気から
高濃度酸素が得られたことによって液体酸素に相当する
高濃度酸素を安価に必要な場所で、必要な時に発生させ
使用することが可能となった。
Since the conventional PSA method can only obtain oxygen at a maximum concentration of 95%, it is impossible to apply all the oxygen obtained by PSA to the industrial field where liquid oxygen is used. Now, by simply obtaining high-concentration oxygen from the air only with PSA, it becomes possible to generate and use high-concentration oxygen corresponding to liquid oxygen at a low cost, at a necessary place, and at a necessary time.

【0009】ゼオライトモレキュラーシーブを充填した
第1段PSA装置は通常の方法、即ち、吸着圧力は大気
圧以上1kg/cm2 G以下で操作しカーボンモレキュ
ラーシーブを充填したPSA装置は、第2段と第3段で
構成されており、それぞれ吸着−均圧−昇圧−脱着の工
程を有し吸着圧力は0.3〜10kg/cm2 G好まし
くは1〜3kg/cm2 G、脱着圧力は大気圧以下好ま
しくは400トール以下より好ましくは200トール以
下で減圧することが装置の大きさ及び回収率ならびに電
力使用量が少なくて済むことなどの点から経済的にも有
利である。
The first-stage PSA apparatus filled with zeolite molecular sieves is a conventional method, that is, the PSA apparatus filled with carbon molecular sieves operated at an adsorption pressure of not less than atmospheric pressure and not more than 1 kg / cm 2 G is the second stage. It is composed of a third stage, and has respective steps of adsorption-equalizing pressure-pressurization-desorption, the adsorption pressure is 0.3 to 10 kg / cm 2 G, preferably 1 to 3 kg / cm 2 G, and the desorption pressure is atmospheric pressure. It is economically advantageous to reduce the pressure at 400 torr or less, more preferably 200 torr or less, from the viewpoint of the size and recovery rate of the device and the amount of power consumption.

【0010】本発明を第1段、第2段の吸着装置に加え
て、更に第3段吸着装置を設けた装置全体について以下
に説明するが、前記の如く第3段吸着装置は酸素の回収
率の向上を図る上で適宜設置される装置である。表1に
第2段のシーケンス、表2に第3段のシーケンス、図1
に第1段、第2段と第3段を組み合わせたフローを示
す。本フローには第2段装置が3塔式、第3段装置が2
塔式の装置が示されているが、吸着塔の数は適宜変更す
ることができる。しかし、装置のコスト、運転の容易
さ、製品純度の安定化の面から第2段装置は3塔式、第
3段装置は2塔式とした場合に良い結果が得られる場合
が多い。
The present invention has been added to the first and second stage adsorption devices.
And about the whole equipment that has the third stage adsorption device,
As described above, the 3rd stage adsorption device recovers oxygen as described above.
This is a device that is appropriately installed to improve the rate. Table 1 shows the second-stage sequence, Table 2 shows the third-stage sequence, and FIG.
Shows the flow combining the first stage, the second stage and the third stage. In this flow, the second stage device is a 3-tower type, and the third stage device is 2
Although a tower type apparatus is shown, the number of adsorption towers can be appropriately changed. However, in terms of the cost of the apparatus, the ease of operation, and the stabilization of product purity, good results are often obtained when the second-stage apparatus is a three-column type and the third-stage apparatus is a two-column type.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【表2】 [Table 2]

【0013】図1においてまずゼオライトモレキュラー
シーブを充填した第1段装置で空気を原料として既存の
PSAを行い非吸着ガスとして酸素濃度が93%以上の
ガスを得る。
In FIG. 1, first, existing PSA is performed by using air as a raw material in a first-stage device filled with a zeolite molecular sieve to obtain a gas having an oxygen concentration of 93% or more as a non-adsorbed gas.

【0014】このガスを圧縮機Aにて約3kg/cm2
Gまで加圧し、第2段装置の弁1、弁13、弁9、弁1
2を通じて塔I及び塔III に直列に導入し酸素を吸着さ
せ酸素濃度を約80%としてレシーバーDに排出させ
る。
About 3 kg / cm 2 of this gas is compressed by the compressor A.
Pressurize to G, valve 1, valve 13, valve 9, valve 1 of the second stage device
2 is introduced in series into the tower I and the tower III to adsorb oxygen so that the oxygen concentration is about 80% and the oxygen is discharged to the receiver D.

【0015】既に塔IIに吸着された酸素は脱着初期の約
5秒間だけ弁5、弁17を通じてバッファータンクFで
圧力が安定化された後、圧縮機Aの入口に循環される。
これは脱着初期においては脱着ガス濃度が原料ガス濃度
にほぼ等しく99%の高濃度酸素が得られない為であ
る。脱着後期は約55秒間で真空ポンプBを用いて約1
50トールの圧力まで減圧再生し、脱着された99%以
上の高濃度酸素は弁16を通じてレシーバーEに蓄えら
れる。
The oxygen already adsorbed in the column II is circulated to the inlet of the compressor A after the pressure is stabilized in the buffer tank F through the valve 5 and the valve 17 for about 5 seconds in the initial stage of desorption.
This is because in the initial stage of desorption, the desorption gas concentration is almost equal to the source gas concentration and 99% high concentration oxygen cannot be obtained. In the latter half of desorption, it takes about 55 seconds to use vacuum pump B for about 1
After decompression regeneration to a pressure of 50 Torr, the desorbed high concentration oxygen of 99% or more is stored in the receiver E through the valve 16.

【0016】次に、2度の吸着工程を終了した塔Iと脱
着工程が終了した塔IIが弁4、弁5、及び弁13、弁1
4を通じて均圧され原料ガスを回収する。以上の工程に
従って第2段装置は約3分間を1サイクルとして表1に
示す工程を繰り返す。
Next, the column I after the two adsorption steps and the column II after the desorption step are valve 4, valve 5, valve 13, and valve 1.
The pressure is equalized through 4 to recover the raw material gas. In accordance with the above steps, the second-stage apparatus repeats the steps shown in Table 1 with about 3 minutes as one cycle.

【0017】第3段装置は第2段装置より導入される酸
素濃度が約80%で残りは窒素とアルゴンである、圧力
1.5〜2.0kg/cm2 Gのガスを弁18、弁24
を通じて塔Iで酸素を吸着させた後酸素濃度が約60%
のガスとしてレシーバーHに排出する。
The third-stage apparatus has a gas concentration of about 80% introduced from the second-stage apparatus and the rest is nitrogen and argon. A gas having a pressure of 1.5 to 2.0 kg / cm 2 G is supplied to the valve 18 and the valve. 24
After adsorbing oxygen in the tower I through the
It is discharged to the receiver H as the gas.

【0018】塔Iに吸着された酸素は脱着される前に弁
22と弁23を通じて脱着工程の終了した塔III と均圧
し原料ガスの回収を計る。そして弁20を通じて塔Iは
脱着工程に入り、約93%濃度の酸素が真空ポンプCに
よって脱着されバッファータンクGに蓄えられた後、第
2段装置の圧縮機Aの入口部へと循環され回収される。
均圧をおこなった塔III は弁19を通じて導入されたガ
スによって昇圧された後吸着工程に入る。
Before the desorption, the oxygen adsorbed in the tower I is pressure-equalized with the tower III which has completed the desorption process through the valves 22 and 23 to collect the raw material gas. Then, the tower I enters the desorption process through the valve 20, oxygen of about 93% concentration is desorbed by the vacuum pump C and stored in the buffer tank G, and then circulated to the inlet of the compressor A of the second stage device and recovered. To be done.
The column III subjected to pressure equalization is pressurized by the gas introduced through the valve 19 and then enters the adsorption step.

【0019】以上の工程に従って第3段装置は約2分間
を1サイクルとして表2に示す工程を繰り返す。本発明
の特徴である第2段装置と、これに連結された第3段装
置についてさらに説明すると、第2段装置は高濃度酸素
を脱着ガスとして回収する為の装置で、第3段装置は酸
素の収率を上げる為に脱着した酸素を第2段装置の原料
ガス中に循環させる為のものでありこれによって第1段
装置より導入した酸素が80%以上の回収率で得られ
る。
According to the above steps, the third stage apparatus repeats the steps shown in Table 2 with one cycle of about 2 minutes. The second-stage device , which is a feature of the present invention, and the third-stage device connected to the second-stage device will be further described. The second-stage device is a device for recovering high-concentration oxygen as a desorption gas. This is to circulate the desorbed oxygen in the raw material gas of the second stage apparatus in order to increase the yield of oxygen, whereby the oxygen introduced from the first stage apparatus can be obtained with a recovery rate of 80% or more.

【0020】又、表1に示す第2段装置のシーケンスの
特徴は、吸着時に2塔の吸着塔に直列に原料ガスを通過
させた後、脱着時に2塔の内上流側にあって酸素を飽和
吸着した塔を選んで減圧再生し、高濃度酸素を脱着させ
回収することにある。この場合、脱着する前に脱着工程
の終了した塔と均圧し塔内のガスを回収する。その後、
減圧再生し脱着を開始するが、脱着初期の脱着ガスは原
料ガス組成に近い為、原料ガスの一部として循環し、後
期に脱着するガスを高濃度酸素として取得することがで
きる。
The characteristic of the sequence of the second-stage apparatus shown in Table 1 is that the raw material gas is passed through the two adsorption towers in series at the time of adsorption and then oxygen is present at the upstream side of the two towers at the time of desorption. The purpose is to select the saturated adsorption column and regenerate it under reduced pressure to desorb and collect high-concentration oxygen. In this case, before desorption, the pressure in the column after the desorption process is equalized and the gas in the column is recovered. afterwards,
Although desorption is started by decompressing and starting desorption, since the desorption gas at the initial stage of desorption is close to the composition of the source gas, it can be circulated as a part of the source gas, and the gas desorbed in the latter stage can be obtained as high concentration oxygen.

【0021】図1に示した真空ポンプB及びCを省略す
る為に、第2段及び第3段装置の吸着圧力を3kg/c
2 G以上最高10kg/cm2 Gの範囲で装作し、減
圧再生時の脱着圧力をほぼ大気圧としてPSAを行うこ
とも可能であるが、その場合には圧縮機Aの吐出圧力を
3kg/cm2 G以上最高10kg/cm2 Gまで上昇
させ、吸入圧力を大気圧以下としておく必要があるので
装置の状況に応じて選定すべきである。
In order to omit the vacuum pumps B and C shown in FIG. 1, the adsorption pressure of the second and third stage devices is set to 3 kg / c.
and Sosaku in the range of m 2 G or more up to 10kg / cm 2 G, it is also possible to perform the PSA desorption pressure during decompression reproduced as about atmospheric pressure, 3 kg of the discharge pressure of the compressor A in which case the / Cm 2 G or more to a maximum of 10 kg / cm 2 G and the suction pressure must be kept at atmospheric pressure or less. Therefore, the selection should be made according to the condition of the device.

【0022】[0022]

【実施例】以下、実施例を示して本発明をさらに詳細に
説明するが本発明がこれに限定されるものではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

【0023】実施例1 空気を原料として3塔式の第1段装置で吸着圧力を50
0mmH2 O脱着圧力を150トールとしてPSAを行
い得られた93.3%濃度の酸素ガスを、吸着塔として
200mmφ×1100mmHに西ドイツ・ベルグバウ
社製の3Å〜4Åを中心とした細孔径を有するカーボン
モレキュラーシーブを充填した3塔式の第2段装置に圧
縮機で3.0kg/cm2 Gまで加圧導入し、吸着1−
58秒、ホールド(何も行わない工程)−2秒、吸着2
−58秒、均圧−2秒、脱着−58秒、均圧−2秒(1
サイクル合計3分)のシーケンスでPSAを行った。
Example 1 Using air as a raw material, the adsorption pressure was set to 50 in a three-column type first stage apparatus.
Oxygen gas of 93.3% concentration obtained by performing PSA with 0 mmH 2 O desorption pressure of 150 Torr, carbon having a pore diameter centered on 3Å to 4Å manufactured by Bergbau in West Germany in 200 mmφ × 1100 mmH as an adsorption tower. A three-column type second-stage device filled with molecular sieves was pressurized to 3.0 kg / cm 2 G with a compressor, and adsorption 1-
58 seconds, hold (process that does nothing) -2 seconds, adsorption 2
-58 seconds, pressure equalization-2 seconds, desorption-58 seconds, pressure equalization-2 seconds (1
PSA was performed in a sequence of 3 minutes in total cycle).

【0024】この時の吸着圧力は2.6kg/cm2
脱着圧力は160トールであり圧縮機入口ガス量は2
2.8Nm3 /H、酸素濃度は93.3%、第2段装置
から第3段装置へ送り込むガス量は6.1Nm3 /H、
酸素濃度は79.2%、高濃度酸素として製品となる脱
着ガス量は20.0Nm3 /H、酸素濃度は99.3%
であった。この場合5秒間だけ脱着初期の脱着ガスを圧
縮機入口部へ循環させた。
At this time, the adsorption pressure is 2.6 kg / cm 2 G
Desorption pressure is 160 Torr and compressor inlet gas volume is 2
2.8 Nm 3 / H, oxygen concentration 93.3%, the amount of gas sent from the second stage device to the third stage device is 6.1 Nm 3 / H,
Oxygen concentration is 79.2%, desorption gas amount to be a product as high concentration oxygen is 20.0 Nm 3 / H, oxygen concentration is 99.3%
Met. In this case, the desorption gas at the initial stage of desorption was circulated to the compressor inlet for only 5 seconds.

【0025】更に、第3段装置として2塔式の125m
mφ×1100mmHの吸着塔に第2段装置と同じ西ド
イツ・ベルグバウ社製のカーボンモレキュラーシーブを
充填しPSAを行った。この時のシーケンスは吸着−5
5秒、均圧−1.5秒、脱着−58.5秒、均圧−1.
5秒、昇圧−3.5秒(1サイクル合計2分)で行い吸
着圧力は0.9kg/cm2 G、脱着圧力は150トー
ルであり第3段装置の排出ガス量は2.8Nm3 /H酸
素濃度は50%となった。又、脱着されたガスは第2段
装置の圧縮機入口部へ循環した。
Furthermore, as a third stage device, a two-column type 125 m
PSA was carried out by filling an adsorption tower of mφ × 1100 mmH with the same carbon molecular sieve manufactured by Bergbau GmbH of West Germany as in the second-stage apparatus. The sequence at this time is adsorption-5
5 seconds, pressure equalization-1.5 seconds, desorption-58.5 seconds, pressure equalization-1.
5 seconds, pressurization-3.5 seconds (total of 2 minutes per cycle), adsorption pressure is 0.9 kg / cm 2 G, desorption pressure is 150 Torr, and exhaust gas amount of the third stage device is 2.8 Nm 3 / The H 2 oxygen concentration was 50%. The desorbed gas circulated to the compressor inlet of the second stage device.

【0026】以上の結果より99.3%の高濃度酸素が
回収率93.4%にて得られた。尚、第3段装置を設け
ない場合の高濃度酸素の回収率は計算上77.3%であ
った。
From the above results, a high concentration of oxygen of 99.3% was obtained with a recovery rate of 93.4%. The recovery rate of high-concentration oxygen when the third-stage device was not provided was calculated to be 77.3%.

【0027】実施例2 実施例1の第1段装置より発生した同じ93.3%濃度
の酸素ガスを圧縮機で6.5kg/cm2 Gまで加圧
し、実施例1と同じ200mmφ×1100mmHの吸
着塔を3塔設け第2段装置として吸着1−58秒、ホー
ルド(何もしない工程)−2秒、吸着2−58秒、均圧
−2秒、脱着−58秒、均圧−2秒(1サイクル合計3
分)のシーケンスでPSAを行った。
Example 2 The same 93.3% concentration oxygen gas generated from the first-stage device of Example 1 was pressurized to 6.5 kg / cm 2 G with a compressor, and the same 200 mmφ × 1100 mmH as in Example 1 was applied. Adsorption 1-58 seconds, hold (no process) -2 seconds, adsorption 2-58 seconds, pressure equalization-2 seconds, desorption-58 seconds, pressure equalization-2 seconds as a second stage device with three adsorption towers. (1 cycle total 3
Min) sequence was used for PSA.

【0028】この場合は吸着圧力が6.3kg/cm2
Gとなり脱着圧力は真空ポンプを設けずほぼ大気圧で行
った。圧縮機入口ガス量は23.6Nm3 /H、酸素濃
度は93.3%、第2段装置から第3段装置へ送り込む
ガス量は18.8Nm3 /H、酸素濃度は80.6%、
高濃度酸素として製品となる脱着ガス量は18.4Nm
3 /H酸素濃度は99.2%であった。脱着初期の脱着
ガスは6秒間圧縮機入口部へ循環させた。
In this case, the adsorption pressure is 6.3 kg / cm 2
The desorption pressure was G, and the desorption pressure was almost atmospheric pressure without providing a vacuum pump. Compressor inlet gas amount is 23.6 Nm 3 / H, oxygen concentration is 93.3%, gas amount sent from the second stage device to the third stage device is 18.8 Nm 3 / H, oxygen concentration is 80.6%,
The amount of desorption gas that becomes a product as high-concentration oxygen is 18.4 Nm.
The 3 / H oxygen concentration was 99.2%. The desorption gas at the initial stage of desorption was circulated to the compressor inlet for 6 seconds.

【0029】更に第3段装置として実施例1と同様に1
25mmφ×1100mmHの吸着塔を用い2塔式でP
SAを行った。この時のシーケンスは吸着−55秒、均
圧−1.5秒、脱着−58.5秒、均圧−1.5秒、昇
圧−3.5秒(1サイクル合計2分)とし、吸着圧力は
5.8kg/cm2 G、脱着圧力は真空ポンプを設けず
大気圧とした。第3段装置の排出ガス量は5.2Nm3
/H酸素濃度は71.2%であった。脱着ガスは第2段
装置の入口部へ循環した。以上の結果より99.2%の
高濃度酸素が実施例1より小さい回収率83.9%で得
られた。
Further, as a third stage device, as in Example 1, 1
25mmφ × 1100mmH adsorption tower with 2 tower type P
SA was performed. At this time, the sequence was adsorption-55 seconds, pressure equalization-1.5 seconds, desorption-58.5 seconds, pressure equalization-1.5 seconds, pressurization-3.5 seconds (1 cycle total 2 minutes). Was 5.8 kg / cm 2 G, and the desorption pressure was atmospheric pressure without a vacuum pump. The exhaust gas volume of the third stage device is 5.2 Nm 3
/ H oxygen concentration was 71.2%. The desorption gas circulated to the inlet of the second stage device. From the above results, a high concentration of oxygen of 99.2% was obtained with a recovery rate of 83.9% smaller than that in Example 1.

【0030】[0030]

【発明の効果】本発明の製造方法によると、高濃度の酸
素を工業上有利に製造することができる。
According to the production method of the present invention, a high concentration of oxygen can be produced industrially advantageously.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の実施態様を示す第1段、第2
段、第3段吸着装置よりなるフローシートである。
FIG. 1 is a first stage and a second stage showing an embodiment of the present invention.
It is a flow sheet comprising a stage and a third stage adsorption device.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ゼオライトモレキュラーシーブを充填し
た第1段吸着装置を用い空気を原料としてプレッシャー
スイングを行ない、酸素を主成分としアルゴンと窒素を
含有する非吸着ガスを得、これをカーボンモレキュラー
シーブを充填した第2段吸着装置に導き、プレッシャー
スイングを行なってアルゴンと窒素を非吸着ガスとして
分離除去し、吸着された酸素を脱着して高濃度酸素を製
造する方法において、前記第2段吸着装置を3塔式と
し、その内の2塔に第1段吸着装置より発生した前記の
酸素を主成分とするガスを直列に通過させた後、該2塔
のうち上流側の酸素を飽和吸着した塔で脱着を行い、脱
着初期のガスを第2段吸着装置に導入される原料ガス中
に回収すると共に脱着後期のガスを高濃度酸素として取
得することを特徴とする高濃度酸素の製造方法。
1. A first stage adsorption device filled with a zeolite molecular sieve is used to perform a pressure swing using air as a raw material to obtain a non-adsorbed gas containing oxygen as a main component and containing argon and nitrogen, which is then treated with a carbon molecular sieve. It led to the second stage adsorption device packed, by performing pressure swing separating and removing argon and nitrogen as the non-adsorbed gas, a process for the preparation of highly concentrated oxygen to desorb the adsorbed oxygen, the second stage adsorption The device is a three tower type
And, after passing through a gas mainly composed of the oxygen generated from the first stage adsorption device 2 tower of its series, the second column
Of the above , desorption is performed in a column that has saturatedly adsorbed oxygen on the upstream side, and the gas at the initial stage of desorption is recovered in the raw material gas that is introduced into the second-stage adsorption device and the gas at the latter stage of desorption is obtained as high-concentration oxygen. A characteristic method for producing high-concentration oxygen.
【請求項2】 第2段装置の吸着圧力が0.3〜10kg
/cm2 Gである請求項1記載の方法。
2. The adsorption pressure of the second stage device is 0.3 to 10 kg.
The method according to claim 1, which is / cm 2 G.
【請求項3】 脱着圧力が大気圧以下である請求項1記
載の方法。
3. The method of claim 1 wherein the desorption pressure is below atmospheric pressure.
JP5346320A 1993-12-21 1993-12-21 Method for producing high concentration oxygen Expired - Lifetime JPH07110762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5346320A JPH07110762B2 (en) 1993-12-21 1993-12-21 Method for producing high concentration oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5346320A JPH07110762B2 (en) 1993-12-21 1993-12-21 Method for producing high concentration oxygen

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59104239A Division JPS60246206A (en) 1984-05-22 1984-05-22 Preparation of oxygen with high concentration

Publications (2)

Publication Number Publication Date
JPH0733404A JPH0733404A (en) 1995-02-03
JPH07110762B2 true JPH07110762B2 (en) 1995-11-29

Family

ID=18382613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5346320A Expired - Lifetime JPH07110762B2 (en) 1993-12-21 1993-12-21 Method for producing high concentration oxygen

Country Status (1)

Country Link
JP (1) JPH07110762B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165104A (en) * 1994-12-09 1996-06-25 Kanebo Ltd Separation of high purity hydrogen gas
JP5116195B2 (en) * 2001-09-04 2013-01-09 大陽日酸株式会社 Gas separation and purification method
WO2004103899A1 (en) * 2003-05-23 2004-12-02 Yonsei University Apparatus for producing oxygen and method for controlling the same
JP5139633B2 (en) * 2005-10-31 2013-02-06 学校法人関東学院 Non-argon high-concentration oxygen purifier
CN110127618A (en) * 2019-05-18 2019-08-16 山西汾西重工有限责任公司 A kind of preparation facilities of high purity oxygen gas and preparation method thereof
EP3971157A4 (en) * 2019-08-23 2023-07-12 Resonac Corporation Method for recovering olefin
CN115028143B (en) * 2021-03-07 2024-02-06 上海技典工业产品设计有限公司 Pressure swing adsorption process and method capable of purifying oxygen-enriched air with low oxygen concentration
CN115463512B (en) * 2022-09-19 2024-02-13 杨坤 Oxygen generation system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2011272A (en) * 1977-12-28 1979-07-11 Boc Ltd Air separation by adsorption

Also Published As

Publication number Publication date
JPH0733404A (en) 1995-02-03

Similar Documents

Publication Publication Date Title
JPH0429601B2 (en)
JP2562326B2 (en) How to get high concentration oxygen from air
US6524370B2 (en) Oxygen production
JP3902416B2 (en) Gas separation method
JP3899282B2 (en) Gas separation method
EP1018359A2 (en) Pressure swing adsorption process and system with product storage tank(s)
KR890014381A (en) Recovery method of concentrated oxygen gas
JPH09150028A (en) Single bed pressure swing type adsorption method for recovering oxygen from air
JPS6026571B2 (en) Method and apparatus for increasing the proportion of component gases in a gas mixture
US6113672A (en) Multiple equalization pressure swing adsorption process
JP4481112B2 (en) Pressure fluctuation adsorption type gas separation method and apparatus
JPH0268111A (en) Improved pressure swing adsorbing method
JPH07110762B2 (en) Method for producing high concentration oxygen
US6083299A (en) High pressure purge pressure swing adsorption process
JP2004066125A (en) Method of separating target gas
JP4050415B2 (en) Gas separation method
JPH10272332A (en) Gas separation device and its operation method
JP3654658B2 (en) Pressure fluctuation adsorption type oxygen production method and apparatus
JPH01262919A (en) Method for separating and recovering nitrogen and oxygen in air
JPH07330306A (en) Generation of oxygen by pressure change adsorption separation method
JP4761635B2 (en) Nitrogen gas generation method
KR102439732B1 (en) Method of Removing Argon and Concentrating Nitrogen by Adsorbing and Separating Nitrogen from Gas Mixture of Argon and Nitrogen
JPH02283608A (en) Method for separating and recovering carbon monoxide
KR102156825B1 (en) Pressure swing adsorption process for separation and recovery of carbon monoxide
JP4195131B2 (en) Single tower type adsorption separation method and apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term