JPH02263921A - Production of grain-oriented silicon steel plate - Google Patents

Production of grain-oriented silicon steel plate

Info

Publication number
JPH02263921A
JPH02263921A JP8511489A JP8511489A JPH02263921A JP H02263921 A JPH02263921 A JP H02263921A JP 8511489 A JP8511489 A JP 8511489A JP 8511489 A JP8511489 A JP 8511489A JP H02263921 A JPH02263921 A JP H02263921A
Authority
JP
Japan
Prior art keywords
heating
slab
electrical steel
hot rolling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8511489A
Other languages
Japanese (ja)
Inventor
Hitoshi Yokouchi
仁 横内
Minoru Inatomi
稲富 実
Toshihiko Kawahara
河原 敏彦
Yasunori Tano
田野 安典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8511489A priority Critical patent/JPH02263921A/en
Publication of JPH02263921A publication Critical patent/JPH02263921A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce a grain-oriented silicon steel plate excellent in magnetic properties by applying preliminary hot rolling to a slab prior to electrification and heating at the time of producing a grain-oriented silicon steel plate from a continuously cast slab of silicon steel. CONSTITUTION:A continuously cast slab having a composition consisting of 0.02-0.12% C, 2.0-4.0% Si, 0.04-0.20% Mn, 0.01-0.05% S and/or 0.005-0.05% Se, and the balance iron with inevitable impurities is subjected, with of without heating up to 900-1200 deg.C by means of a gas heating furnace, to preliminary hot rolling at 5-50% draft at >=900 deg.C average temp. in cross section of slab in a temp. region between 900 and 1200 deg.C. Successively, the above slab is subjected to heating up to 1300-1450 deg.C under the condition of >=20A/cm<2> current density by means of direct electrification and heating regarding the slab itself as a resistor and then to hot rolling. By this method, the grain-oriented silicon steel plate having superior magnetic properties can be produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気特性の優れた、一方向性電磁鋼板の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing grain-oriented electrical steel sheets having excellent magnetic properties.

(従来の技術) 一方向性電磁鋼板は板面にGoss方位とよばれる(1
10)而< 001 >方位の二次再結晶粒を集積して
、製造されることは一般によく知られていることである
。磁気特性には、集積された結晶粒がいかにGoss方
位に近いかが肝要であり、その様な二次再結晶粒を生成
させるには微細なA、QN、MnSMnSe等のインヒ
ビターを仕上焼鈍前に、均一に分散させておく必要があ
る。
(Prior art) A unidirectional electrical steel sheet has a so-called Goss orientation (1
10) It is generally well known that crystals are manufactured by accumulating secondary recrystallized grains with <001> orientation. For magnetic properties, it is important that the accumulated crystal grains are close to the Goss orientation, and in order to generate such secondary recrystallized grains, fine inhibitors such as A, QN, MnSMnSe, etc. must be added before finishing annealing. It needs to be evenly distributed.

その様に微細でかつ均一に分散されたインヒビターを得
るための必要条件として、熱延前のスラブ加熱で、スラ
ブ中心部も含み1300℃以上に加熱してインヒビター
を固溶させ、熱延では高速圧延と圧延後の急冷でインヒ
ビターをコントロールすることが重要な要件である。上
記加熱は通常、連鋳スラブをガス加熱で、行なわれてい
たため、スラブ内部を1300℃以上にすれば表面は1
350℃以上となり、また、炉内雰囲気は酸化性雰囲気
とならざるを得ない。その結果多量のノロ発生、表面欠
陥、耳割れ発生が起こり、歩留り低下、コスト上昇及び
加熱炉寿命低下を来たすこととなる。また、通常のウオ
ーキングビーム(WB)タイプのガス加熱炉においても
1250℃から1350℃までの加熱はせいぜい1.5
℃/分の昇温速度しか得られないため加熱時間が長(な
りスラブ内最冷点と、スラブ表面温度の差は昇温過程で
は50℃以上となる。この長時間かつ、温度偏差のある
加熱によりスラブ内では結晶粒が粗大化しやすく、最終
成品では線状細粒とよばれる帯状の二次再結晶不良部を
形成し、特性劣化もしくは歩留低下の大きな要因となっ
ている。また、高温長時間加熱で、スラブ内結晶拉の粗
大化が著しく進行した場合は、粒界が著しく弱くなり、
加熱炉内でのスラブ切損トラブルが起こることもある。
In order to obtain such fine and uniformly dispersed inhibitors, the slab must be heated to 1,300°C or higher, including the center of the slab, to form a solid solution of the inhibitor before hot rolling. An important requirement is to control inhibitors during rolling and post-rolling quenching. The above heating was usually done by gas heating the continuously cast slab, so if the inside of the slab was heated to 1300℃ or higher, the surface
The temperature becomes 350° C. or higher, and the atmosphere in the furnace inevitably becomes an oxidizing atmosphere. As a result, a large amount of slag, surface defects, and edge cracks occur, resulting in lower yields, higher costs, and shorter heating furnace life. In addition, even in a normal walking beam (WB) type gas heating furnace, heating from 1250°C to 1350°C is at most 1.5°C.
Because the heating rate is only ℃/min, the heating time is long (the difference between the coldest point in the slab and the surface temperature of the slab is more than 50℃ during the heating process. Heating tends to coarsen the crystal grains within the slab, forming band-shaped secondary recrystallization defects called linear fine grains in the final product, which is a major factor in deteriorating properties or reducing yield. If the crystal grains in the slab become coarser due to high-temperature and long-term heating, the grain boundaries will become significantly weaker.
Problems with slab breakage may occur in the heating furnace.

最近の一方向性電磁鋼板の低鉄損化の要求を満足させる
ためには高Si化、成品の薄手化力(必要であるが、高
Si化は高温でのγ比率を下げスラブ内結晶粒成長を助
長し、かつ、MnS等の固溶温度を高めることとなり、
また成品の薄手化により強力なインヒビターが必要とな
り、より高温長時間加熱でのMnS等のより完全な固溶
が必要とされる。
In order to satisfy the recent demand for lower iron loss in unidirectional electrical steel sheets, it is necessary to increase the Si content and make the finished product thinner (although increasing the Si content lowers the γ ratio at high temperatures and reduces the crystal grains within the slab). It promotes growth and increases the solid solution temperature of MnS etc.
Furthermore, as the product becomes thinner, a stronger inhibitor is required, and a more complete solid solution of MnS etc. is required by heating at a higher temperature and for a longer period of time.

上述したように、一方向性電磁鋼板の熱延でのスラブ加
熱の適正温度域は、インヒビターの固溶という点から決
まる下限温度、スラブ結晶粒成長という点から決まる上
限温度があり、前述の低鉄損化の要求を満足するには上
限温度が下がり、下限温度が上がるという相反する状態
となってしま〕0 この問題を克服するため、最近一方向性電磁鋼板のスラ
ブ加熱をガス加熱ではなく、非酸化性雰囲気下での誘導
加熱で所定の温度まで加熱する技術や直接通電加熱で所
定の温度で加熱する技術が開発されている。これ等の技
術は両者共、熱効率、作業効率の観点から通常ガス加熱
炉で例えば1000℃程度に加熱後いずれかの方法で1
300℃〜1450°Cまでの所定の温度に加熱する方
法が採られる。非酸化性雰囲気にする理由は、ノロ発生
を抑制して歩留を向上させるとともに、ノロ起因の表面
欠陥を減少させることにある。
As mentioned above, the appropriate temperature range for slab heating during hot rolling of unidirectional electrical steel sheets has a lower limit temperature determined from the standpoint of solid solution of the inhibitor, and an upper limit temperature determined from the standpoint of slab grain growth. In order to satisfy the iron loss requirement, the upper limit temperature falls and the lower limit temperature rises, creating a contradictory situation.]0 To overcome this problem, recently the slab heating of grain-oriented electrical steel sheets has been changed from gas heating to heating. , a technique of heating to a predetermined temperature by induction heating in a non-oxidizing atmosphere and a technique of heating to a predetermined temperature by direct current heating have been developed. Both of these technologies are heated to about 1000°C in a normal gas heating furnace and then heated to 1000°C by one of the following methods from the viewpoint of thermal efficiency and work efficiency.
A method of heating to a predetermined temperature of 300°C to 1450°C is adopted. The reason for using a non-oxidizing atmosphere is to suppress the generation of slag to improve yield and to reduce surface defects caused by slag.

この再加熱の特徴は、従来のガス加熱法と異なり投入電
流に応じて、任意な急速加熱ができ、かつ温度コントロ
ールが容易で、スラブ内温度偏差を十分小さくできるた
めスラブ粒成長を抑制しつつ従来のガス加熱より、スラ
ブ内最冷点温度を高温かつ長時間保定でき、薄手高81
の超低鉄損方向性電磁鋼板に必要な熱延板を得ることが
可能である。
The characteristics of this reheating method are that, unlike the conventional gas heating method, it is possible to perform arbitrary rapid heating according to the input current, and the temperature can be easily controlled, and the temperature deviation within the slab can be sufficiently small, suppressing slab grain growth. Compared to conventional gas heating, the temperature of the coldest spot in the slab can be maintained at a higher temperature for a longer period of time, and the thinner height is 81 mm.
It is possible to obtain hot-rolled sheets necessary for ultra-low iron loss grain-oriented electrical steel sheets.

しかし、誘導加熱法では、その加熱方式特有の効果とし
てスラブ表層部での、発熱が最も生じやすい。そこで、
スラブ中心部での発熱を十分起こさせるためには、誘導
周波数を下げることも考えられるがこれでは熱効率が低
下する。スラブ中心部は、連続鋳造スラブの場合、中心
偏析があり特にMnS等の固溶に高温長時間加熱が必要
であるが、誘導加熱では上述のようにスラブ中心部の加
熱に不利である。即ち、スラブ中心部の温度を上げるた
めには膨大な電力を投入して低周波数で加熱するか、表
面付近からの熱伝導に頼るしかなく、これはまたスラブ
内結晶粒成長を生ぜしめることとなる。これを回避する
方法として加熱中に周波数を制御して加熱条件を正確に
コントロールする方法が特開昭62−103322で提
案されている。一方、直接通電加熱法は誘導加熱に比し
、設備的にはより簡素で低コストの設備であり、さらに
誘導加熱法で必要な誘導加熱コイル内にスラブを挿入す
るという面倒なハンドリングは不要で、単に電極をスラ
ブの両端に押し付けるという単純なものにできる。一方
向性電磁鋼板の熱延においては、スラブ加熱後、炉より
の抽出から、熱延完了までの時間をインヒビターの析出
サイズを小さくするという観点で短くしたい。このため
スラブ加熱のハンドリングが少なく、ハンドリング時間
が短縮でき、抽出から熱延完了までの時間を短縮できる
ということが加熱温度と同様に重要な意味をもつことに
なり、この点でも、直接通電加熱法は有利である。
However, in the induction heating method, heat generation is most likely to occur in the surface layer of the slab as an effect unique to the heating method. Therefore,
In order to generate enough heat in the center of the slab, it is possible to lower the induction frequency, but this will reduce thermal efficiency. In the case of continuously cast slabs, the center of the slab suffers from center segregation and requires high-temperature and long-term heating, especially for solid solution of MnS and the like, but induction heating is disadvantageous in heating the center of the slab as described above. In other words, in order to raise the temperature at the center of the slab, it is necessary to either input a huge amount of power and heat it at a low frequency, or rely on heat conduction from near the surface, which can also cause grain growth within the slab. Become. To avoid this, a method has been proposed in JP-A-62-103322 in which the heating conditions are accurately controlled by controlling the frequency during heating. On the other hand, the direct current heating method requires simpler and lower cost equipment than induction heating, and does not require the troublesome handling of inserting a slab into the induction heating coil, which is required with the induction heating method. , it can be as simple as simply pressing the electrodes against each end of the slab. In the hot rolling of grain-oriented electrical steel sheets, it is desirable to shorten the time from the time when the slab is heated and when it is extracted from the furnace to the completion of hot rolling, from the viewpoint of reducing the size of inhibitor precipitation. For this reason, the fact that slab heating requires less handling, shortens handling time, and shortens the time from extraction to completion of hot rolling is as important as the heating temperature. The law is favorable.

直接通電加熱法は、スラブ全断面にわたり均一に、急速
加熱が可能であり、これはスラブ結晶粒成長に極めて有
利であり、特開昭83−19570号公報でも説明され
ている。また電流密度をコントロールするだけで容易に
スラブ加熱温度のコントロールが可能で、スラブ表面温
度を必要以上に上げることなく必要なインヒビターの固
溶条件を得ることが可能である。
The direct current heating method enables uniform and rapid heating over the entire cross section of the slab, which is extremely advantageous for slab grain growth, and is also explained in JP-A-83-19570. In addition, the slab heating temperature can be easily controlled simply by controlling the current density, and it is possible to obtain the necessary solid solution conditions for the inhibitor without increasing the slab surface temperature more than necessary.

(発明が解決しようとする問題点) しかしながら、本発明者らの繰返し実験によれば、単に
通電加熱法を採用するだけでは、当初期待した飛躍的な
特性向上に対して十分満足のいく成果は得られなかった
(Problems to be Solved by the Invention) However, according to repeated experiments by the present inventors, simply adopting the energization heating method does not produce sufficiently satisfactory results for the dramatically improved properties that were initially expected. I couldn't get it.

直接通電加熱では薄手(0,17mo+以下)の成品を
安定的に製造するためには、MnS等のインヒビター固
溶の促進のためスラブ加熱温度を1300℃以上、望む
べくは1350℃以上の温度で10分以上の保定の条件
が必要であるが、このような条件下でもスラブの粒成長
が起こり始める。特にガス加熱と違う特徴としてスラブ
内部温度は10℃程度の偏差で均一だが、スラブ表面か
ら10鶴程度で30℃程度の温度差が発生する。これは
、直接a電加熱では、スラブ自体がヒーターとなって炉
を熱することとなり、スラブ表面からの熱放散によるた
めである。
In order to stably produce thin (0.17 mo+ or less) products using direct current heating, the slab heating temperature must be set to 1300°C or higher, preferably 1350°C or higher, to promote the solid solution of inhibitors such as MnS. Although holding conditions for 10 minutes or more are required, grain growth in the slab begins to occur even under such conditions. Particularly different from gas heating, the internal temperature of the slab is uniform with a deviation of about 10°C, but a temperature difference of about 30°C occurs at about 10 degrees from the slab surface. This is because in direct a-electric heating, the slab itself acts as a heater and heats the furnace, and heat is radiated from the slab surface.

そのためスラブ表面10III11程で結晶粒成長が進
行し粒界か弱くなり、熱延時に耳割れと呼ばれるエツジ
部の割れ欠陥を生じやすくなる。
Therefore, crystal grain growth progresses at about 10III11 on the slab surface, weakening the grain boundaries, and cracking defects at the edges called edge cracks are likely to occur during hot rolling.

その対策としては、スラブに流す電流に交流性を重畳す
るという方法も考えられるが、設備費の大幅アップを招
くこととなる。
One possible solution to this problem is to add alternating current to the current flowing through the slab, but this would result in a significant increase in equipment costs.

また、1350℃以上になるとスラブ内部でも、通電加
熱の電流密度を大幅に(40A/cd以上に)上げ急速
加熱を行なわないと結晶粒成長が進行する。
Further, when the temperature reaches 1350° C. or higher, crystal grain growth progresses even inside the slab unless the current density of electrical heating is significantly increased (to 40 A/cd or higher) and rapid heating is performed.

さらに、1400℃以上の保定では電流密度を8OA 
/ c−以上の急速加熱にしなければ結晶粒成長が進行
して、成品に不良が発生しやすい。電流密度を上げるた
めには更に大幅な設備費の上昇は避けられない。
Furthermore, when holding at temperatures above 1400°C, the current density is reduced to 8OA.
If rapid heating is not carried out to a temperature of /c- or higher, crystal grain growth will proceed and the product will likely be defective. In order to increase the current density, a further significant increase in equipment costs is unavoidable.

この発明は上記問題を有利に解決するもので直接通電加
熱で薄手一方向性電磁鋼板をより安定的に製造する方法
を提案することを目的とする。
The present invention advantageously solves the above-mentioned problems, and aims to propose a method for more stably manufacturing thin grain-oriented electrical steel sheets by direct current heating.

(問題点を解決するための手段) さて、本発明者らは、上記問題を解決すべく鋭意研究を
重ねた結果、MnS、MnSe、A11N。
(Means for Solving the Problems) Now, as a result of intensive research by the present inventors in order to solve the above problems, MnS, MnSe, and A11N.

sb等をインヒビターとする方向性電磁鋼板の連続鋳造
スラブを通電加熱する前に5〜50%の予備熱延での変
形を与える予備熱延を施すことで上記2点の問題点を解
決できることを発明した。
It has been found that the above two problems can be solved by performing preliminary hot rolling to give 5 to 50% deformation in the preliminary hot rolling before heating the continuously cast slab of grain oriented electrical steel sheet using sb as an inhibitor. Invented it.

従来より連鋳スラブを予備熱延で5〜50%の変形をさ
せ、公知の1800℃以上のガス加熱を行い方向性電磁
鋼板を製造する方法が特公昭54−27820で知られ
ているがこの方法ではガス加熱である限り前述した高温
スラブ加熱に起因する種々の問題から薄手材としても0
.17mmまでが工業的製造の限界である。
Conventionally, there is a method known in Japanese Patent Publication No. 54-27820, in which a continuously cast slab is deformed by 5 to 50% by pre-hot rolling, and then heated with gas to a temperature of 1800°C or higher to produce grain-oriented electrical steel sheets. As long as the method uses gas heating, it is not suitable for thin materials due to the various problems caused by heating the high-temperature slab mentioned above.
.. Up to 17 mm is the limit of industrial production.

そこで、通電加熱を行うと同時に予備熱延を導入するこ
とでインヒビターのより完全な固溶とスラブ内結晶粒成
長抑制の2つを両立さすことが可能であることが実験的
に確認された。すなわち本発明はC: 0.02〜0,
12%、Si  :  2.0〜4.0%、Mn:0.
04〜0.20%、S : 0.01〜0.05%およ
びSe:0.005〜0.05%の1種または2種を含
み、残部が鉄及び不可避的不純物からなる電磁鋼スラブ
を熱延し、一回冷延又は中間焼鈍をはさむ量器以上の冷
延工程を含む一方向性電磁鋼板製造法において、連続鋳
造スラブをガス加熱炉で900〜125[]℃に加熱し
、または加熱することなくスラブ断面平均温度900℃
以上で、かつ、900〜1200℃の温度領域で5〜5
0%の予備熱延し、引続きスラブ自身を抵抗体と見做す
直接通電加熱により電流密度20A / c−以上の条
件で1300〜1450℃に加熱後熱延する一方向性電
磁鋼板の製造方法を第1の発明とし、第1の発明に更に
AD :O,[105〜0.040%、N:0.003
〜0.015%を81−7させた鋼を用いるのを第2の
発明とし、また、第3の発明は第1の発明に対してS 
b:o、002〜0.05%含何させた鋼を用いるもの
であり、第2、第3の発明共、第1の発明を同様の処理
を行って一方向性電磁鋼板を製造することを要旨とする
ものである。
Therefore, it has been experimentally confirmed that it is possible to achieve both more complete solid solution of the inhibitor and suppression of crystal grain growth within the slab by introducing pre-hot rolling at the same time as conducting electrical heating. That is, the present invention has C: 0.02 to 0,
12%, Si: 2.0-4.0%, Mn: 0.
04 to 0.20%, S: 0.01 to 0.05% and Se: 0.005 to 0.05%, and the remainder is iron and inevitable impurities. In a unidirectional electrical steel sheet manufacturing method that includes hot rolling, one-time cold rolling or intermediate annealing, a continuous casting slab is heated to 900 to 125 [] ° C. in a gas heating furnace, or Average cross-sectional temperature of slab 900℃ without heating
5 to 5 in the temperature range of 900 to 1200℃
A method for producing a unidirectional electrical steel sheet, which involves preliminary hot rolling at 0%, followed by heating to 1,300 to 1,450°C under conditions of a current density of 20 A/c- or more by direct current heating in which the slab itself is regarded as a resistor, and then hot rolling. is the first invention, and the first invention further includes AD:O, [105 to 0.040%, N: 0.003
The second invention uses steel with ~0.015% of 81-7, and the third invention uses steel with S
b: o, steel containing 002 to 0.05% is used, and both the second and third inventions produce unidirectional electrical steel sheets by performing the same treatment as the first invention. The main points are as follows.

(作  用) 以下に本発明における鋼組成の限定理由を述べる。(for production) The reasons for limiting the steel composition in the present invention will be described below.

本発明で規制するC含有量については0.020%未満
では混粒組織や二次再結晶不安定それに磁気特性の劣化
をもたらす。一方、(1,(112%超では後工程で脱
炭に要する時間が長くなる。そこでC含有量を0.02
0〜0.12%とした。
Regarding the C content regulated in the present invention, if it is less than 0.020%, it causes a mixed grain structure, unstable secondary recrystallization, and deterioration of magnetic properties. On the other hand, if it exceeds (1, (112%), the time required for decarburization in the subsequent process will be longer.
The content was set at 0 to 0.12%.

Siは固有抵抗を増加し鉄損の低下を図る作用があるが
、2.0%未満ではその効果が少ない。
Si has the effect of increasing specific resistance and reducing iron loss, but if it is less than 2.0%, its effect is small.

方、その含有量が増えると、鋼が脆化し冷間圧延が困難
になるので4.0%以下とする。
On the other hand, if the content increases, the steel becomes brittle and cold rolling becomes difficult, so the content should be 4.0% or less.

MnはSまたはSeと結合し、それぞれインヒビターM
nS、MnSeを形成し、二次再結晶の発現に寄与する
成分である。この効果を有効にするために、Mnは0.
04〜0.209δ、Sは0.O1〜0.05%、かつ
もしくはまたはSeは0.005〜0.05%必要であ
る。
Mn combines with S or Se, respectively, to form the inhibitor M
It is a component that forms nS and MnSe and contributes to the development of secondary recrystallization. To enable this effect, Mn is 0.
04-0.209δ, S is 0. O1 to 0.05% and/or Se 0.005 to 0.05% are required.

さらに、インヒビターとしてAl1 Nを用いた場合は
、AgNを自°効に作用させるためには八Ω:0.00
5〜0.04%、N :0.003〜0.015%が必
要である。またsb添加する場合には、その効果を発揮
さすためには、0.002〜0.05%が必要である。
Furthermore, when Al1N is used as an inhibitor, 8Ω: 0.00 is required to make AgN act self-effectively.
5 to 0.04%, and N: 0.003 to 0.015%. Further, when adding sb, 0.002 to 0.05% is required to exhibit its effect.

予備圧延は耳割れの発生を防ぐために5%以上にて行う
必要がある。さらにスラブ内部の結晶粒成長抑制効果を
高めるには15%以上とすることが好ましい。一方、5
0%以上行うとスラブの形状が不安定となり通電加熱炉
内への装入、電極の押し付けが困難となる。そのため5
〜50%の変形とした。予備熱延の温度は圧延機の負荷
から900℃を下限とし、一方、この温度が高くなると
結晶粒が大きくなるので1250℃を上限とする。また
、連鋳スラブを鋳造後速やかに加熱することなく通電加
熱する際も下限を同様に900℃とした。
Pre-rolling must be carried out at 5% or more in order to prevent edge cracking. Further, in order to enhance the effect of suppressing crystal grain growth inside the slab, it is preferable that the content is 15% or more. On the other hand, 5
If it exceeds 0%, the shape of the slab becomes unstable, making it difficult to charge it into an energized heating furnace and to press the electrode. Therefore 5
The deformation was ~50%. The temperature of preliminary hot rolling is set at a lower limit of 900° C. due to the load on the rolling mill, and on the other hand, as the temperature increases, crystal grains become larger, so the upper limit is set at 1250° C. Further, when the continuously cast slab was electrically heated without being heated immediately after casting, the lower limit was similarly set to 900°C.

電流密度は20 A / cd以下では、1300℃以
上の、8度に上げるのに、長時間を要するため2OA/
c+#を下限とした。
If the current density is below 20 A/cd, it takes a long time to raise the temperature to 8 degrees, which is over 1300 degrees Celsius, so 2 OA/cd is required.
The lower limit was c+#.

通電加熱の加熱温度の下限1300℃はインヒビターM
nSの固溶のため、上限1450℃はスラブの溶融防止
のためとした。
The lower limit of the heating temperature for electrical heating is 1300℃, which is inhibitor M.
Due to the solid solution of nS, the upper limit of 1450°C was set to prevent melting of the slab.

この]’fi熱延後、通電加熱され所定の温度で所定の
時間保持され速やかに熱延され、急冷され熱延コイルが
作られる。
After hot-rolling, the coil is electrically heated, held at a predetermined temperature for a predetermined time, and then quickly hot-rolled and rapidly cooled to produce a hot-rolled coil.

以降は公知の一回冷延もしくは中間焼鈍をはさむ量器以
上の冷延を行い成品を製造する。
Thereafter, the finished product is manufactured by performing known cold rolling once or by cold rolling with intermediate annealing.

高温での耳割れも、通電加熱時に予備熱延で与えられた
歪を駆動力として再結晶が進行するため、結晶粒の粗大
化が抑制され粒界は弱まらないため表面近傍に割れが生
ずることなく耳割れの発生は極めて少なくなる。
Edge cracking at high temperatures also occurs when recrystallization progresses using the strain imparted during pre-hot rolling during electrical heating as a driving force, which suppresses coarsening of crystal grains and does not weaken grain boundaries, resulting in cracks near the surface. The occurrence of ear cracking is extremely reduced.

同時にスラブ内結晶粒成長がほとんど起らない0.27
mm+4の成品製造に於いて、従来の態量圧延は不要で
タンデム圧延法で、従来の特性が1すられることになる
At the same time, grain growth within the slab hardly occurs 0.27
In manufacturing a product of mm+4, conventional weight rolling is not necessary and the tandem rolling method improves the conventional properties by 1.

(実 施 例) 本発明の実施例を第1表に示す。第2表にその製鋼後の
成分を示す。
(Examples) Examples of the present invention are shown in Table 1. Table 2 shows the components after steel making.

条件として通電量はll0A/eJ、熱延仕上げ圧延げ
温度の平均は1000〜1100℃、熱延厚さは2.3
龍である。O,17m+*の成品は中間厚1.301+
1の板を焼鈍をはさむ量器の冷延で製造した。他の成品
冷延−回で製造している。
The conditions are that the amount of current is 110A/eJ, the average hot-rolling finish rolling temperature is 1000 to 1100°C, and the hot-rolling thickness is 2.3.
It's a dragon. O, 17m+* product has an intermediate thickness of 1.301+
A plate of No. 1 was produced by cold rolling on a scale with intervening annealing. Other finished products are produced by cold rolling.

(発明の効果) 以上説明したように、この発明によれば耳割れ発生率を
最小に抑え、しかも線状細粒発生率を殆ど皆無にするこ
とかでき、薄手成品の製造も容易になしうろことが可能
である。
(Effects of the Invention) As explained above, according to the present invention, it is possible to minimize the incidence of edge cracking, and also to almost eliminate the incidence of linear fine grains, and to easily manufacture thin products. is possible.

復代理人sub-agent

Claims (1)

【特許請求の範囲】 1、C:0.02〜0.12%、Si:2.0〜4.0
%、Mn:0.04〜0.20%、S:0.01〜0.
05%およびSe:0.005〜0.05%の1種また
は2種を含み、残部が鉄及び不可避的不純物からなる電
磁鋼スラブを熱延し、一回冷延又は中間焼鈍をはさむ二
回以上の冷延工程を含む一方向性電磁鋼板製造法におい
て、連続鋳造スラブをガス加熱炉で900〜1250℃
に加熱し、または加熱することなくスラブ断面平均温度
900℃以上で、かつ、900〜1200℃の温度領域
で5〜50%の予備熱延し、引続きスラブ自身を抵抗体
と見做す直接通電加熱により電流密度20A/cm^2
以上の条件で1300〜1450℃に加熱後熱延する一
方向性電磁鋼板の製造方法。 2、C:0.02〜0.12%、Si:2.0〜4.0
%、Mn:0.04〜0.20%、S:0.01〜0.
05%およびSe:0.005〜0.05%の1種また
は2種、Al:0.005〜0.040%、N:0.0
03〜0.015%を含み、残部が鉄及び不可避的不純
物からなる電磁鋼スラブを熱延し、一回冷延又は中間焼
鈍をはさむ二回以上の冷延工程を含む一方向性電磁鋼板
製造法において、連続鋳造スラブをガス加熱炉で900
〜1250℃に加熱し、または加熱することなくスラブ
断面平均温度900℃以上で、かつ、900〜1200
℃の温度領域で5〜50%の予備熱延し、引続きスラブ
自身を抵抗体と見做す直接通電加熱により電流密度20
A/cm^2以上の条件で1300〜1450℃に加熱
後熱延する一方向性電磁鋼板の製造方法。 3、C:0.02〜0.12%、Si:2.0〜4.0
%、Mn:0.04〜0.20%、S:0.01〜0.
05%およびSe:0.005〜0.05%の1種また
は2種、Sb:0.002〜0.05%を含み、残部が
鉄及び不可避的不純物からなる電磁鋼スラブを熱延し、
一回冷延又は中間焼鈍をはさむ二回以上の冷延工程を含
む一方向性電磁鋼板製造法において、 連続鋳造スラブをガス加熱炉で900〜1250℃に加
熱し、または加熱することなくスラブ断面平均温度90
0℃以上で、かつ、900〜1200℃の温度領域で5
〜50%の予備熱延し、引続きスラブ自身を抵抗体と見
做す直接通電加熱により電流密度20A/cm^2以上
の条件で1300〜1450℃に加熱後熱延する一方向
性電磁鋼板の製造方法。
[Claims] 1. C: 0.02-0.12%, Si: 2.0-4.0
%, Mn: 0.04-0.20%, S: 0.01-0.
05% and Se: 0.005 to 0.05%, and the remainder is iron and unavoidable impurities. Hot rolling is performed, and cold rolling is carried out once or twice with intermediate annealing in between. In the unidirectional electrical steel sheet manufacturing method that includes the above cold rolling process, continuous casting slabs are heated to 900 to 1250°C in a gas heating furnace.
Preliminary hot rolling of 5 to 50% in the temperature range of 900 to 1,200 degrees Celsius with or without heating at an average cross-sectional temperature of 900 degrees Celsius or higher, followed by direct energization in which the slab itself is regarded as a resistor. Current density 20A/cm^2 by heating
A method for producing a grain-oriented electrical steel sheet, which is heated to 1300 to 1450°C and then hot rolled under the above conditions. 2, C: 0.02-0.12%, Si: 2.0-4.0
%, Mn: 0.04-0.20%, S: 0.01-0.
05% and Se: 0.005-0.05%, Al: 0.005-0.040%, N: 0.0
Production of unidirectional electrical steel sheets, which involves hot rolling an electrical steel slab containing 0.03 to 0.015%, with the balance consisting of iron and unavoidable impurities, and cold rolling once or two or more times with intermediate annealing in between. In the method, continuous casting slabs are heated in a gas heating furnace for 900 m
The average cross-sectional temperature of the slab is 900°C or higher, either by heating to ~1250°C or without heating, and from 900 to 1200°C.
Preliminary hot rolling of 5 to 50% in the temperature range of ℃, followed by direct current heating, which treats the slab itself as a resistor, to a current density of 20
A method for producing a unidirectional electrical steel sheet, which comprises heating to 1300 to 1450°C and then hot rolling under conditions of A/cm^2 or more. 3, C: 0.02-0.12%, Si: 2.0-4.0
%, Mn: 0.04-0.20%, S: 0.01-0.
05% and one or two of Se: 0.005 to 0.05%, Sb: 0.002 to 0.05%, and the balance is iron and inevitable impurities.
In a unidirectional electrical steel sheet manufacturing method that includes one cold rolling or two or more cold rolling steps with intermediate annealing, a continuously cast slab is heated to 900 to 1250°C in a gas heating furnace, or the slab cross section is processed without heating. Average temperature 90
5 in the temperature range of 0℃ or higher and 900 to 1200℃
A unidirectional electrical steel sheet that is pre-hot-rolled to ~50%, then heated to 1300-1450°C at a current density of 20A/cm^2 or more by direct current heating, which treats the slab itself as a resistor, and then hot-rolled. Production method.
JP8511489A 1989-04-04 1989-04-04 Production of grain-oriented silicon steel plate Pending JPH02263921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8511489A JPH02263921A (en) 1989-04-04 1989-04-04 Production of grain-oriented silicon steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8511489A JPH02263921A (en) 1989-04-04 1989-04-04 Production of grain-oriented silicon steel plate

Publications (1)

Publication Number Publication Date
JPH02263921A true JPH02263921A (en) 1990-10-26

Family

ID=13849602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8511489A Pending JPH02263921A (en) 1989-04-04 1989-04-04 Production of grain-oriented silicon steel plate

Country Status (1)

Country Link
JP (1) JPH02263921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617130A (en) * 1991-03-29 1994-01-25 Nippon Steel Corp Hot-rolling method for continuously cast slab for grain oriented electrical steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617130A (en) * 1991-03-29 1994-01-25 Nippon Steel Corp Hot-rolling method for continuously cast slab for grain oriented electrical steel sheet
JPH075976B2 (en) * 1991-03-29 1995-01-25 新日本製鐵株式会社 Hot Rolling Method for Continuously Cast Slabs for Unidirectional Electrical Steel Sheets

Similar Documents

Publication Publication Date Title
JP6950723B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPS631371B2 (en)
JP3369443B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH02263921A (en) Production of grain-oriented silicon steel plate
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JP3849146B2 (en) Method for producing unidirectional silicon steel sheet
JPS6242968B2 (en)
JP3133855B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3336172B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP2533987B2 (en) Hot rolling method for continuous cast slab for unidirectional electrical steel sheet.
JP2579863B2 (en) Manufacturing method of ultra-high silicon electrical steel sheet
JPS6210213A (en) Production of grain oriented silicon steel sheet having good electromagnetic characteristic
JPH02263922A (en) Production of grain-oriented silicon steel plate reduced in iron loss
JPH0678573B2 (en) Method for producing grain-oriented electrical steel sheet with excellent magnetic properties
JPH05117751A (en) Method for hot-rolling continuously cast slab for grain-oriented electrical steel sheet
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JPH066747B2 (en) Method for producing unidirectional silicon steel sheet having high magnetic flux density and low iron loss
JP3369371B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH1030125A (en) Production of grain oriented silicon steel sheet
JPS6346130B2 (en)
JPH09170020A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPS621458B2 (en)
JPH05255753A (en) Production of nonoriented silicon steel sheet
JPH075976B2 (en) Hot Rolling Method for Continuously Cast Slabs for Unidirectional Electrical Steel Sheets
JPH11293339A (en) Manufacture of unidirectional magnetic steel plate