JPS621458B2 - - Google Patents

Info

Publication number
JPS621458B2
JPS621458B2 JP4568282A JP4568282A JPS621458B2 JP S621458 B2 JPS621458 B2 JP S621458B2 JP 4568282 A JP4568282 A JP 4568282A JP 4568282 A JP4568282 A JP 4568282A JP S621458 B2 JPS621458 B2 JP S621458B2
Authority
JP
Japan
Prior art keywords
hot
temperature
rolling
coil
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4568282A
Other languages
Japanese (ja)
Other versions
JPS58164725A (en
Inventor
Yozo Suga
Kishio Mochinaga
Toshiatsu Harada
Ikuo Umehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4568282A priority Critical patent/JPS58164725A/en
Publication of JPS58164725A publication Critical patent/JPS58164725A/en
Publication of JPS621458B2 publication Critical patent/JPS621458B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】 本発明は高磁束密度一方向性電磁鋼板の製造に
おいて、成品の長手方向で磁性が均一な良特性を
持つ成品を工業的に安定して製造することを可能
にする方法に関するものである。
[Detailed description of the invention] In the production of high magnetic flux density unidirectional electrical steel sheets, the present invention makes it possible to industrially and stably produce products with good properties and uniform magnetic properties in the longitudinal direction of the product. It is about the method.

よく知られているように、一方向性電磁鋼板は
ミラー指数で(110)〔001〕と表わされる方位を
持つ結晶粒から構成されており、圧延方向に容易
磁化軸である<100>軸が平行に配列している。
このように一方向性電磁鋼板は、これを構成する
結晶粒が圧延方向に特定の方向を有しているた
め、特に圧延方向の磁気特性が優れている。この
ような特定方位は熱間圧延と冷間圧延により最終
板厚となつた鋼板を高温焼鈍することにより、
(110)〔001〕方位を有する一次再結晶粒が選択成
長する、いわゆる二次再結晶現象により達成され
る。
As is well known, unidirectional electrical steel sheets are composed of crystal grains with an orientation represented by (110) [001] in the Miller index, and the <100> axis, which is the axis of easy magnetization, lies in the rolling direction. They are arranged in parallel.
In this way, the grain-oriented electrical steel sheet has particularly excellent magnetic properties in the rolling direction, since the crystal grains constituting it have a specific direction in the rolling direction. Such a specific orientation is achieved by high-temperature annealing of a steel plate that has reached its final thickness through hot rolling and cold rolling.
This is achieved by the so-called secondary recrystallization phenomenon in which primary recrystallized grains with the (110)[001] orientation selectively grow.

一方向性電磁鋼板は軟磁性材料として主に変圧
器および発電機用鉄心に使用されるものであつ
て、磁性として磁化特性(磁場の強さと磁束密度
との関係)と鉄損特性(磁束密度と鉄損との関
係)が良好でなければならない。磁化特性の良否
は、かけられた一定の磁場に対し、鉄心内に誘起
される磁束密度(B10の値で一般的に表示されて
いる。Tesla)の大小により決まる。鉄損(W〓
〓〓の値で一般的に表示されている。watt/
Kg)は鉄心に所定の交流磁場を与えた場合に鉄心
内で熱エネルギーとして消費される電力損失であ
り、その値は少ないことが望まれる。鉄損(W〓
〓〓)の良否に対しては鉄心を構成する一方向性
電磁鋼板の板厚、不純物量、比抵抗、残留歪が影
響するが、磁化特性(B10)の影響も大きい。
Unidirectional electrical steel sheets are soft magnetic materials that are mainly used in cores for transformers and generators. and iron loss) must be good. The quality of magnetization characteristics is determined by the magnitude of the magnetic flux density (generally expressed as the value of B 10 (Tesla)) induced within the iron core in response to a constant applied magnetic field. Iron loss (W〓
It is generally displayed as a value of 〓〓. watt/
Kg) is the power loss consumed as thermal energy within the iron core when a predetermined alternating current magnetic field is applied to the iron core, and it is desirable that its value be small. Iron loss (W〓
The quality of 〓〓) is influenced by the thickness, amount of impurities, specific resistance, and residual strain of the unidirectional electrical steel sheet constituting the iron core, but the magnetization characteristics (B 10 ) also have a large influence.

以上のことから、一方向性電磁鋼板の磁化特性
(B10)を向上させることは、電機器の小型化、お
よび鉄損減少による省エネルギー化を可能にす
る。高磁束密度一方向性電磁鋼板の製造法として
田口悟等による方法が特公昭40−15644号公報に
開示されている。この方法で安定した成品を得る
ためには坂倉昭等の発明になる特開昭48−51852
号公報に示されている熱間圧延条件が重要であ
る。すなわち、二次再結晶を安定して行なわせる
ためには、Alを過大な大きさに析出させないと
いう考え方に基づいて、「熱延中のAlN析出領域
での材料の滞在時間を短かくするべくAlN析出温
度以下を急冷却する」必要がある。この条件を満
足させないと細粒と呼ばれる二次再結晶しない異
常部が発生する。このような考え方の熱延条件を
一般的に使われている連続熱延機で実施する場合
の具体的な方法は次の通りである。
From the above, improving the magnetization properties (B 10 ) of unidirectional electrical steel sheets makes it possible to downsize electrical equipment and save energy by reducing iron loss. As a method for manufacturing a high magnetic flux density unidirectional electrical steel sheet, a method by Satoru Taguchi et al. is disclosed in Japanese Patent Publication No. 15644/1972. In order to obtain a stable product using this method, Akira Sakakura et al. invented JP-A-48-51852.
The hot rolling conditions shown in the publication are important. In other words, in order to stably perform secondary recrystallization, based on the idea that Al should not be precipitated to an excessively large size, it is necessary to "shorten the residence time of the material in the AlN precipitation region during hot rolling." It is necessary to rapidly cool the temperature below the AlN precipitation temperature. If this condition is not satisfied, abnormal areas called fine grains that do not undergo secondary recrystallization will occur. A specific method for implementing hot rolling conditions based on this concept using a generally used continuous hot rolling mill is as follows.

連続鋳造あるいは分塊圧延で製造した150〜300
mmのスラブを加熱後、粗熱延機で30〜60mmの中間
厚みに熱延し、その後連続仕上熱延機で最終板厚
の熱延板に熱延する。最近では粗圧延を行なわず
に直接、連続鋳造で、30〜60mmの薄鋳片に鋳造
し、その後高温に加熱し、あるいは加熱すること
なく鋳片の顕熱を利用して、連続仕上熱延機で最
終板厚まで熱延されることもある。
150~300 manufactured by continuous casting or blooming rolling
After heating the mm slab, it is hot rolled to an intermediate thickness of 30 to 60 mm using a rough hot rolling mill, and then hot rolled to a final thickness hot rolled sheet using a continuous finishing hot rolling mill. Recently, continuous finishing hot rolling has been developed by directly casting thin slabs of 30 to 60 mm without rough rolling, and then heating them to high temperatures, or using the sensible heat of the slabs without heating. It may also be hot-rolled to the final thickness using a machine.

このような実際の熱延方法に即して、適切な
AlNの析出状態を達成するための熱延時の鋼板温
度履歴を考えると次のようになる。連続仕上熱延
機に入る以前の中間厚み段階(通常30〜60mm)で
AlNの析出温度領域以下に冷却しようとすると冷
却効率が悪いうえに、板厚が厚いために表面部と
中心部の温度差が大きくなるためAlNの存在状態
が板厚方向で異なり適切でない。又中間厚み段階
で冷却すると、鋼板温度低下により、鋼材の変形
抵抗が高まり、連続仕上熱延機に必要となる加工
動力が大きくなり経済的でない。これに対し、中
間厚み段階まではAlNの析出温度領域以上の比較
的に高い温度を保持し、連続仕上熱延機に入り板
厚の薄くなつた段階で急冷する方法は、鋼材の冷
却効率、鋼板板厚方向でのAlNの均一状態、連続
仕上熱延機の必要動力の低減等になり望ましい。
In accordance with the actual hot rolling method,
Considering the temperature history of the steel sheet during hot rolling to achieve the AlN precipitation state, it is as follows. At the intermediate thickness stage (usually 30 to 60 mm) before entering the continuous finishing hot rolling mill.
Attempting to cool the material below the precipitation temperature range of AlN will not only result in poor cooling efficiency, but also because the plate thickness will increase the temperature difference between the surface and the center, which is not appropriate since the state of AlN will vary in the thickness direction. Moreover, if the steel sheet is cooled at an intermediate thickness stage, the deformation resistance of the steel material will increase due to a decrease in the temperature of the steel sheet, and the processing power required for a continuous finishing hot rolling mill will increase, which is not economical. On the other hand, a method that maintains a relatively high temperature above the precipitation temperature range of AlN until the intermediate thickness stage and rapidly cools the steel material when it enters the continuous finishing hot rolling mill and becomes thinner is a method that improves the cooling efficiency of the steel material. This is desirable because it makes the AlN uniform in the thickness direction of the steel plate and reduces the power required for a continuous finishing hot rolling mill.

以上のような意味から、熱延板のAlNを適切状
態に制御するためには、連続仕上熱延機に入る前
の鋼材温度、いわゆる熱延仕上前面温度を所定温
度以上に保持することが必要である。
From the above, in order to control the AlN in hot-rolled sheets to an appropriate state, it is necessary to maintain the temperature of the steel material before it enters the continuous finishing hot-rolling mill, the so-called hot-rolling front temperature, above a predetermined temperature. It is.

ところで最近は生産効率を上げ、又歩留向上を
狙つてコイル単量を大きくする傾向にあるため、
1本のコイル当りの圧延時間が長くなるのでコイ
ル頭部に比べ尾部の温度が下り、場合によつては
コイル尾部に二次再結晶不良の生じることがあ
る。あるいは、二次再結晶不良は生じないが、コ
イル長手方向でAlN析出状態が異なるため、得ら
れる成品の磁束密度がコイル長手方向で均一でな
い問題が生じる。この鋼板温度低下に原因するコ
イル尾部の二次再結晶不完全部の発生を防止する
ため、コイル全体の温度を高くすることが考えら
れる。コイル全体の温度を高めるためには、加熱
エネルギーの増大あるいはスラブ加熱を現在以上
高めるための設備的対策が必要である等の問題が
ある。又、コイル全体温度を上げたために連続仕
上熱延温度の高いコイル頭部に線混と呼ばれる、
圧延方向に長く伸びた二次再結晶不完全部が生ず
る。この線混は連続鋳造スラブを用いる場合に顕
著であが、分塊圧延法によるスラブを用いる場合
でも低C、高Siの鋼素材になると発生する。
However, recently there has been a trend to increase the unit quantity of coils in order to increase production efficiency and improve yield.
Since the rolling time per coil is longer, the temperature of the tail part of the coil is lower than that of the head part of the coil, and in some cases, secondary recrystallization defects may occur in the tail part of the coil. Alternatively, secondary recrystallization failure does not occur, but since the AlN precipitation state differs in the longitudinal direction of the coil, the problem arises that the magnetic flux density of the obtained product is not uniform in the longitudinal direction of the coil. In order to prevent the occurrence of incomplete secondary recrystallization in the tail portion of the coil due to this decrease in the steel plate temperature, it is conceivable to increase the temperature of the entire coil. In order to raise the temperature of the entire coil, there are problems such as an increase in heating energy or the need for equipment measures to increase slab heating more than the current level. In addition, because the overall temperature of the coil was raised, there was a problem called wire mixing at the head of the coil where the continuous finish hot rolling temperature was high.
A secondary recrystallization imperfection that extends long in the rolling direction is generated. This wire mixing is noticeable when a continuously cast slab is used, but it also occurs when a steel material with low C and high Si is used even when a slab formed by the blooming method is used.

この線混は特開昭54−120214号公報に示される
ように、熱延温度が高すぎたために熱延時に再結
晶しない場合に発生し易い。このもつとも再結晶
し易い熱延温度は1100℃前後であり、AlN析出温
度領域とほぼ同一であり、線混を発生させないた
めには連続仕上熱延中に再結晶を達成することが
必要である。
As shown in Japanese Unexamined Patent Publication No. 120214/1984, this line mixing tends to occur when recrystallization does not occur during hot rolling because the hot rolling temperature is too high. The hot rolling temperature at which recrystallization is most likely to occur is around 1100°C, which is almost the same as the AlN precipitation temperature range, and it is necessary to achieve recrystallization during continuous finishing hot rolling to prevent wire mixing. .

以上のことからわかるように、高磁束密度一方
向性電磁鋼板を大単量コイルで安定して生産する
ための熱延条件としては仕上前面温度としてコイ
ル全長に亘つて線混の発生しない温度以下で、か
つ細粒の発生しない温度以上に確保することが重
要である。通常のSi約3%を含有する鋼を素材と
する場合は、熱延仕上前面温度は約1220℃以下で
約1100℃以上が必要である。このような温度範囲
を確保するには所定の温度確保手段が必要である
が、コイルの単重が大きくなるほど所定温度確保
が困難になる。又、たとえ所定温度の確保が出来
ても、コイル長手方向の温度差に基づき磁性が不
均一となる。
As can be seen from the above, the hot rolling conditions for stably producing high magnetic flux density unidirectional electrical steel sheets in large unit coils are to keep the finishing front temperature below the temperature at which wire mixing does not occur over the entire length of the coil. It is important to ensure that the temperature is higher than that at which fine particles do not occur. When the material is made of ordinary steel containing about 3% Si, the hot rolling finishing front temperature needs to be about 1220°C or less and about 1100°C or more. To ensure such a temperature range, a predetermined temperature ensuring means is required, but as the unit weight of the coil increases, it becomes more difficult to ensure the predetermined temperature. Further, even if a predetermined temperature can be secured, the magnetism becomes non-uniform due to temperature differences in the longitudinal direction of the coil.

本発明の目的はこれら問題を完全に解決するこ
とができ、之によつて成品の長手方向において磁
性が均一な良特性を持つ高磁束密度一方向性電磁
鋼板を工業的に安定して得ることのできる製造方
法を提供せんとするにある。
The purpose of the present invention is to completely solve these problems, and thereby to obtain industrially and stably a high magnetic flux density unidirectional electrical steel sheet having good properties with uniform magnetism in the longitudinal direction of the finished product. We are trying to provide a manufacturing method that can.

すなわち、本発明の要旨とするところはSi:
4.0%以下、C:0.085%以下、酸可溶性Al:
0.010〜0.065%、Total N:0.003〜0.0100%を含
む溶鋼を連続鋳造あるいは分塊熱延によりスラブ
とし、連続熱間圧延により熱延板とし、高温連続
焼鈍後に急冷し、1回の冷延で成品板厚とし、湿
水素雰囲気中で連続脱炭焼鈍し、さらに少なくと
も800℃以上の温度で最終焼鈍を行なう工程を含
む、圧延方向における磁気特性の優れた一方向性
電磁鋼板を製造する方法において、熱延板の高温
連続焼鈍後の冷却を、コイルの長手方向で仕上熱
延温度の高い部位を急冷却速度、そして仕上熱延
温度の低い部位を徐冷却速度となるようにコイル
長手方向に連続的にあるいは階段的に可変冷却す
ることを特徴とする高磁束密度一方向性電磁鋼板
の製造法にある。
That is, the gist of the present invention is that Si:
4.0% or less, C: 0.085% or less, acid-soluble Al:
Molten steel containing 0.010 to 0.065%, Total N: 0.003 to 0.0100% is made into a slab by continuous casting or blooming hot rolling, hot rolled sheet by continuous hot rolling, rapidly cooled after high temperature continuous annealing, and rolled in one cold rolling process. In a method for manufacturing a unidirectional electrical steel sheet with excellent magnetic properties in the rolling direction, the method comprises the steps of: obtaining a finished product sheet thickness, performing continuous decarburization annealing in a wet hydrogen atmosphere, and further performing final annealing at a temperature of at least 800°C or higher. , the cooling after high-temperature continuous annealing of the hot-rolled sheet is carried out in the longitudinal direction of the coil so that the areas where the finish hot-rolling temperature is high are at a rapid cooling rate, and the areas where the finish hot-rolling temperature is low are at a slow cooling rate. A method for producing a high magnetic flux density unidirectional electrical steel sheet characterized by variable cooling continuously or stepwise.

高磁束密度一方向性電磁鋼板の製造において、
熱延板焼鈍後の冷却速度については特公昭46−
23820号公報に開示されているが、本発明は連続
仕上熱延温度が上述の1220〜1100℃の温度範囲よ
りはずれた場合であつても、又コイル長手方向の
温度差が不均一な場合であつても、熱延板焼鈍後
の冷却速度を熱延条件に対応させて、コイル長手
方向において連続的にあるいは段階的に変えるこ
とにより、磁性不良部を解消し、コイル長手方向
で均一な磁性の成品を得ることを可能にしたもの
である。
In the production of high magnetic flux density unidirectional electrical steel sheets,
Regarding the cooling rate after hot-rolled sheet annealing,
As disclosed in Japanese Patent No. 23820, the present invention can be applied even when the continuous finish hot rolling temperature is outside the above-mentioned temperature range of 1220 to 1100°C, or when the temperature difference in the longitudinal direction of the coil is uneven. However, by changing the cooling rate after hot-rolled sheet annealing continuously or stepwise in the longitudinal direction of the coil in accordance with the hot-rolling conditions, magnetic defects can be eliminated and uniform magnetic properties can be achieved in the longitudinal direction of the coil. This made it possible to obtain the following products.

以下、本発明について更に詳細に述べる。 The present invention will be described in more detail below.

熱延温度の異なるコイル頭部および尾部につい
て、熱延板焼鈍後の冷却速度を変えた場合に得ら
れる成品の磁性を説明する。
The magnetism of the product obtained when the cooling rate after hot-rolled sheet annealing is changed will be explained for the coil head and tail portions having different hot-rolling temperatures.

Si:3.05%、C:0.045%、酸可溶性Al:0.032
%、T・N:0.0090%を含有する溶鋼を連続鋳造
で250mm厚、重さ10tonのスラブとなし、加熱炉で
1400℃に加熱後に粗熱延機で40mm厚まで熱延し、
連続仕上熱延機で2.3mmの熱延板となした。この
時の熱延仕上前面温度は頭部が約1230℃、尾部が
1070℃であつた。この熱延板の頭部と尾部につい
て、1120℃×2min.加熱後に10℃、20℃、30℃、
40℃、50℃、60℃、70℃、80℃、90℃、100℃の
各水中にて焼入れし、冷延により0.30mm厚とし、
840℃×3min.湿水素中で脱炭焼鈍し、MgOを塗
布し、1200℃×20hr.の高温焼鈍を行なつた。こ
の工程で得られた成品の磁性を第1図に示す。
Si: 3.05%, C: 0.045%, acid soluble Al: 0.032
%, T・N: Molten steel containing 0.0090% was continuously cast into a slab with a thickness of 250 mm and a weight of 10 tons, and was cast in a heating furnace.
After heating to 1400℃, it is hot rolled to a thickness of 40mm using a rough hot rolling mill.
It was made into a 2.3mm hot-rolled plate using a continuous finishing hot-rolling machine. At this time, the temperature at the front of the hot-rolled finish is approximately 1230℃ at the head and approximately 1230℃ at the tail.
It was 1070℃. The head and tail parts of this hot-rolled sheet were heated at 1120°C for 2 min.
Quenched in water at 40°C, 50°C, 60°C, 70°C, 80°C, 90°C, and 100°C, cold rolled to a thickness of 0.30 mm,
Decarburization annealing was performed in wet hydrogen at 840°C for 3 minutes, MgO was applied, and high temperature annealing was performed at 1200°C for 20 hours. The magnetism of the product obtained in this process is shown in FIG.

第1図からわかるように、熱延仕上前面温度の
高い熱延頭部は焼入れ水温度の低い場合、すなわ
ち急冷却することにより成品に線混の発生が無
く、磁性が良い。他方、熱延仕上前面温度の低い
熱延尾部は焼入れ水温度の高い場合、すなわち徐
冷却することにより成品に細粒の発生が無く、磁
性が良い。したがつてこの熱延コイル全長に亘つ
て、線混も無く又細粒も無い、均一な磁性は熱延
頭部から尾部にかけて、熱延板焼鈍後の冷却速度
が徐徐に緩くなるように可変にすることによつて
得られる。実際の工場生産の場合、熱延板の高温
連続焼鈍後の冷却速度をコイル長手方向で変える
方法として、冷却水の水温を変えるのも一方法で
あるが、冷却水の水量を変える方法が設備的には
容易である。
As can be seen from FIG. 1, the hot-rolling head, where the hot-rolling finishing front surface temperature is high, has good magnetism when the quenching water temperature is low, that is, by rapid cooling, so that no line mixing occurs in the product. On the other hand, the hot-rolled tail part, which has a low hot-rolled finish front temperature, has good magnetism when the quenching water temperature is high, that is, when it is slowly cooled, no fine grains are generated in the product. Therefore, over the entire length of this hot-rolled coil, there is no wire contamination or fine grains, and uniform magnetism is achieved by changing the cooling rate after annealing the hot-rolled sheet so that it gradually slows down from the hot-rolled head to the tail. It can be obtained by In the case of actual factory production, one way to change the cooling rate in the longitudinal direction of the coil after high-temperature continuous annealing of a hot-rolled sheet is to change the temperature of the cooling water, but the method of changing the amount of cooling water is It's actually easy.

この方法をさらに具体的に述べる。まず所定の
成分、熱延設備で製造した熱延板について、熱延
温度の最高点の頭部と最低点の尾部について、最
良磁性の得られる冷却速度を達成する冷却水量を
求める。次に熱延温度を代表する値として熱延仕
上前面温度をコイル長手方向で記録し、熱延頭部
と尾部の最適冷却速度を達成する冷却水量を基準
点として、この冷却水量範囲で熱延仕上前面温度
に比例させて、コイル長手方向での冷却水量の変
化パターンを決める。この冷却水量の変化パター
ンを熱延板焼鈍炉の冷却帯の水量計に設定してお
く。そして、焼鈍後の熱延板が冷却帯に入つた
時、この冷却水量の変化パターンに合せて冷却水
量を制御する。なお、以上のように熱延板焼鈍後
の冷却速度を熱延温度の変動に完全に連続的に追
随させる方法の代りに、次のような簡便な方法を
採ることも可能である。コイル全長をいくつかの
部位に分割し、その各部位の平均熱延温度を決め
その平均熱延温度に合つた冷却速度を決め、その
冷却速度を達成させる冷却水量で、コイル長手方
向で階段状に冷却する方法である。
This method will be described in more detail. First, for a hot-rolled sheet manufactured with predetermined components and hot-rolling equipment, the amount of cooling water that achieves the cooling rate that provides the best magnetism is determined for the head section at the highest point and the tail section at the lowest point of hot-rolling temperature. Next, record the hot-rolled finishing front temperature in the longitudinal direction of the coil as a value representative of the hot-rolling temperature, and use the cooling water amount that achieves the optimum cooling rate of the hot-rolling head and tail as a reference point, and hot-roll within this cooling water amount range. The pattern of change in the amount of cooling water in the longitudinal direction of the coil is determined in proportion to the finished front temperature. This change pattern in the amount of cooling water is set in the water meter in the cooling zone of the hot-rolled sheet annealing furnace. When the hot-rolled sheet after annealing enters the cooling zone, the amount of cooling water is controlled in accordance with this change pattern of the amount of cooling water. In addition, instead of the method of completely and continuously making the cooling rate after hot-rolled sheet annealing follow the fluctuation of the hot-rolling temperature as described above, it is also possible to adopt the following simple method. Divide the entire length of the coil into several parts, determine the average hot-rolling temperature of each part, determine the cooling rate that matches the average hot-rolling temperature, and set the amount of cooling water to achieve that cooling rate in a stepped manner in the longitudinal direction of the coil. This is a method of cooling.

次に本発明の構成要件について述べる。 Next, the constituent elements of the present invention will be described.

本発明における出発鋼はSi:4.0%以下、C:
0.085%以下、酸可溶性Al:0.010〜0.065%、
T・N:0.003〜0.0100%を含み、残余は鉄およ
び若干の混入不純物とから成つている。Siは4.0
%を超えると冷間圧延時に鋼板が破断するために
4.0%以下とする。Cは多すぎると脱炭焼鈍工程
で焼鈍時間が長くなり、工業的に生産性が悪くな
るため0.085%以下とした。本発明はAlNの作用
によつて高磁束密度一方向性電磁鋼板を得ること
を目的としており、適当量のAlNを確保する必要
があるので酸可溶性Alとして0.010%以上、T・
Nとして0.003%以上とした。そして、酸可溶性
Alが多くなると二次再結晶が不完全になるので
0.065%以下とし、又T・Nが多すぎるとブリス
ターと呼ぶ鋼板表面のフクレ状の欠陥が生じるの
で0.010%以下とした。本発明で用いる出発鋼素
材の成分としてSi、C、酸可溶性Al、T・N以外
の成分についてはとくに限定されるものでない。
これら成分以外に例えばMn、S、Sb、Seは析出
分散相として有効に働き磁性向上効果があり、又
Cu、Ni、P、Snは磁性安定化に効果があり、之
等の成分を含有させることは望ましいが本発明に
おける素材の必須成分ではない。
The starting steel in the present invention has Si: 4.0% or less and C:
0.085% or less, acid-soluble Al: 0.010-0.065%,
Contains T/N: 0.003 to 0.0100%, with the remainder consisting of iron and some impurities. Si is 4.0
%, the steel plate will break during cold rolling.
4.0% or less. If the amount of C is too large, the annealing time will be long in the decarburization annealing process, which will result in poor industrial productivity, so the content is set to 0.085% or less. The purpose of the present invention is to obtain a high magnetic flux density unidirectional electrical steel sheet by the action of AlN, and since it is necessary to secure an appropriate amount of AlN, the acid-soluble Al should be 0.010% or more, T.
The N content was set to 0.003% or more. and acid soluble
As the amount of Al increases, secondary recrystallization becomes incomplete.
The content was set to 0.065% or less, and since too much T/N causes blistering defects on the surface of the steel sheet, the content was set to 0.010% or less. The components of the starting steel material used in the present invention other than Si, C, acid-soluble Al, and T/N are not particularly limited.
In addition to these components, for example, Mn, S, Sb, and Se act effectively as precipitated dispersed phases and have the effect of improving magnetism.
Cu, Ni, P, and Sn are effective in stabilizing magnetism, and although it is desirable to include these components, they are not essential components of the material in the present invention.

本発明は二次再結晶不良の発生し易い連続鋳造
スラブを出発素材とする場合に特に効果的である
が、従来の造塊―分塊法によつて得られたスラブ
についても勿論適用出来る。このスラブは通常の
場合、加熱後に熱延により熱延板とする。スラブ
の加熱温度は酸可溶性Al、T・Nが多い場合は
高く、少ない場合は低くても良く、本発明の成分
範囲であればほぼ1150℃〜1400℃の範囲にあれば
良い。熱延はスラブ厚が150〜300mmと厚い場合、
粗熱延を複数回のパスだけ行ない所定厚(30〜60
mm)の中間材にし、その次に連続仕上熱延により
熱延板にすることが一般的である。スラブ厚が30
〜100mmと薄い場合、粗熱延は省略され、直接に
仕上熱延により熱延板とする。熱延板は950〜
1200℃の範囲で高温連続焼鈍し、その後急冷却す
る。焼鈍温度が950℃未満では高磁速密度が得ら
れず、1200℃を越えると二次再結晶が生じない。
この焼鈍後の冷却は、コイル長手方向で仕上熱延
温度の高い部位(通常は熱延頭部)は急冷却速
度、低い部位(通常は熱延尾部)は徐冷却速度に
なるように連続的に又は階段的に行なう。通常の
熱延では熱延尾部に近い部位ほど温度は低いが、
スラブ加熱で炉のスキツド上、あるいはスラブの
両端で温度が上がらない場合がある。このような
場合、コイル長手方向の中心部に温度の低い部位
があることもある。その後1回の冷延で最終成品
板厚まで圧延し、湿水素雰囲気中で連続脱炭焼鈍
し、800℃以上の温度で最終焼鈍を行ない成品と
する。最終焼鈍の温度は高ほど鉄損が少なく望し
いが、変態によるγ相の出限があると磁束密度が
悪くなるのでSi量に応じてγ相の出現しない温
度、すなわちSi量零の場合の800℃(若干のγ相
出現があるが問題ない)を限定範囲とした。
Although the present invention is particularly effective when the starting material is a continuously cast slab that is susceptible to secondary recrystallization defects, it can of course also be applied to slabs obtained by the conventional agglomeration-blooming method. This slab is usually heated and then hot-rolled into a hot-rolled plate. The heating temperature of the slab may be high if the acid-soluble Al or T/N is large, or low if the acid-soluble Al or T/N is small, and may be within the range of approximately 1150°C to 1400°C as long as the ingredients are within the range of the present invention. For hot rolling, when the slab thickness is as thick as 150 to 300 mm,
Rough hot rolling is performed several times to achieve a specified thickness (30 to 60
Generally, it is made into an intermediate material (mm), and then made into a hot-rolled sheet by continuous finish hot rolling. Slab thickness is 30
When the thickness is ~100 mm, rough hot rolling is omitted and the hot rolled sheet is directly finished hot rolled. Hot rolled plate is 950~
Continuously annealed at a high temperature in the range of 1200℃, then rapidly cooled. If the annealing temperature is less than 950°C, high magnetic velocity density cannot be obtained, and if it exceeds 1200°C, secondary recrystallization will not occur.
This cooling after annealing is carried out continuously so that in the longitudinal direction of the coil, the areas where the finishing hot rolling temperature is high (usually the hot rolling head) have a rapid cooling rate, and the areas where the finish hot rolling temperature is low (usually the hot rolling tail) have a slow cooling rate. Do this step by step. In normal hot rolling, the temperature is lower near the hot rolling tail, but
When heating a slab, the temperature may not rise on the furnace skid or at both ends of the slab. In such a case, there may be a region with a low temperature at the center in the longitudinal direction of the coil. Thereafter, it is cold rolled once to the final thickness of the finished product, subjected to continuous decarburization annealing in a wet hydrogen atmosphere, and final annealed at a temperature of 800°C or higher to produce a finished product. The higher the final annealing temperature is, the lower the iron loss is desirable, but if there is a limit to the production of the γ phase due to transformation, the magnetic flux density will deteriorate, so depending on the amount of Si, the temperature at which the γ phase does not appear, that is, when the amount of Si is zero, is The limited range was 800°C (some γ phase appeared, but no problem).

本発明は熱延時のスラブ加熱条件、および圧延
の温度履歴がコイル長手方向で異なるために生じ
る磁性不均一を、熱延板焼鈍後の冷却条件をコイ
ル長手方向で熱延温度に対応させて可変制御する
ことによつて解消させるものである。今後、効率
的な生産を行なうため方向性電磁鋼板のコイル単
重を大きくする傾向にありそのため熱延頭部から
尾部にかけて温度履歴が拡大されることが予想さ
れるので、磁性をコイル長手方向に亘つて均一に
することができる本発明は、均質な磁性を有する
電磁鋼板を得る上で著しく有効である。
In the present invention, the magnetic non-uniformity caused by the slab heating conditions during hot rolling and the temperature history of rolling differing in the longitudinal direction of the coil can be changed by adjusting the cooling conditions after annealing the hot rolled sheet in correspondence with the hot rolling temperature in the longitudinal direction of the coil. This can be resolved through control. In the future, there is a trend to increase the coil unit weight of grain-oriented electrical steel sheets for efficient production, and it is expected that the temperature history will expand from the hot-rolled head to the tail. The present invention, which can make magnetic properties uniform throughout, is extremely effective in obtaining electrical steel sheets having homogeneous magnetic properties.

実施例 C:0.060%、Si:2.90%、酸可溶性Al:0.026
%、T・N:0.008%を含む溶鋼を連続鋳造で
10tonのスラブとした。1380℃に加熱後、3パス
の粗熱延で40mm厚の中間材となし、仕上熱延で
2.3mm厚の熱延板とした。この時の仕上熱延前に
おける熱延頭部の温度は1250℃、尾部は1080℃、
中央部は1170℃であつた。熱延板を1100℃×
2min.焼鈍後、ノズルによつて室温まで水冷却し
た。この時の冷却条件としてコイル長手方向での
水量を次の2種類に変えて行なつた。
Example C: 0.060%, Si: 2.90%, acid soluble Al: 0.026
%, T・N: Molten steel containing 0.008% is continuously cast.
It was made into a 10 ton slab. After heating to 1380℃, it is rough hot-rolled in 3 passes to form an intermediate material with a thickness of 40mm, and then finished hot-rolled.
It was made into a hot-rolled plate with a thickness of 2.3 mm. At this time, the temperature of the hot rolling head before finishing hot rolling is 1250℃, the tail part is 1080℃,
The temperature in the center was 1170°C. Hot-rolled plate at 1100℃
After annealing for 2 minutes, it was cooled with water to room temperature using a nozzle. As cooling conditions at this time, the amount of water in the longitudinal direction of the coil was changed to the following two types.

コイル全長に亘つ〃て一定冷却水量〓m2
hr(この冷却水量は熱延温度1170℃におけ
る最適磁性を得るための最適冷却水量であ
る。) コイル頭部1.5tonの冷水水量1.2αm3/hr コイル中央部7.0tonの冷却水量 αm3/hr コイル尾部1.5tonの冷却水量0.8αm3/hr (*注)この水量は冷却帯を通過する鋼板量で変
化するので、定まつた値でない。例えば10m/
minの通板量であれば45℃の水で約50m3/hrと
なる。
Constant amount of cooling water over the entire length of the coil〓m2 /
hr (This amount of cooling water is the optimum amount of cooling water to obtain the optimum magnetism at a hot rolling temperature of 1170℃.) Amount of chilled water for a 1.5 ton coil head: 1.2 αm 3 /hr Amount of cooling water for a 7.0 ton coil central portion αm 3 / hr Cooling water volume for 1.5 tons of coil tail: 0.8αm 3 /hr (*Note) This water volume is not a fixed value, as it changes depending on the amount of steel plate passing through the cooling zone. For example, 10m/
If the sheet threading rate is min, it will be approximately 50m 3 /hr with water at 45℃.

この鋼板を0.30mm厚に冷延後、840℃×3min.だ
け湿水素中で脱炭焼鈍し、MgOを塗布、乾燥
し、1200℃×20hrの最終焼鈍を行なつた。
This steel plate was cold rolled to a thickness of 0.30 mm, decarburized in wet hydrogen at 840°C for 3 minutes, coated with MgO, dried, and final annealed at 1200°C for 20 hours.

得られた成品の磁性は次の通りであつた。 The magnetic properties of the obtained product were as follows.

条件最頭部:B10=1.87T、
W〓〓〓=1.25w/Kg 中心部:B10=1.94T、
W〓〓〓=1.05w/Kg 最尾部:B10=1.82T、
W〓〓〓=1.40w/Kg 頭部約0.7tonはW〓〓〓:1.14w/Kg以上
でG7に不合格 尾部約1.0tonはW〓〓〓:1.14w/Kg以上
でG7に不合格 条件最頭部:B10=1.93T、
W〓〓〓=1.08w/Kg 中心部:B10=1.94T、
W〓〓〓=1.05w/Kg 最尾部:B10=1.93T、
W〓〓〓=1.07w/Kg 全量(10ton)がG7に合格 以上の如く本発明によれば成品の長手方向にお
いて磁性が均一な良特性を持つ高磁束密度一方向
性電磁鋼板を工業的に安定して製造することがで
きるので、産業界に裨益するところが極めて大で
ある。
Condition top: B 10 = 1.87T,
W = 1.25w / Kg Center: B 10 = 1.94T,
W〓〓〓=1.05w/Kg Tailmost part: B 10 =1.82T,
W〓〓〓=1.40w/Kg Approximately 0.7ton of the head is W〓〓〓〓: 1.14w/Kg or more and it fails G7. Approximately 1.0ton of the tail is W〓〓〓: 1.14w/Kg or more and it fails G7 . Passing condition topmost: B 10 = 1.93T,
W = 1.08w / Kg Center: B 10 = 1.94T,
W〓〓〓=1.05w/Kg Tailmost part: B 10 =1.93T,
W〓〓〓=1.07w/Kg The total amount (10 tons) passed G7 As described above, according to the present invention, high magnetic flux density unidirectional electrical steel sheets with good characteristics with uniform magnetism in the longitudinal direction of the product can be industrially produced. Since it can be manufactured stably, it is extremely beneficial to industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱延板の頭部と尾部を1120℃×2min.
加熱後に、冷却水中に浸漬し、冷延、脱炭焼鈍、
高温焼鈍を経て得られた成品の磁気特性と浸漬冷
却水温度との関係を示す図である。
Figure 1 shows the head and tail of a hot-rolled plate heated at 1120℃ for 2 minutes.
After heating, it is immersed in cooling water, cold rolled, decarburized annealed,
FIG. 3 is a diagram showing the relationship between the magnetic properties of a product obtained through high-temperature annealing and the temperature of immersion cooling water.

Claims (1)

【特許請求の範囲】[Claims] 1 Si:4.0%以下、C:0.085%以下、酸可溶性
Al:0.010〜0.065%、Total N:0.003〜0.0100%
を含む溶鋼を連続鋳造あるいは分塊熱延によりス
ラブとし、連続熱間圧延により熱延板とし、高温
連続焼鈍後に急冷し、1回の冷延で成品板厚と
し、湿水素雰囲気中で連続脱炭焼鈍し、さらに少
なくとも800℃以上の温度で最終焼鈍を行なう工
程を含む、圧延方向における磁気特性の優れた一
方向性電磁鋼板を製造する方法において、熱延板
の高温連続焼鈍後の冷却を、コイルの長手方向で
仕上熱延温度の高い部位を急冷却速度、そして仕
上熱延温度の低い部位を徐冷却速度となるように
コイル長手方向に連続的にあるいは階段的に可変
冷却することを特徴とする高磁束密度一方向性電
磁鋼板の製造法。
1 Si: 4.0% or less, C: 0.085% or less, acid soluble
Al: 0.010~0.065%, Total N: 0.003~0.0100%
molten steel is made into a slab by continuous casting or blooming hot rolling, hot rolled plate is made by continuous hot rolling, rapidly cooled after high temperature continuous annealing, finished plate thickness is obtained by one cold rolling, and continuous desorption is carried out in a wet hydrogen atmosphere. A method for producing a grain-oriented electrical steel sheet with excellent magnetic properties in the rolling direction, which includes a step of charcoal annealing and final annealing at a temperature of at least 800°C, in which cooling after continuous high-temperature annealing of the hot-rolled sheet is performed. , the coil is variable-cooled continuously or stepwise in the longitudinal direction of the coil so that the parts with high finishing hot-rolling temperature are at a rapid cooling rate, and the parts with low finishing hot-rolling temperature are cooling at a slow cooling rate. A manufacturing method for unidirectional electrical steel sheets with a characteristic high magnetic flux density.
JP4568282A 1982-03-24 1982-03-24 Production of unidirectionally grain oriented electrical steel plate having high magnetic flux density Granted JPS58164725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4568282A JPS58164725A (en) 1982-03-24 1982-03-24 Production of unidirectionally grain oriented electrical steel plate having high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4568282A JPS58164725A (en) 1982-03-24 1982-03-24 Production of unidirectionally grain oriented electrical steel plate having high magnetic flux density

Publications (2)

Publication Number Publication Date
JPS58164725A JPS58164725A (en) 1983-09-29
JPS621458B2 true JPS621458B2 (en) 1987-01-13

Family

ID=12726158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4568282A Granted JPS58164725A (en) 1982-03-24 1982-03-24 Production of unidirectionally grain oriented electrical steel plate having high magnetic flux density

Country Status (1)

Country Link
JP (1) JPS58164725A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412661A (en) * 1987-07-06 1989-01-17 Toshiba Corp Facsimile equipment
JP2005279689A (en) * 2004-03-29 2005-10-13 Jfe Steel Kk Method for producing grain oriented silicon steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412661A (en) * 1987-07-06 1989-01-17 Toshiba Corp Facsimile equipment
JP2005279689A (en) * 2004-03-29 2005-10-13 Jfe Steel Kk Method for producing grain oriented silicon steel sheet
JP4665417B2 (en) * 2004-03-29 2011-04-06 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPS58164725A (en) 1983-09-29

Similar Documents

Publication Publication Date Title
JPS6160896B2 (en)
JP5001611B2 (en) Method for producing high magnetic flux density grain-oriented silicon steel sheet
JPS60145318A (en) Heating method of grain-oriented silicon steel slab
JPS5813606B2 (en) It&#39;s hard to tell what&#39;s going on.
US5330586A (en) Method of producing grain oriented silicon steel sheet having very excellent magnetic properties
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
KR100831756B1 (en) Process for the control of inhibitors distribution in the production of grain oriented electrical steel strips
JPS621458B2 (en)
JPH01306523A (en) Production of non-oriented electrical sheet having high magnetic flux density
JPH08295937A (en) Production of grain-oriented silicon steel sheet having extremely low core loss
JPS5843446B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH032323A (en) Manufacture of nonoriented silicon steel sheet having high magnetic flux density
JPH10110218A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
KR970007333B1 (en) Method for manufacturing oriented electrical steel sheet having high magnetic density
KR101089302B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction
JP2580403B2 (en) Hot rolling method for continuous cast slab for unidirectional electrical steel sheet.
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3369371B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPS62130217A (en) Production of grain oriented silicon steel sheet having good electromagnetic characteristic
JPH0699750B2 (en) Method for producing grain-oriented silicon steel sheet having good electromagnetic characteristics
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JPH09125145A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
KR100256343B1 (en) The manufacturing method for oriented electric steel sheet with low temperature heating type
JPH09170020A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPS6256205B2 (en)