JPH11293339A - Manufacture of unidirectional magnetic steel plate - Google Patents

Manufacture of unidirectional magnetic steel plate

Info

Publication number
JPH11293339A
JPH11293339A JP10099635A JP9963598A JPH11293339A JP H11293339 A JPH11293339 A JP H11293339A JP 10099635 A JP10099635 A JP 10099635A JP 9963598 A JP9963598 A JP 9963598A JP H11293339 A JPH11293339 A JP H11293339A
Authority
JP
Japan
Prior art keywords
hot
slab
rolled
annealing
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10099635A
Other languages
Japanese (ja)
Inventor
Yosuke Kurosaki
洋介 黒崎
Norito Abe
憲人 阿部
Kiyokazu Ichimura
潔一 市村
Nobuo Tachibana
伸夫 立花
Kentaro Chikuma
▲顕▼太郎 筑摩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10099635A priority Critical patent/JPH11293339A/en
Publication of JPH11293339A publication Critical patent/JPH11293339A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily and stably improve the magnetic characteristic at a low cost by controlling the hot-rolling of a slab of a specified composition consisting of C, Si, Mn, Al, N, S, Se and Fe the annealing of a hot-rolled sheet to realize a specified thickness and a specified grain size of W17/50, B8 (T). SOLUTION: A slab having the composition consisting of, by weight, 0.02-0.15% C, 2.5-4.0% Si, 0.02-0.20% Mn, 0.015-0.065 Sol. Al, 0.0030-0.0150% N, 0.005-0.040% one or more kinds of S and Se, and 0.003-0.3% one or more kinds of Sb, Sn, Cu, Mo and B as necessary, and the balance substantially Fe, is heated to 1320-1490 deg.C with the heating speed of 5 deg.C/second from 1200 deg.C, and hot-rolled. After the hot-rolled sheet is annealed at 900-1100 deg.C, the cold- rolling, decarburizing annealing, the final finish-annealing and the final finish- coating are executed. A unidirectional magnetic steel plate of 0.20-0.55 mm in product thickness, 1.5-5.5 mm in mean grain size, and to satisfy the inequalities of 0.5884l<1.9154> X<t> <=W17/50 (W/kg)<=0.7558e, 1.80<=B8(T)<=1.88 (where, (t) is the thickness mm) can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、変圧器等の鉄心に
使用される一方向性電磁鋼板の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet used for an iron core such as a transformer.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は主に変圧器や発電機
の鉄心材料に使用される。一方向性電磁鋼板は、製造工
程の仕上焼鈍において二次再結晶を利用して{110}
<001>方位、いわゆるゴス方位に高度に集積させた
組織として低鉄損を得ている。二次再結晶を安定して発
現させるには、組織、集合組織、インヒビターを制御す
ることが重要である。インヒビタ−については、仕上焼
鈍を行うまでに鋼中に100〜1000オングストロー
ム程度の析出分散相を均一微細に存在させることが必要
で、AlN,MnS,MnSeなどが一般的に知られて
いる。これらは連続鋳造において粗大に析出してしまう
ので,スラブを1250℃以上の高温に加熱し、十分溶
体化させた後、熱延でMnS,MnSeを均一微細に析
出させ、熱延板焼鈍でAlNを均一微細に析出させ、更
には、熱延から脱炭焼鈍までに結晶粒界に粒界偏析元素
のSb,Sn,Cu,Mo,Bなどを偏析させることが
重要である。
2. Description of the Related Art Grain-oriented electrical steel sheets are mainly used for core materials of transformers and generators. The grain-oriented electrical steel sheet uses {110} by secondary recrystallization in the finish annealing in the manufacturing process.
A low iron loss is obtained as a structure highly integrated in the <001> direction, the so-called Goss direction. In order to stably express secondary recrystallization, it is important to control the tissue, texture, and inhibitor. As for the inhibitor, it is necessary that a precipitate-dispersed phase of about 100 to 1000 angstroms is uniformly and finely present in the steel before the finish annealing is performed, and AlN, MnS, MnSe and the like are generally known. Since these are coarsely precipitated in continuous casting, the slab is heated to a high temperature of 1250 ° C. or more to sufficiently form a solution, and then MnS and MnSe are uniformly and finely precipitated by hot rolling, and AlN is formed by hot rolling sheet annealing. It is important to uniformly and finely precipitate Sb, Sn, Cu, Mo, B, and the like of grain boundary segregating elements at crystal grain boundaries from hot rolling to decarburizing annealing.

【0003】一方向性電磁鋼板の代表的な製造方法とし
ては、米国特許1965559号、米国特許25333
51号及び米国特許2599340号明細書に記載の発
明などが上げられ、インヒビターとしてMnSを用い、
中間焼鈍を含む複数の冷延と複数の焼鈍を施すことを特
徴としている。しかし、これらの方法では工程が多く、
製造コストの上昇は免れなかった。
[0003] As a typical method for producing a grain-oriented electrical steel sheet, US Pat. No. 1,965,559 and US Pat.
No. 51 and U.S. Pat. No. 2,599,340, and the like, using MnS as an inhibitor,
It is characterized by performing a plurality of cold rollings including an intermediate annealing and a plurality of annealings. However, these methods involve many steps,
Rising production costs were inevitable.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術では、低
コスト化、生産性の向上については満足できるものでは
なかった。また、スラブを高温加熱するとスラブが異常
粒成長し、熱延板の組織が不均一となり、磁気特性がば
らついたり、劣化を招きやすかった。
However, the above-mentioned prior art has not been satisfactory in terms of cost reduction and improvement in productivity. In addition, when the slab was heated to a high temperature, the slab grew abnormally, and the structure of the hot-rolled sheet became non-uniform, and the magnetic properties were likely to vary or deteriorate.

【0005】本発明は、このような一方向性電磁鋼板製
造上の課題に対して、Si量をはじめとする成分、板
厚、製品平均結晶粒径、さらには結晶方位の組合わせを
抜本的に見直すとともに、スラブ加熱の昇温速度、スラ
ブ加熱温度、高温加熱に供するスラブに熱間変形を加え
ることなど細かな制御を行い、製造工程を簡素化するこ
とにより安価で生産性が高く、かつ磁気特性も従来と同
等以上でばらつきの少ない一方向性電磁鋼板の製造方法
を提供するものである。
[0005] The present invention solves such a problem in the production of a grain-oriented electrical steel sheet by drastically combining combinations of components including Si content, sheet thickness, product average crystal grain size, and crystal orientation. The slab heating rate, the slab heating temperature, and fine control such as applying hot deformation to the slab to be subjected to high-temperature heating are performed, and the manufacturing process is simplified to reduce costs and increase productivity. An object of the present invention is to provide a method for producing a grain-oriented electrical steel sheet having a magnetic property equal to or higher than the conventional one and having little variation.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は以下の通
りである。 (1) 重量%で、C:0.02〜0.15%、Si:2.
5〜4.0%、Mn:0.02〜0.20%、Sol.A
l:0.015〜0.065%、N:0.0030〜
0.0150%、S及びSeのうちの1種又は2種合
計:0.005〜0.040%を含有し、残部は実質的
にFeの組成になるスラブを加熱したのち熱延し、熱延
板焼鈍し、冷延し、脱炭焼鈍し、最終仕上焼鈍し、そし
て最終コ−ティングを施す工程によって一方向性電磁鋼
板を製造する方法において、スラブを1200℃以上で
の高温域の加熱を5℃/min以上の昇温速度で行って、1
320〜1490℃に加熱し、熱延板焼鈍を900〜1
100℃で行い、製品板厚が0.20〜0.55mmと
し、平均結晶粒径が1.5〜5.5mm、W17/50 が下記
式で示されることを特徴とする1.80≦B8(T)≦1.
88の一方向性電磁鋼板の製造方法。 0.5884e1.9154×t≦ W17/50(W/kg) ≦ 0.7558e
1.7378×t ただし、t:板厚(mm) (2) 重量%で、C:0.02〜0.15%、Si:1.
5〜2.5%未満、Mn:0.02〜0.20%、Sol.
Al:0.015〜0.065%、N:0.0030〜
0.0150%、S及びSeのうちの1種又は2種合
計:0.005〜0.040%を含有し、残部実質的に
Feの組成になるスラブをスラブ加熱したのち熱延し、
熱延板焼鈍し、冷延し、脱炭焼鈍し、最終仕上焼鈍し、
そして最終コ−ティングを施す工程によって一方向性電
磁鋼板を製造する方法において、スラブを1200℃以
上での高温域の加熱を5℃/min以上の昇温速度で行っ
て、1320〜1490℃に加熱し、熱延板焼鈍を90
0〜1100℃で行い、製品板厚が0.20〜0.55
mmとし、平均結晶粒径が1.5〜5.5mm、W17/50 が
下記式で示されることを特徴とする1.88≦B8(T)≦
1.95の一方向性電磁鋼板の製造方法。 0.5884e1.9154×t≦ W17/50(W/kg) ≦ 0.7558e
1.7378×t ただし、t:板厚(mm) (3) 1320℃〜1490℃の温度範囲に加熱するスラ
ブは、50%以下の圧下率で熱間変形を加えたスラブで
あることを特徴とする前記(1) 又は(2) 項に記載の一方
向性電磁鋼板の製造方法。 (4) スラブにさらに、Sb,Sn,Cu,Mo及びBか
ら選ばれる1種又は2種以上を各々の元素量で0.00
3〜0.3重量%含有することを特徴とする前記(1)乃
至(3)項の何れか1項に記載の一方向性電磁鋼板の製造
方法。
The gist of the present invention is as follows. (1) By weight%, C: 0.02 to 0.15%, Si: 2.
5 to 4.0%, Mn: 0.02 to 0.20%, Sol. A
l: 0.015 to 0.065%, N: 0.0030 to
0.0150%, one or two of S and Se in total: 0.005 to 0.040%, and the remainder is hot-rolled after heating a slab substantially having a Fe composition. In a method of manufacturing a grain-oriented electrical steel sheet by the steps of annealing a rolled sheet, cold rolling, decarburizing annealing, final finishing annealing, and final coating, a slab is heated at a high temperature of 1200 ° C. or more. At a heating rate of 5 ° C./min or more.
Heat to 320 to 1490 ° C and perform hot rolled sheet annealing at 900 to 1
It is carried out at 100 ° C., the product thickness is 0.20 to 0.55 mm, the average crystal grain size is 1.5 to 5.5 mm, and W17 / 50 is represented by the following formula: 1.80 ≦ B8 (T) ≦ 1.
88. A method for producing a grain-oriented electrical steel sheet. 0.5884e 1.9154 × t ≦ W17 / 50 (W / kg) ≦ 0.7558e
1.7378 × t , where t: plate thickness (mm) (2) In weight%, C: 0.02 to 0.15%, Si: 1.
5 to less than 2.5%, Mn: 0.02 to 0.20%, Sol.
Al: 0.015 to 0.065%, N: 0.0030 to
A slab containing 0.0150%, one or two of S and Se: 0.005 to 0.040%, and the balance substantially consisting of Fe is hot-rolled after slab heating;
Hot rolled sheet annealing, cold rolling, decarburizing annealing, final finish annealing,
Then, in the method of manufacturing a grain-oriented electrical steel sheet by a step of applying a final coating, the slab is heated at a temperature of 1200 ° C. or higher in a high temperature range at a rate of 5 ° C./min or higher to reach 1320 to 1490 ° C. Heat and perform hot rolled sheet annealing 90
0 to 1100 ° C, product thickness is 0.20 to 0.55
mm, the average crystal grain size is 1.5 to 5.5 mm, and W17 / 50 is represented by the following formula: 1.88 ≦ B8 (T) ≦
1. A method for producing a unidirectional magnetic steel sheet. 0.5884e 1.9154 × t ≦ W17 / 50 (W / kg) ≦ 0.7558e
1.7378 × t where t: plate thickness (mm) (3) The slab to be heated to a temperature range of 1320 ° C. to 1490 ° C. is a slab subjected to hot deformation at a rolling reduction of 50% or less. The method for producing a grain-oriented electrical steel sheet according to the above (1) or (2). (4) One or more elements selected from Sb, Sn, Cu, Mo and B are further added to the slab in an amount of 0.005% for each element.
The method for producing a grain-oriented electrical steel sheet according to any one of the above (1) to (3), wherein the content is 3 to 0.3% by weight.

【0007】[0007]

【発明の実施の形態】以下、本発明の詳細について説明
する。本発明者らは、このような一方向性電磁鋼板の鉄
損特性や製造工程に対して具備すべき条件について種々
検討を加えた結果、Si量をはじめとする成分、板厚、
製品平均結晶粒径、さらには結晶方位の組合わせを抜本
的に見直すとともに、スラブ加熱の昇温速度、スラブ加
熱温度、高温加熱に供するスラブに熱間変形を加えるこ
となど細かな制御を行い、製造工程を簡素化することに
より安価で生産性が高く、かつ磁気特性も従来と同等以
上でばらつきの少ない一方向性電磁鋼板を製造すること
に成功した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below. The present inventors have conducted various studies on the conditions to be provided for the iron loss characteristics and the manufacturing process of such a grain-oriented electrical steel sheet. As a result, the Si content and other components, the sheet thickness,
In addition to drastically reviewing the combination of product average crystal grain size and crystal orientation, slab heating rate, slab heating temperature, fine control such as applying hot deformation to slab to be subjected to high temperature heating, By simplifying the manufacturing process, we succeeded in manufacturing a unidirectional magnetic steel sheet that is inexpensive, has high productivity, and has magnetic characteristics equal to or higher than the conventional one and little variation.

【0008】まず本発明の成分組成を限定した理由を説
明する。Cは、下限0.02%未満であれば2次再結晶
が不安定となり、上限の0.15%は、これよりCが多
くなると脱炭所要時間が長くなり経済的に不利となるた
めに限定した。
First, the reasons for limiting the component composition of the present invention will be described. If the lower limit of C is less than 0.02%, the secondary recrystallization becomes unstable, and the upper limit of 0.15% is because if more C, the decarburization time becomes longer, which is economically disadvantageous. Limited.

【0009】Siは、下限1.5%未満では渦電流損が
増大し良好な鉄損が得られず、上限4.0%を超えると
冷延性が著しく劣化する。
[0009] If the lower limit of Si is less than 1.5%, eddy current loss increases and good iron loss cannot be obtained, and if the upper limit exceeds 4.0%, the cold-rolling property deteriorates remarkably.

【0010】Mnは、一方向性電磁鋼板としての磁気特
性を得るための二次再結晶を左右する主要インヒビター
構成元素である。下限0.02%未満であれば二次再結
晶を生じさせるのに必要なMnSの絶対量が不足し、上
限0.20%を超えるとスラブ加熱時のMnSの固溶が
困難になるばかりでなく、熱延時の析出サイズが粗大化
しやすく、インヒビターとしての適切サイズ分布が損な
われ、磁気特性を劣化させる。
[0010] Mn is a main inhibitor constituent element that affects secondary recrystallization for obtaining magnetic properties as a grain-oriented electrical steel sheet. When the lower limit is less than 0.02%, the absolute amount of MnS necessary for causing secondary recrystallization is insufficient, and when the upper limit is more than 0.20%, solid solution of MnS during slab heating becomes difficult. In addition, the precipitation size during hot rolling tends to be coarsened, and the appropriate size distribution as an inhibitor is impaired, deteriorating the magnetic properties.

【0011】S、Seは、MnS、MnSeを形成する
ために必要な元素で、これらの1種または2種の合計が
下限0.005%未満ではMnS,MnSeの絶対量が
不足し、上限0.040%を超えると熱間割れを生じ、
また、最終仕上焼鈍での純化が困難となる。
S and Se are elements necessary for forming MnS and MnSe. If the total of one or two of them is less than the lower limit of 0.005%, the absolute amounts of MnS and MnSe are insufficient and the upper limit is 0. If it exceeds 0.040%, hot cracking occurs,
In addition, purification by final finish annealing becomes difficult.

【0012】Sol.Alは、AlNを形成するために必要
な元素で,下限0.015%未満ではAlNの絶対量が
不足し、上限0.065%を超えるとAlNの適当な分
散状態が得られない。
Sol. Al is an element necessary for forming AlN. When the lower limit is less than 0.015%, the absolute amount of AlN is insufficient, and when the upper limit is more than 0.065%, an appropriate dispersion state of AlN is obtained. I can't.

【0013】Nは、AlNを形成するために必要な元素
で、下限0.0030%未満ではAlNの絶対量が不足
し、上限0.0150%を超えるとAlNの適当な分散
状態が得られない。
N is an element necessary for forming AlN. If the lower limit is less than 0.0030%, the absolute amount of AlN is insufficient, and if the upper limit is more than 0.0150%, an appropriate dispersion state of AlN cannot be obtained. .

【0014】Sb,Sn,Cu,MoおよびBは粒界に
偏析させ、2次再結晶を安定化させるが、各々の元素量
が下限0.003%未満では偏析量が不足し、上限を
0.3%にしたのは経済的理由と脱炭性の悪化によるも
のである。添加する元素は1種でもよいし、2種以上添
加してもよい。
Sb, Sn, Cu, Mo and B segregate at the grain boundaries to stabilize the secondary recrystallization, but if the amount of each element is less than the lower limit of 0.003%, the amount of segregation will be insufficient and the upper limit will be 0. The reason for the decrease of 0.3% was due to economic reasons and the deterioration of decarburization. One type of element may be added, or two or more types may be added.

【0015】次に、本発明の一方向性電磁鋼板の製造方
法について説明する。上記のごとく成分調整した溶鋼
は、スラブに鋳造され熱延されコイルに仕上げられる。
その際、スラブ加熱の1200℃以上の高温域の加熱は5℃
/min以上の昇温速度で行う。
Next, a method of manufacturing the grain-oriented electrical steel sheet according to the present invention will be described. The molten steel whose components are adjusted as described above is cast into a slab, hot-rolled, and finished into a coil.
At that time, slab heating in the high temperature range of 1200 ° C or more is 5 ° C.
Perform at a heating rate of / min or more.

【0016】図1に本発明者が行った実験結果を示す。
C:0.065%、Si:3.00%、Mn:0.08
%、S:0.026%、Sol.Al:0.030%、N:
0.0089%を含有するスラブを連続鋳造し、誘導加
熱炉で種々の加熱速度で1350℃にスラブ加熱した
後、板厚2.30mmの熱延板を作成した。そして、10
80℃の熱延板焼鈍を行い、0.300mmに冷延し、脱
炭焼鈍、仕上げ焼鈍、平坦化・二次皮膜塗布焼き付け焼
鈍を行った製品のW17/50 の関係を示す。
FIG. 1 shows the results of experiments conducted by the present inventors.
C: 0.065%, Si: 3.00%, Mn: 0.08
%, S: 0.026%, Sol. Al: 0.030%, N:
A slab containing 0.0089% was continuously cast and heated to 1350 ° C. at various heating rates in an induction heating furnace, and then a hot-rolled sheet having a thickness of 2.30 mm was produced. And 10
The relationship of W17 / 50 is shown for a product which has been hot-rolled at 80 ° C., cold-rolled to 0.300 mm, decarburized, finished, flattened and coated with a secondary coating.

【0017】図2には、C:0.037%、Si:2.
00%、Mn:0.08%、S:0.028%、Sol.A
l:0.032%、N:0.0077%を含有するスラ
ブを連続鋳造し、誘導加熱炉で種々の加熱速度で135
0℃にスラブ加熱した後,板厚2.30mmの熱延板を作
成した。そして、1080℃の熱延板焼鈍を行い、0.
300mmに冷延し、脱炭焼鈍、仕上げ焼鈍、平坦化・二
次皮膜塗布焼き付け焼鈍を行った製品のW17/50 の関係
を示す。
FIG. 2 shows that C: 0.037%, Si:
00%, Mn: 0.08%, S: 0.028%, Sol.
A slab containing l: 0.032% and N: 0.0077% was continuously cast and 135 at various heating rates in an induction heating furnace.
After heating the slab to 0 ° C., a hot-rolled sheet having a thickness of 2.30 mm was prepared. Then, hot rolled sheet annealing at 1080 ° C.
The relationship of W17 / 50 of the product cold rolled to 300 mm and subjected to decarburizing annealing, finish annealing, flattening and secondary film coating baking annealing is shown.

【0018】図1,図2の実験では、1200℃以上の
スラブ加熱を5℃/min 未満では一部に二次再結晶不良
部があった。5℃/min 以上では、平均結晶粒径は2.
2〜2.6mmであった。1200℃以上のスラブ加熱を
5℃/min 未満で行うと鉄損のばらつきが大きく、鉄損
の悪いものが発生する場合があることが分かる。5℃/
min 以上では安定して所期の鉄損(下式)を得られる。 0.5884e1.9154×t≦ W17/50(W/kg) ≦ 0.7558e
1.7378×t ただし、t:板厚(mm)
In the experiments shown in FIGS. 1 and 2, when the slab heating at 1200 ° C. or more was performed at a rate of less than 5 ° C./min, there were some defective secondary recrystallization portions. At 5 ° C./min or more, the average crystal grain size is 2.
2 to 2.6 mm. It can be seen that if slab heating at 1200 ° C. or more is performed at a rate of less than 5 ° C./min, the variation in iron loss is large, and there may be cases where poor iron loss occurs. 5 ℃ /
Above min, the desired iron loss (the following formula) can be obtained stably. 0.5884e 1.9154 × t ≦ W17 / 50 (W / kg) ≦ 0.7558e
1.7378 × t , where t: plate thickness (mm)

【0019】この原因は次のように考える。すなわち、
スラブを高温加熱するとスラブが異常粒成長し、熱延板
の組織が不均一となり、磁気特性のばらつきを招きやす
い。そこで、1200℃以上の高温域の加熱を5℃/min
以上の昇温速度とすると、スラブ加熱時の結晶粒の異常
粒成長を抑制し、熱延板組織が均一化し、磁気特性のば
らつきが抑えられる。
The cause is considered as follows. That is,
When the slab is heated at a high temperature, abnormal grain growth of the slab occurs, the structure of the hot-rolled sheet becomes non-uniform, and the magnetic properties tend to vary. Therefore, heating at a high temperature range of 1200 ° C or higher
With the above rate of temperature increase, abnormal grain growth of crystal grains during slab heating is suppressed, the structure of the hot-rolled sheet is made uniform, and variations in magnetic properties are suppressed.

【0020】スラブ加熱温度は、1320℃〜1490
℃とするが,1320℃未満であるとインヒビターAl
N、MnS、MnSeの溶体化が不十分で二次再結晶が
安定せず、所期の鉄損を得られない。1490℃を超え
るとスラブが溶融する。1320℃〜1490℃の温度
範囲に加熱するスラブは、50%以下の圧下率で熱間変
形を加えるとスラブの柱状晶を破壊し、熱延板の組織の
均一化に有効で更に磁気特性が安定化する。上限の50
%は、これ以上圧下率を高くしても効果が飽和するため
である。
The slab heating temperature is from 1320 ° C. to 1490
° C, but below 1320 ° C, the inhibitor Al
The solution of N, MnS, and MnSe is insufficient, secondary recrystallization is not stabilized, and the desired iron loss cannot be obtained. If it exceeds 1490 ° C., the slab melts. A slab heated to a temperature range of 1320 ° C. to 1490 ° C. breaks columnar crystals of the slab when subjected to hot deformation at a rolling reduction of 50% or less, is effective in homogenizing the structure of a hot-rolled sheet, and has further improved magnetic properties. Stabilize. Upper limit of 50
% Is because the effect is saturated even if the rolling reduction is further increased.

【0021】スラブ加熱は、通常のガス加熱炉でも良い
が、誘導加熱炉、通電加熱炉でもかまわない。低温域を
ガス加熱炉、高温域を誘導加熱炉、通電加熱炉というよ
うに組み合わせてもよい。すなわち、スラブ加熱を 1)ガス加熱炉(低温域)−熱間変形(0%〜50%)−
ガス加熱炉(高温域) 2)ガス加熱炉(低温域)−熱間変形(0%〜50%)−
誘導加熱炉或いは通電加熱炉(高温域) 3)誘導加熱炉或いは通電加熱炉(低温域)−熱間変形
(0%〜50%)−ガス加熱炉(高温域) 4)誘導加熱炉或いは通電加熱炉(低温域)−熱間変形
(0%〜50%)−誘導加熱炉或いは通電加熱炉(高温
域) としてもかまわない。ここで熱間変形0%とは、例えば
2)を例にとると、低温域をガス加熱炉で加熱し、その後
熱間加工なしに誘導加熱炉、通電加熱炉で加熱すること
を意味する。
The slab heating may be performed by a normal gas heating furnace, but may be performed by an induction heating furnace or an electric heating furnace. The low temperature range may be combined with a gas heating furnace, and the high temperature range may be combined with an induction heating furnace or an electric heating furnace. That is, 1) gas heating furnace (low temperature range)-hot deformation (0% to 50%)-
Gas heating furnace (high temperature range) 2) Gas heating furnace (low temperature range)-Hot deformation (0% to 50%)-
Induction heating furnace or electric heating furnace (high temperature area) 3) Induction heating furnace or electric heating furnace (low temperature area)-hot deformation (0% to 50%)-gas heating furnace (high temperature area) 4) Induction heating furnace or electric current Heating furnace (low temperature range)-Hot deformation (0% to 50%)-Induction heating furnace or electric heating furnace (high temperature range) may be used. Here, 0% hot deformation means, for example,
Taking 2) as an example, it means that the low temperature region is heated by a gas heating furnace, and then heated by an induction heating furnace or an electric heating furnace without hot working.

【0022】スラブの1200℃以上の高温域の5℃/m
in以上の昇温速度で行う加熱を誘導加熱炉、或は通電加
熱炉で行うと、誘導加熱炉、通電加熱炉では非酸化性雰
囲気(例えば窒素など)でスラブ加熱できるので、ノロ
(鉄シリコン酸化物の溶融物)が発生せず、鋼板の表面
欠陥が減少したり、加熱炉炉床に堆積したノロの除去作
業が不要となる。熱間変形を加える前のスラブの加熱を
ガス加熱炉で行うと、誘導加熱炉、通電加熱炉よりも低
コストで生産性が高くスラブ加熱できる。
5 ° C./m in a high temperature range of 1200 ° C. or more of the slab
If the heating at a heating rate of at least in is performed in an induction heating furnace or an electric heating furnace, the slab heating can be performed in a non-oxidizing atmosphere (for example, nitrogen) in the induction heating furnace or the electric heating furnace. No oxide melt) is generated, the surface defects of the steel sheet are reduced, and the work of removing the slag accumulated on the hearth of the heating furnace becomes unnecessary. If the slab is heated in a gas heating furnace before applying hot deformation, the slab can be heated at a lower cost and with higher productivity than an induction heating furnace or an electric heating furnace.

【0023】熱延コイルは引き続き熱延板焼鈍を行い、
インヒビターの析出制御を行う。熱延板焼鈍では900
〜1100℃で30秒〜30分間焼鈍することを特長と
している。900℃未満ではインヒビターの析出不足で
二次再結晶が安定せず、1100℃を超えるとインヒビ
ターの粗大化による二次再結晶不良が発生しやすくな
る。
The hot-rolled coil continuously performs hot-rolled sheet annealing,
Inhibitor precipitation control is performed. 900 for hot rolled sheet annealing
It is characterized by annealing at 11100 ° C. for 30 seconds to 30 minutes. If the temperature is lower than 900 ° C., secondary recrystallization is not stabilized due to insufficient precipitation of the inhibitor. If the temperature is higher than 1100 ° C., secondary recrystallization failure due to the coarsening of the inhibitor tends to occur.

【0024】一方向性電磁鋼板の冷延は、通常中間焼鈍
を挟む2回以上の冷延によって製造されるが、本発明で
は一回の冷延で製造するのが特長であり、これにより低
コスト化、生産性の向上が図れる。脱炭焼鈍の条件は特
に規定はしないが、好ましくは700〜900℃の温度
範囲で30秒から30分間、湿潤水素または湿潤水素と
窒素の混合雰囲気で行うのがよい。
The cold-rolling of a grain-oriented electrical steel sheet is usually carried out by two or more cold-rolling steps with intermediate annealing, but the present invention is characterized in that it is produced by a single cold-rolling step. Cost and productivity can be improved. The conditions for the decarburization annealing are not particularly limited, but are preferably performed in a temperature range of 700 to 900 ° C. for 30 seconds to 30 minutes in wet hydrogen or a mixed atmosphere of wet hydrogen and nitrogen.

【0025】脱炭焼鈍後の鋼板表面には、仕上焼鈍にお
ける焼き付き防止、および絶縁皮膜形成のため、通常の
方法で焼鈍分離剤を塗布する。仕上焼鈍は、1000℃
以上で5時間以上、水素または窒素、またはそれらの混
合雰囲気で行う。その後は、余分な焼鈍分離剤を除去
し、コイルセットを矯正するための平坦化焼鈍を行い、
同時に二次皮膜を塗布、焼き付けする。
The surface of the steel sheet after the decarburizing annealing is coated with an annealing separating agent by a usual method to prevent seizure in finish annealing and to form an insulating film. Finish annealing is 1000 ° C
The above is performed for 5 hours or more in an atmosphere of hydrogen, nitrogen, or a mixture thereof. After that, remove excess annealing separating agent, perform flattening annealing to correct coil set,
At the same time, a secondary film is applied and baked.

【0026】製品板厚は0.20mmより薄くなった場
合、履歴損が増大したり、生産性が低下するので好まし
くない。また、0.55mmを超えた場合は、渦電流損が
増大したり、脱炭時間が長くなることによる生産性の低
下が生じるので好ましくない。製品の平均結晶粒径は、
1.5mmより小さくなった場合は履歴損が増大し、また
5.5mmを超えた場合は渦電流損が増大するので、いず
れも好ましくない。なお、米国特許2533351号、
および米国特許2599340号明細書による製品の平
均結晶粒径は1.0〜1.4mmである。
If the product thickness is smaller than 0.20 mm, the hysteresis loss increases and the productivity decreases, which is not preferable. On the other hand, if it exceeds 0.55 mm, it is not preferable because eddy current loss increases and productivity decreases due to a long decarburization time. The average grain size of the product is
If it is smaller than 1.5 mm, the hysteresis loss increases, and if it exceeds 5.5 mm, the eddy current loss increases. In addition, US Patent No. 2,533,351,
And the product according to U.S. Pat. No. 2,599,340 has an average grain size of from 1.0 to 1.4 mm.

【0027】図3に、C:0.065%、Si:3.0
0%、Mn:0.08%、S:0.026%、Sol.A
l:0.030%、N:0.0089%を含有するスラ
ブを誘導加熱炉で1200℃以上を10℃/minで昇温
し、1380℃で加熱し、熱延後、1080℃で熱延板
焼鈍し、一回の冷延により0.20〜0.55mmに仕上
げ、脱炭焼鈍、仕上げ焼鈍、平坦化・二次皮膜塗布焼き
付け焼鈍を行った製品の板厚とW17/50 の関係を示す。
Si量をはじめとする成分、板厚、製品平均結晶粒径、
さらには結晶方位の組合わせを抜本的に見直し、製造工
程をこれまでにない簡素なものにすることによって、下
式 0.5884e1.9154×t≦W17/50(W/kg) ≦ 0.7558e
1.7378×t ただし、t:板厚(mm) に示される安価で生産性高く、かつ磁気特性も従来と同
等以上である一方向性電磁鋼板を得られている。
FIG. 3 shows that C: 0.065%, Si: 3.0
0%, Mn: 0.08%, S: 0.026%, Sol. A
l: A slab containing 0.030% and N: 0.0089% is heated at 1200 ° C or higher at 10 ° C / min in an induction heating furnace, heated at 1380 ° C, hot rolled, and then hot rolled at 1080 ° C. The relationship between the sheet thickness and W17 / 50 of the product which has been subjected to sheet annealing, finished to 0.20 to 0.55 mm by one cold rolling, decarburized annealing, finished annealing, flattening and secondary film coating baking annealing Show.
Ingredients including Si content, plate thickness, product average crystal grain size,
Furthermore, by drastically revising the combination of crystal orientations and simplifying the manufacturing process as never before, the following equation was obtained : 0.5884e 1.9154 × t ≤ W17 / 50 (W / kg) ≤ 0.7558e
1.7378 × t Here, t: a unidirectional magnetic steel sheet which is inexpensive, has high productivity and has magnetic properties equal to or higher than the conventional steel sheet, represented by t: sheet thickness (mm).

【0028】図4に、C:0.039%、Si:2.0
0%、Mn:0.08%、S:0.026%、Sol.A
l:0.030%、N:0.0078%を含有するスラ
ブを誘導加熱炉で1200℃以上を10℃/minで昇温
し、1380℃で加熱し、熱延後、1080℃で熱延板
焼鈍し、一回の冷延により0.20〜0.55mmに仕上
げ、脱炭焼鈍、仕上げ焼鈍、平坦化・二次皮膜塗布焼き
付け焼鈍を行った製品の板厚とW17/50 の関係を示す。
Si量をはじめとする成分、板厚、製品平均結晶粒径、
さらには結晶方位の組み合わせを抜本的に見直し、製造
工程をこれまでにない簡素なものにすることによって、
下式 0.5884e1.9154×t≦W17/50(W/kg) ≦ 0.7558e
1.7378×t ただし、t:板厚(mm) に示される安価で生産性高く、かつ磁気特性も従来と同
等以上である一方向性電磁鋼板を得られている。
FIG. 4 shows that C: 0.039%, Si: 2.0
0%, Mn: 0.08%, S: 0.026%, Sol. A
l: A slab containing 0.030% and N: 0.0078% is heated in an induction heating furnace at 1200 ° C or higher at 10 ° C / min, heated at 1380 ° C, hot-rolled, and then hot-rolled at 1080 ° C. The relationship between the sheet thickness and W17 / 50 of the product which has been subjected to sheet annealing, finished to 0.20 to 0.55 mm by one cold rolling, decarburized annealing, finished annealing, flattening and secondary film coating baking annealing Show.
Ingredients including Si content, plate thickness, product average crystal grain size,
Furthermore, by drastically reviewing combinations of crystal orientations and simplifying the manufacturing process as never before,
The following formula 0.5884e 1.9154 × t ≦ W17 / 50 (W / kg) ≦ 0.7558e
1.7378 × t Here, t: a unidirectional magnetic steel sheet which is inexpensive, has high productivity and has magnetic properties equal to or higher than the conventional steel sheet, represented by t: sheet thickness (mm).

【0029】[0029]

【実施例】〔実施例1〕成分系Aとして、C:0.05
0%、Si:2.92%、Mn:0.08%、S:0.
022%、Sol.Al:0.023%、N:0.0088
%を含有するスラブを誘導加熱炉で1200℃以上の温
度域を種々の昇温速度で昇温し、1350℃にスラブ加
熱した。その後、2.0mmに熱間圧延し、1060℃で
熱延板焼鈍し、一回の冷延で0.300mmに冷延し製品
板厚とした。その後、脱炭焼鈍、仕上げ焼鈍、平坦化・
二次皮膜塗布焼き付け焼鈍し、製品とした。
EXAMPLES [Example 1] As component system A, C: 0.05
0%, Si: 2.92%, Mn: 0.08%, S: 0.
022%, Sol. Al: 0.023%, N: 0.0088
% In a temperature range of 1200 ° C. or higher at various heating rates in an induction heating furnace, and the slab was heated to 1350 ° C. Thereafter, the product was hot-rolled to 2.0 mm, annealed at 1060 ° C., and cold-rolled to 0.300 mm by one cold rolling to obtain a product sheet thickness. After that, decarburization annealing, finish annealing, flattening
The coating was baked and annealed to obtain a product.

【0030】一方、従来法を成分系Bとして、C:0.
038%、Si:3.05%、Mn:0.06%、S:
0.026%、Sol.Al:0.001%、N:0.00
37%を含有するスラブを誘導加熱炉で1200℃以上
の温度域を10℃/minの昇温速度で1350℃に加熱
し、熱間圧延して2.0mm厚のホットコイルとした。そ
して、840℃の中間焼鈍を挟む二回の冷延で0.30
0mmに冷延し製品板厚とした。その後、脱炭焼鈍、仕上
げ焼鈍、平坦化・二次皮膜塗布焼き付け焼鈍し製品とし
た。表1に示すように本発明例は、一回冷延法でかつ良
好な磁気特性を得られていることが分かる。
On the other hand, when the conventional method is used as the component system B, C: 0.
038%, Si: 3.05%, Mn: 0.06%, S:
0.026%, Sol. Al: 0.001%, N: 0.00
The slab containing 37% was heated in an induction heating furnace at a temperature range of 1200 ° C. or higher to 1350 ° C. at a rate of 10 ° C./min and hot-rolled to form a 2.0 mm thick hot coil. Then, 0.30 in two cold rollings with an intermediate annealing at 840 ° C.
The product was cold rolled to 0 mm to obtain a product thickness. Thereafter, decarburized annealing, finish annealing, flattening and secondary film coating baking annealing were performed to obtain a product. As shown in Table 1, it can be seen that in the example of the present invention, good magnetic properties were obtained by the single cold rolling method.

【0031】[0031]

【表1】 [Table 1]

【0032】〔実施例2〕成分系Aとして、C:0.0
31%、Si:2.10%、Mn:0.08%、S:
0.026%、Sol.Al:0.026%、N:0.00
90%を含有するスラブを誘導加熱炉で1200℃以上
の温度域を種々の昇温速度で昇温し、1350℃にスラ
ブ加熱した。その後,2.3mmに熱間圧延し、1040
℃で熱延板焼鈍し、一回の冷延で0.350mmに冷延し
製品板厚とした。その後、脱炭焼鈍、仕上げ焼鈍、平坦
化・二次皮膜塗布焼き付け焼鈍し製品とした。
Example 2 As the component system A, C: 0.0
31%, Si: 2.10%, Mn: 0.08%, S:
0.026%, Sol. Al: 0.026%, N: 0.00
The slab containing 90% was heated in an induction heating furnace in a temperature range of 1200 ° C. or more at various heating rates, and was heated to 1350 ° C. After that, it was hot-rolled to 2.3 mm and 1040
The hot-rolled sheet was annealed at ℃, and was cold-rolled to 0.350 mm by one cold rolling to obtain a product sheet thickness. Thereafter, decarburized annealing, finish annealing, flattening and secondary film coating baking annealing were performed to obtain a product.

【0033】一方、従来法を成分系Bとして、C:0.
039%、Si:3.08%、Mn:0.06%、S:
0.022%、Sol.Al:0.001%、〔N〕0.0
037%を含有するスラブを誘導加熱炉で1200℃以
上の温度域を10℃/minで昇温し、1350℃にスラブ
加熱した。スラブ加熱後,熱間圧延し2.3mm厚のホッ
トコイルとした。そして、840℃の中間焼鈍を挟む二
回の冷延で0.350mmに冷延し製品板厚とした。その
後、脱炭焼鈍、仕上げ焼鈍、平坦化・二次皮膜塗布焼き
付け焼鈍し製品とした。表2に示すように本発明例は、
一回冷延法でかつ良好な磁気特性を得られていることが
分かる。
On the other hand, when the conventional method is used as a component system B, C: 0.
039%, Si: 3.08%, Mn: 0.06%, S:
0.022%, Sol. Al: 0.001%, [N] 0.0
The slab containing 037% was heated in an induction heating furnace at a temperature range of 1200 ° C. or higher at 10 ° C./min and heated to 1350 ° C. After the slab was heated, hot rolling was performed to obtain a hot coil having a thickness of 2.3 mm. Then, the product was cold-rolled to 0.350 mm by two cold-rollings sandwiching an intermediate annealing at 840 ° C. to obtain a product sheet thickness. Thereafter, decarburized annealing, finish annealing, flattening and secondary film coating baking annealing were performed to obtain a product. As shown in Table 2, the present invention example
It can be seen that good magnetic properties were obtained by the single cold rolling method.

【0034】[0034]

【表2】 [Table 2]

【0035】〔実施例3〕C:0.034%、Si:
2.01%、Mn:0.08%、S:0.026%、So
l.Al:0.023%、N:0.0092%を含有する
スラブを通電加熱炉で1200℃以上の温度域を10℃
/minの昇温速度で1360℃に加熱し、熱間圧延し2.
6mm厚のホットコイルとした。そして、1050℃で熱
延板焼鈍し、0.500mmに冷延し製品板厚とした。そ
の後、脱炭焼鈍、仕上げ焼鈍、平坦化・二次皮膜塗布焼
き付け焼鈍し製品とした。
Example 3 C: 0.034%, Si:
2.01%, Mn: 0.08%, S: 0.026%, So
l. A slab containing 0.023% of Al and 0.0092% of N was heated to a temperature range of 1200 ° C. or more at 10 ° C. in an electric heating furnace.
1. Heat to 1360 ° C. at a heating rate of / min and hot roll.
A 6 mm thick hot coil was used. Then, the hot-rolled sheet was annealed at 1050 ° C. and cold-rolled to 0.500 mm to obtain a product sheet thickness. Thereafter, decarburized annealing, finish annealing, flattening and secondary film coating baking annealing were performed to obtain a product.

【0036】一方、従来法を成分系Bとして、C:0.
040%、Si:3.07%、Mn:0.07%、S:
0.023%、Sol.Al:0.001%、N:0.00
39%を含有するスラブを誘導加熱炉で1200℃以上
の温度域を10℃/minの昇温速度で1360℃に加熱
し、熱間圧延し2.6mm厚のホットコイルとした。そし
て、840℃の中間焼鈍を挟む二回の冷延で0.500
mmに冷延し製品板厚とした。その後、脱炭焼鈍、仕上げ
焼鈍、平坦化・二次皮膜塗布焼き付け焼鈍し、製品とし
た。表3に示すように本発明例は、一回冷延法でかつ良
好な磁気特性を得られていることが分かる。
On the other hand, when the conventional method is used as the component system B, C: 0.
040%, Si: 3.07%, Mn: 0.07%, S:
0.023%, Sol. Al: 0.001%, N: 0.00
The slab containing 39% was heated in an induction heating furnace at a temperature range of 1200 ° C. or higher to 1360 ° C. at a rate of 10 ° C./min, and hot-rolled to form a 2.6 mm thick hot coil. Then, 0.500 in two cold rollings with an intermediate annealing at 840 ° C.
It was cold rolled to mm to obtain the product thickness. Thereafter, decarburization annealing, finish annealing, flattening and secondary film coating baking annealing were performed to obtain a product. As shown in Table 3, it can be seen that the examples of the present invention can obtain good magnetic properties by the single cold rolling method.

【0037】[0037]

【表3】 [Table 3]

【0038】〔実施例4〕C:0.048%、Si:
3.00%、Mn:0.08%、S:0.012%、S
e:0.012%、Sol.Al:0.020%、N:0.
0088%含有し、これに加えSb,Sn,Cu,Mo
及びBを種々の量含有するスラブを誘導加熱炉で120
0℃以上の温度域を5℃/minの昇温速度で1370℃に
スラブ加熱後、2.1mmに熱間圧延した。そして、10
80℃で熱延板焼鈍し、一回の冷延で0.300mmに冷
延し製品板厚とした。その後、脱炭焼鈍、仕上げ焼鈍、
平坦化・二次皮膜塗布焼き付け焼鈍し製品とした。表4
に示すように本発明例は、一回冷延法でかつ良好な磁気
特性を得られていることが分かる。
Example 4 C: 0.048%, Si:
3.00%, Mn: 0.08%, S: 0.012%, S
e: 0.012%, Sol. Al: 0.020%, N: 0.
0088% in addition to Sb, Sn, Cu, Mo
And slabs containing various amounts of B in an induction furnace.
The slab was heated to 1370 ° C. in a temperature range of 0 ° C. or higher at a rate of 5 ° C./min, and then hot-rolled to 2.1 mm. And 10
The hot rolled sheet was annealed at 80 ° C., and was cold rolled to 0.300 mm in one cold rolling to obtain a product sheet thickness. After that, decarburizing annealing, finish annealing,
Flattened, secondary film coated, baked and annealed product. Table 4
As shown in the graph, it can be seen that in the example of the present invention, good magnetic properties were obtained by the single cold rolling method.

【0039】[0039]

【表4】 [Table 4]

【0040】〔実施例5〕C:0.050%、Si:
2.92%、Mn:0.08%、S:0.022%、So
l.Al:0.023%、N:0.0088%含有するス
ラブをガス加熱炉で1120℃に加熱し、その後誘導加
熱炉に挿入し、1200℃以上の温度域を10℃/minで
昇温し、種々の温度にスラブ加熱した。その後、熱間圧
延し、1070℃で熱延板焼鈍し、一回の冷延で0.3
00mmに冷延し製品板厚とした。その後、脱炭焼鈍、仕
上げ焼鈍、平坦化・二次皮膜塗布焼き付け焼鈍し製品と
した。表5に示すように本発明例は、一回冷延法でかつ
良好な磁気特性を得られていることが分かる。
Example 5 C: 0.050%, Si:
2.92%, Mn: 0.08%, S: 0.022%, So
l. A slab containing Al: 0.023% and N: 0.0088% is heated to 1120 ° C in a gas heating furnace, then inserted into an induction heating furnace, and the temperature range of 1200 ° C or higher is raised at 10 ° C / min. And slab heated to various temperatures. Thereafter, hot rolling was performed, and a hot-rolled sheet was annealed at 1070 ° C., and 0.3% in one cold rolling.
It was cold rolled to 00 mm to obtain a product plate thickness. Thereafter, decarburized annealing, finish annealing, flattening and secondary film coating baking annealing were performed to obtain a product. As shown in Table 5, it can be seen that in the example of the present invention, good magnetic properties were obtained by the single cold rolling method.

【0041】[0041]

【表5】 [Table 5]

【0042】〔実施例6〕C:0.050%、Si:
2.92%、Mn:0.08%、S:0.022%、So
l.Al:0.023%、N:0.0088%含有するス
ラブをガス加熱炉で1150℃に加熱した。その後一部
のスラブは種々の圧下率で熱間変形し、その後ガス加熱
炉と誘導加熱炉(雰囲気:窒素)で1200℃以上の温
度域を種々のスラブ昇温速度で昇温し、1375℃にス
ラブ加熱した。その後、2.0mmに熱間圧延し、104
0℃で熱延板焼鈍し、一回の冷延で0.300mmに冷延
し製品板厚とした。その後、脱炭焼鈍、仕上げ焼鈍、平
坦化・二次皮膜塗布焼き付け焼鈍し製品とした。表6に
示すように本発明例は、一回冷延法でかつ良好な磁気特
性を得られていることが分かる。
Example 6 C: 0.050%, Si:
2.92%, Mn: 0.08%, S: 0.022%, So
l. A slab containing 0.023% Al and 0.0088% N was heated to 1150 ° C in a gas heating furnace. Thereafter, some slabs are hot-deformed at various rolling reduction rates, and then heated in a gas heating furnace and an induction heating furnace (atmosphere: nitrogen) at a temperature range of 1200 ° C. or more at various slab heating rates, and 1375 ° C. The slab was heated. Then, hot-rolled to 2.0 mm, 104
The hot-rolled sheet was annealed at 0 ° C., and was cold-rolled to 0.300 mm in one cold rolling to obtain a product sheet thickness. Thereafter, decarburized annealing, finish annealing, flattening and secondary film coating baking annealing were performed to obtain a product. As shown in Table 6, it can be seen that the examples of the present invention can obtain good magnetic properties by the single cold rolling method.

【0043】[0043]

【表6】 [Table 6]

【0044】[0044]

【発明の効果】以上のごとく本発明によれば、安価で生
産性高くかつ磁気特性も従来と同等以上の一方向性電磁
鋼板を安定して製造でき、その工業的効果は非常に大き
い。
As described above, according to the present invention, it is possible to stably produce a grain-oriented electrical steel sheet which is inexpensive, has high productivity, and has magnetic properties equal to or higher than conventional ones, and its industrial effect is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Si:3.00%の場合のスラブ昇温速度と鉄
損の関係図である。
FIG. 1 is a diagram showing a relationship between a slab heating rate and iron loss when Si is 3.00%.

【図2】Si:2.00%の場合のスラブ昇温速度と鉄
損の関係図である。
FIG. 2 is a relationship diagram between a slab heating rate and iron loss when Si is 2.00%.

【図3】Si:3.00%、B8:1.87T、平均粒
径:2.4mmの場合の板厚と鉄損の関係図である。
FIG. 3 is a graph showing the relationship between sheet thickness and iron loss when Si: 3.00%, B8: 1.87T, and average particle size: 2.4 mm.

【図4】Si:2.00%、B8:1.94T、平均粒
径:3.8mmの場合の板厚と鉄損の関係図である。
FIG. 4 is a diagram showing the relationship between sheet thickness and iron loss when Si: 2.00%, B8: 1.94T, and average particle size: 3.8 mm.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 立花 伸夫 姫路市広畑区富士町1番地 新日本製鐵株 式会社広畑製鐵所内 (72)発明者 筑摩 ▲顕▼太郎 姫路市広畑区富士町1番地 新日本製鐵株 式会社広畑製鐵所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Nobuo Tachibana 1-Fuji-cho, Hirohata-ku, Himeji-shi Nippon Steel Corporation Hirohata Works (72) Inventor Chikuma ▲ Akira ▼ Taro 1 Fujimachi, Hirohata-ku, Himeji-shi Address Nippon Steel Corporation Hirohata Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.02〜0.15%、 Si:2.5〜4.0
%、 Mn:0.02〜0.20%、 Sol.Al:0.015
〜0.065%、 N :0.0030〜0.0150%、 S及びSeのうちの1種又は2種合計:0.005〜
0.040% を含有し、残部は実質的にFeの組成になるスラブを加
熱したのち熱延し、熱延板焼鈍し、冷延し、脱炭焼鈍
し、最終仕上焼鈍し、そして最終コ−ティングを施す工
程によって一方向性電磁鋼板を製造する方法において、
スラブの1200℃以上での高温域の加熱を5℃/min以
上の昇温速度で行って、1320〜1490℃に加熱
し、熱延板焼鈍を900〜1100℃で行い、製品板厚
が0.20〜0.55mmとし、平均結晶粒径が1.5〜
5.5mm、W17/50 が下記式で示されることを特徴とす
る1.80≦B8(T)≦1.88の一方向性電磁鋼板の製
造方法。 0.5884e1.9154×t≦ W17/50(W/kg) ≦ 0.7558e
1.7378×t ただし、t:板厚(mm)
1. C .: 0.02 to 0.15% by weight, Si: 2.5 to 4.0% by weight.
%, Mn: 0.02 to 0.20%, Sol. Al: 0.015
0.00.065%, N: 0.0030 to 0.0150%, one or two of S and Se in total: 0.005 to
The slab containing 0.040%, the remainder being substantially Fe-composed, is heated, hot-rolled, hot-rolled sheet annealed, cold-rolled, decarburized and annealed, finally finished and annealed. -In a method of producing a grain-oriented electrical steel sheet by a step of applying
The slab is heated at a temperature of 1200 ° C. or higher in a high temperature range at a rate of 5 ° C./min or higher, heated to 1320 to 1490 ° C., and hot-rolled sheet is annealed at 900 to 1100 ° C. .20 to 0.55 mm, and the average grain size is 1.5 to
A method for producing a grain-oriented electrical steel sheet of 1.80 ≦ B8 (T) ≦ 1.88, wherein 5.5 mm and W17 / 50 are represented by the following formula: 0.5884e 1.9154 × t ≦ W17 / 50 (W / kg) ≦ 0.7558e
1.7378 × t , where t: plate thickness (mm)
【請求項2】 重量%で、 C :0.02〜0.15%、 Si:1.5〜2.5
%未満、 Mn:0.02〜0.20%、 Sol.Al:0.015
〜0.065%、 N :0.0030〜0.0150%、 S及びSeのうちの1種又は2種合計:0.005〜
0.040% を含有し、残部は実質的にFeの組成になるスラブを加
熱したのち熱延し、熱延板焼鈍し、冷延し、脱炭焼鈍
し、最終仕上焼鈍し、そして最終コ−ティングを施す工
程によって一方向性電磁鋼板を製造する方法において、
スラブの1200℃以上での高温域の加熱を5℃/min以
上の昇温速度で行って、1320〜1490℃に加熱
し、熱延板焼鈍を900〜1100℃で行い、製品板厚
が0.20〜0.55mmとし、平均結晶粒径が1.5〜
5.5mm、W17/50 が下記式で示されることを特徴とす
る1.88≦B8(T)≦1.95の一方向性電磁鋼板の製
造方法。 0.5884e1.9154×t≦ W17/50(W/kg) ≦ 0.7558e
1.7378×t ただし、t:板厚(mm)
2.% by weight: C: 0.02 to 0.15%, Si: 1.5 to 2.5%
%, Mn: 0.02 to 0.20%, Sol. Al: 0.015
0.00.065%, N: 0.0030 to 0.0150%, one or two of S and Se in total: 0.005 to
The slab containing 0.040%, the remainder being substantially Fe-composed, is heated, hot-rolled, hot-rolled sheet annealed, cold-rolled, decarburized and annealed, finally finished and annealed. -In a method of producing a grain-oriented electrical steel sheet by a step of applying
The slab is heated at a temperature of 1200 ° C. or higher in a high temperature range at a rate of 5 ° C./min or higher, heated to 1320 to 1490 ° C., and hot-rolled sheet is annealed at 900 to 1100 ° C. .20 to 0.55 mm, and the average grain size is 1.5 to
5.5. A method for producing a grain-oriented electrical steel sheet in which 1.88≤B8 (T) ≤1.95 wherein W17 / 50 is represented by the following formula. 0.5884e 1.9154 × t ≦ W17 / 50 (W / kg) ≦ 0.7558e
1.7378 × t , where t: plate thickness (mm)
【請求項3】 1320℃〜1490℃の温度範囲に加
熱するスラブは、50%以下の圧下率で熱間変形を加え
たスラブであることを特徴とする請求項1又は2に記載
の一方向性電磁鋼板の製造方法。
3. The one-way slab according to claim 1, wherein the slab to be heated to a temperature range of 1320 ° C. to 1490 ° C. is a slab subjected to hot deformation at a rolling reduction of 50% or less. Manufacturing method of conductive electrical steel sheet.
【請求項4】 スラブにさらに、Sb,Sn,Cu,M
o及びBから選ばれる1種又は2種以上を各々の元素量
で0.003〜0.3重量%含有することを特徴とする
請求項1乃至3の何れか1項に記載の一方向性電磁鋼板
の製造方法。
4. The slab further comprises Sb, Sn, Cu, M
The one-way direction according to any one of claims 1 to 3, wherein one or two or more kinds selected from o and B are contained in an amount of 0.003 to 0.3% by weight in each element amount. Manufacturing method of electrical steel sheet.
JP10099635A 1998-04-10 1998-04-10 Manufacture of unidirectional magnetic steel plate Pending JPH11293339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10099635A JPH11293339A (en) 1998-04-10 1998-04-10 Manufacture of unidirectional magnetic steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10099635A JPH11293339A (en) 1998-04-10 1998-04-10 Manufacture of unidirectional magnetic steel plate

Publications (1)

Publication Number Publication Date
JPH11293339A true JPH11293339A (en) 1999-10-26

Family

ID=14252536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10099635A Pending JPH11293339A (en) 1998-04-10 1998-04-10 Manufacture of unidirectional magnetic steel plate

Country Status (1)

Country Link
JP (1) JPH11293339A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073772A1 (en) * 2010-12-03 2012-06-07 Jfeスチール株式会社 Hot rolling method for silicon-containing steel slab

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073772A1 (en) * 2010-12-03 2012-06-07 Jfeスチール株式会社 Hot rolling method for silicon-containing steel slab

Similar Documents

Publication Publication Date Title
KR100293140B1 (en) Unidirectional Electronic Steel Sheet and Manufacturing Method Thereof
JP2951852B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JPH059580A (en) Production of grain-oriented silicon steel sheet extremely excellent in magnetic property
JP3369443B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3743707B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2746631B2 (en) High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the same
JP2002030340A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JPH11293339A (en) Manufacture of unidirectional magnetic steel plate
JPH10195537A (en) Production of grain oriented silicon steel sheet having stably excellent magnetic property
WO1991019825A1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JP3133855B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP4213784B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3561323B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH04341518A (en) Production of extra thin grain-oriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JP3479984B2 (en) Unidirectional silicon steel sheet having stable magnetic properties and method of manufacturing the same
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
JPH06279859A (en) Production of non-oriented electric steel sheet extremely excellent in core loss and magnetic flux density
JP4163773B2 (en) Method for producing grain-oriented electrical steel sheet
JPH1025516A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JP3536303B2 (en) Manufacturing method of grain-oriented electrical steel sheet with uniform magnetic properties in the width direction
JPH10121212A (en) Grain-oriented silicon steel sheet and its production
JPH0689406B2 (en) Method for producing grain-oriented silicon steel sheet having good magnetic properties

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070918