JP5001611B2 - Method for producing high magnetic flux density grain-oriented silicon steel sheet - Google Patents
Method for producing high magnetic flux density grain-oriented silicon steel sheet Download PDFInfo
- Publication number
- JP5001611B2 JP5001611B2 JP2006247674A JP2006247674A JP5001611B2 JP 5001611 B2 JP5001611 B2 JP 5001611B2 JP 2006247674 A JP2006247674 A JP 2006247674A JP 2006247674 A JP2006247674 A JP 2006247674A JP 5001611 B2 JP5001611 B2 JP 5001611B2
- Authority
- JP
- Japan
- Prior art keywords
- seconds
- temperature
- bar
- hot
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000976 Electrical steel Inorganic materials 0.000 title claims description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 230000004907 flux Effects 0.000 title claims description 21
- 238000005098 hot rolling Methods 0.000 claims description 72
- 238000010438 heat treatment Methods 0.000 claims description 30
- 238000005096 rolling process Methods 0.000 claims description 27
- 238000001816 cooling Methods 0.000 claims description 26
- 229910000831 Steel Inorganic materials 0.000 claims description 25
- 239000010959 steel Substances 0.000 claims description 25
- 229910052710 silicon Inorganic materials 0.000 claims description 24
- 238000000137 annealing Methods 0.000 claims description 18
- 239000013078 crystal Substances 0.000 claims description 14
- 238000005097 cold rolling Methods 0.000 claims description 12
- 229910052717 sulfur Inorganic materials 0.000 claims description 11
- 238000009749 continuous casting Methods 0.000 claims description 9
- 238000005261 decarburization Methods 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 6
- 229910052711 selenium Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 238000005204 segregation Methods 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 2
- 239000010703 silicon Substances 0.000 claims 2
- 238000001953 recrystallisation Methods 0.000 description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 17
- 238000000034 method Methods 0.000 description 17
- 238000001556 precipitation Methods 0.000 description 15
- 229910052799 carbon Inorganic materials 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- 238000004804 winding Methods 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000005266 casting Methods 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 239000012467 final product Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- 239000004327 boric acid Substances 0.000 description 3
- 230000005389 magnetism Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000003303 reheating Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000010129 solution processing Methods 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14775—Fe-Si based alloys in the form of sheets
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B3/02—Rolling special iron alloys, e.g. stainless steel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
- C21D8/1211—Rapid solidification; Thin strip casting
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1222—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1233—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1255—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/70—Furnaces for ingots, i.e. soaking pits
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/46—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/05—Grain orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0233—Manufacturing of magnetic circuits made from sheets
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は電力用変圧器の鉄心材や回転機器の鉄心材等に使用される磁性、特に磁束密度に優れた方向性珪素鋼板を製造する方法に関するものである。 The present invention relates to a method for producing a directional silicon steel sheet excellent in magnetism, particularly in magnetic flux density, used for iron core materials for power transformers, iron core materials for rotating equipment, and the like.
方向性珪素鋼板の製造技術はN.P.Gossの2段冷延法として発表(特許文献1)され、その製造原理は微細な析出物MnSの存在下での2次再結晶現象としてJ.E.May & D.Turnbullにより1958年に明らかにされた(非特許文献1)。これとは別に、本発明者らはAl入り1段強冷延法を発明し微細析出物AlNの有効性を発表(特許文献2)した。一方、析出物とは異なり固溶した,Sb,Nb,Se,S,Mo,Cu,Snなどの微量元素が強い1次再結晶粒の成長抑制作用を持ち、これが2次再結晶を促進することを斉藤達雄が初めて発表(非特許文献2)した。この様に現実の製造技術で利用される2次再結晶現象は析出物もしくは固溶した微量元素の存在が不可欠であるが、析出物の全く存在しない状態での2次再結晶現象としては、一定の結晶方位で固められた安定した結晶組織からなる地(Texture Inhibition)の存在下での2次再結晶現象がC.G.Dunnによって基礎的に明らかにされた(非特許文献3)。 The technology for producing grain-oriented silicon steel sheets was announced as a two-stage cold rolling method of NPGoss (Patent Document 1), and the principle of its production is JEMay & D. as a secondary recrystallization phenomenon in the presence of fine precipitates MnS. Revealed in 1958 by Turnbull (Non-Patent Document 1). Apart from this, the present inventors invented the Al-containing one-stage strong cold rolling method and announced the effectiveness of fine precipitates AlN (Patent Document 2). On the other hand, unlike the precipitates, trace elements such as Sb, Nb, Se, S, Mo, Cu, and Sn, which are solid-dissolved, have a strong primary recrystallized grain growth inhibiting action, which promotes secondary recrystallization. Tatsuo Saito announced for the first time (Non-patent Document 2). In this way, the secondary recrystallization phenomenon used in the actual manufacturing technology requires the presence of precipitates or dissolved solid elements, but as a secondary recrystallization phenomenon in the absence of precipitates, The secondary recrystallization phenomenon in the presence of a texture (Texture Inhibition) composed of a stable crystal structure solidified in a certain crystal orientation was basically clarified by CGDunn (Non-patent Document 3).
更に高磁束密度方向性珪素鋼板の製造原理は本発明者らによるAlNの2次再結晶に及ぼす効果によって明らかである(非特許文献4)。即ち、(110)[001]−Goss方位単結晶の冷延・再結晶現象に及ぼすAlNの効果について、出発単結晶が5nm以下の極めて微細なAlNを少量含む場合には{111}<110>−C方位の1次再結晶成長組織となり、10nm前後の微細なAlNをかなり多量に含む場合には2次再結晶によって初方位(110)[001]を再現し、1μm前後の比較的大きなAlNを多量に含む場合には同様に2次再結晶によって{120}<001>−A方位、{362}<012>−B方位、{111}<110>−C方位の3種類の方位の2次再結晶粒が出現する。これは上述したC.G.Dunnによる不純物を全く含まない3%Si珪素鋼単結晶の研究結果と完全に一致する。これらの研究成果から、高磁束密度方向性珪素鋼板の製造には10nm前後のAlNを熱延板の状態で確保することが決定的に重要であることがわかる。
5nm以下の極めて微細なAlNでは2次再結晶は起こらないので避けるべきである。また1μm前後の粗大なAlNは存在の意味が無い。
Furthermore, the production principle of the high magnetic flux density directional silicon steel sheet is clear by the effect of the present inventors on the secondary recrystallization of AlN (Non-patent Document 4). That is, regarding the effect of AlN on the cold rolling / recrystallization phenomenon of the (110) [001] -Goss orientation single crystal, when the starting single crystal contains a small amount of very fine AlN of 5 nm or less, {111} <110> When it becomes a primary recrystallization growth structure of -C orientation and contains a very large amount of fine AlN of about 10 nm, the first orientation (110) [001] is reproduced by secondary recrystallization, and a relatively large AlN of about 1 μm In the case where a large amount of is included, two of the three types of orientations {120} <001> -A orientation, {362} <012> -B orientation, and {111} <110> -
Secondary recrystallization does not occur with very fine AlN of 5 nm or less and should be avoided. In addition, coarse AlN of about 1 μm is meaningless.
従来、高磁束密度方向性珪素鋼板の製造に必要不可欠な存在である10nm前後のAlNを熱延板の状態で確保するためには、分塊圧延もしくは連続鋳造によって得られたスラブ(厚さ凡そ200mm以上)を1300℃以上の高温に再加熱(火焔加熱)してAlNを一旦完全に固溶した後、連続熱延機の粗圧延機を用いて20mm〜70mm厚のバー(Bar)とし、更に連続熱間仕上圧延機で圧延して最終板厚とし、ほぼ500℃前後で巻取ることにより行っていたが、仕上げ圧延の際に鋼は急速冷却されていた。しかしながら、200mm厚前後の厚手スラブでは、1350℃以上の高温で火焔加熱する場合にスラブ表面と下面の温度差が大きく目的とする効果を挙げるためには表面温度を極端に高くする必要に迫られ、そのためスラブ結晶粒の異常成長や、珪素鋼表面のスケールが溶解し炉内に堆積することによる作業上の問題点も発生していた。 Conventionally, in order to secure AlN of around 10 nm, which is indispensable for the production of high magnetic flux density grain-oriented silicon steel sheets, in the state of hot-rolled sheets, a slab (thickness approximately) obtained by split rolling or continuous casting. 200 mm or more) is reheated to a high temperature of 1300 ° C. or more (fired heating) to completely dissolve AlN once, and then a 20 mm to 70 mm thickness bar is formed using a continuous hot rolling machine. Furthermore, it was rolled by a continuous hot finish rolling mill to obtain a final plate thickness and wound at about 500 ° C., but the steel was rapidly cooled during finish rolling. However, for thick slabs around 200 mm thick, when the flame is heated at a high temperature of 1350 ° C. or higher, the temperature difference between the slab surface and the bottom surface is large, and in order to achieve the desired effect, the surface temperature must be extremely increased. For this reason, abnormal growth of slab crystal grains and work problems caused by the scale of the silicon steel surface being melted and deposited in the furnace have also occurred.
この問題点を解決することは非常に困難ではあるが、一つの製造方法として低温スラブ加熱法(非特許文献5)の採用や火焔加熱のあと最終段階での加熱を誘導加熱で行うことにより酸化スケールの溶解を防ぐ方法(例えば、特許文献3)などがある。更に10nm前後の好ましいAlNを熱延板と同一の厚みで確保するために、数mm厚の薄肉連続鋳造法(例えば、特許文献4,)を採用する考え方も発表されているが、従来の厚手CCスラブを一旦冷却後、この冷スラブを再加熱する方法は生産性や作業性に問題があり、改善が望まれている。 Although it is very difficult to solve this problem, it is oxidized by adopting a low-temperature slab heating method (Non-patent Document 5) as one manufacturing method or induction heating at the final stage after flame heating. There exists a method (for example, patent document 3) etc. which prevent melt | dissolution of a scale. Furthermore, in order to secure preferable AlN of about 10 nm with the same thickness as the hot-rolled sheet, a concept of adopting a thin continuous casting method (for example, Patent Document 4) with a thickness of several millimeters has been announced. The method of reheating the cold slab after once cooling the CC slab has problems in productivity and workability, and improvement is desired.
さらに、厚さ20〜80mmの薄スラブを連続鋳造で製造し、圧延開始温度を1100〜1200℃とする熱間圧延を採用して方向性電磁鋼板を製造する方法が特許文献5に開示されている。しかしこの方法では、熱延中に粒寸法の大きなAlNが形成され、通常の処理工程では十分な磁気特性が得られないので、脱炭焼鈍後の窒化処理を必要とする。
上記したように、従来、高磁束密度方向性珪素鋼板の製造に必要な微細AlNの分散析出効果は、厚手スラブの熱延均熱炉による高温再加熱作業によって一旦AlNを珪素鋼中に固溶したのち再び熱間圧延による急速冷却効果によって達成していたが、厚手スラブの高温加熱のスケール溶解による問題があり、また、数mm厚の薄肉連続鋳造法では結晶方位の問題や鋳造組織の脆性の問題があり、実用化を阻害する大きな問題点である。
さらに中肉の連鋳スラブを1200℃以下の温度で熱間圧延を開始する方法では、熱延前にAlNが析出し、かつ粗大化し、磁性の改善に十分効果のある状態には至っていない。
As described above, conventionally, the effect of dispersion and precipitation of fine AlN necessary for the production of a high magnetic flux density grain-oriented silicon steel sheet is that AlN is once dissolved in silicon steel by a high-temperature reheating operation using a hot slab of a thick slab. After that, it was achieved again by the rapid cooling effect by hot rolling, but there was a problem due to the high temperature heating scale melting of thick slabs, and the problem of crystal orientation and brittleness of the cast structure in the thin continuous casting method of several mm thickness This is a major problem that hinders practical application.
Furthermore, in the method of starting hot rolling of a continuous cast slab of medium thickness at a temperature of 1200 ° C. or less, AlN is precipitated and coarsened before hot rolling, and has not reached a state that is sufficiently effective for improving magnetism.
本発明は連続鋳造法により中肉厚スラブを製造し、スラブを熱延可能な最低限以上の温度に保持し、かつ溶鋼の状態で既に固溶しているAlNを連続熱間圧延を行うまでは析出させることなく鋼中に保持した上で、連続熱間圧延の際の急速冷却効果によって微細に析出させることにより、厚手CCスラブを一旦冷却した後、このスラブを1350℃以上の高温に加熱する従来の方法における問題点を解消でき、大幅な作業効率とエネルギー効率の向上でき、かつ従来より均一で優れた結晶方向性と鉄損を有する高磁束密度方向性珪素鋼板の製造方法を提供することを目的とする。 The present invention produces a medium-thick slab by a continuous casting method, maintains the slab at a temperature that is at least a minimum that can be hot-rolled, and performs continuous hot rolling of AlN that has already been dissolved in a molten steel state. Is kept in the steel without precipitation, and after the thick CC slab is cooled once by fine precipitation by the rapid cooling effect during continuous hot rolling, the slab is heated to a high temperature of 1350 ° C or higher. The present invention provides a method for producing a high-flux-density directional silicon steel sheet that can solve the problems in the conventional method, can greatly improve work efficiency and energy efficiency, and has a more uniform and superior crystal directionality and iron loss than conventional ones. For the purpose.
上記目的を達成するために本発明の構成は以下の通りである。すなわち、
(1)質量で C:0.010〜0.075%,Si:2.95〜4.0%,酸可溶性Al:0.010〜0.040%,N:0.0010〜0.0150%,S或いはSeを単独または双方で0.005〜0.1%を含み、残部Feおよび不可避的不純物からなる溶鋼を連続的に鋳造して厚さ20〜70mmの中肉厚バーを製造し、該バーを鋳造後或いは加熱炉より抽出後(加熱炉の在炉時間を含めて)1200℃超(好ましくは1350℃未満)の温度間に、かつ500秒以内に熱間仕上圧延機の入口に到達せしめて熱間連続圧延を開始し、該熱延で1.5mm〜5mm厚の熱延板とし、熱延終了後600℃に達するまでの冷却時間を150秒以下とすることを特徴とし、以下通常の冷延、中間焼鈍、脱炭焼鈍、仕上焼鈍等を行う高磁束密度方向性珪素鋼板の製造方法。
(2)上記溶鋼中に、さらに粒界に偏析して結晶成長を抑制する,Sb:0.005〜0.2%,Nb:0.005〜0.2%、Mo:0.003〜0.1、Cu:0.02〜0.2%、Sn:0.02〜0.3%の群から選ばれた少なくとも1種を含有することを特徴とする前記(1)に記載の高磁束密度方向性珪素鋼板の製造方法。
(3)前記中肉厚バーが1250℃以上の温度を保持している場合には最長でも500秒以内に、1200℃以上の温度を保持している場合には150秒以内に熱間仕上圧延機の入口に到達せしめることを特徴とする前記(1)に記載の高磁束密度方向性珪素鋼板の製造方法。
(4)連続鋳造で製造した中肉厚バーを熱間仕上圧延機の入口に到達せしめて熱間連続圧延を開始するまでの所用時間が200秒を超える場合、或いは該バーの温度が1000℃のように低温である場合には、これらのバーを1300〜1350℃の温度に保持するための加熱炉を通すことを特徴とする前記(1)に記載の高磁束密度方向性珪素鋼板の製造方法。
In order to achieve the above object, the configuration of the present invention is as follows. That is,
(1) By mass C: 0.010 to 0.075%, Si: 2.95 to 4.0%, acid-soluble Al: 0.010 to 0.040%, N: 0.0010 to 0.0150% , S or Se alone or both in an amount of 0.005 to 0.1%, continuously casting a molten steel composed of the remaining Fe and inevitable impurities to produce a medium-thickness bar having a thickness of 20 to 70 mm, After the bar is cast or extracted from the heating furnace (including the in-furnace time of the heating furnace) at a temperature exceeding 1200 ° C. (preferably less than 1350 ° C.) and within 500 seconds, enter the hot finish rolling mill at the inlet. The hot rolling is started to reach 1.5 mm to 5 mm thickness by hot rolling, and the cooling time until reaching 600 ° C. after the hot rolling is 150 seconds or less, High magnetic flux density directionality for normal cold rolling, intermediate annealing, decarburization annealing, finish annealing, etc. A method for producing a silicon steel sheet.
(2) In the molten steel, further segregation at grain boundaries to suppress crystal growth, Sb: 0.005 to 0.2%, Nb: 0.005 to 0.2%, Mo: 0.003 to 0 0.1, Cu: 0.02 to 0.2%, Sn: at least one selected from the group of 0.02 to 0.3%, the high magnetic flux according to (1) above A method for producing a density-oriented silicon steel sheet.
(3) Hot finish rolling within 500 seconds at the longest when the medium-thickness bar maintains a temperature of 1250 ° C or higher, and within 150 seconds when the temperature of 1200 ° C or higher is maintained. The method for producing a high magnetic flux density directional silicon steel sheet according to (1), wherein the method reaches the entrance of the machine.
(4) When the required time to reach the entrance of the hot finishing mill after the medium thickness bar manufactured by continuous casting exceeds 200 seconds or when the temperature of the bar is 1000 ° C. When the temperature is low as in the above, the high magnetic flux density directional silicon steel sheet according to the above (1), which is passed through a heating furnace for maintaining these bars at a temperature of 1300 to 1350 ° C. Method.
本発明のように、連続鋳造で製造した中肉鋳片に完全に固溶した状態から熱間圧延仕上圧延機(タンデムミル)での急速冷却で得られるAlNは、均一でしかも微細に分散しており、優れた結晶方位を持つ1次再結晶核を生成するに充分であると同時に、結晶成長の抑制効果も充分であり、且つ鋳造で得られた結晶組織は熱延によって破壊されているので、従来の高温加熱によるスラブの異常成長粒の悪影響もなく、最終焼鈍で均一かつ完全な2次再結晶粒を形成し、磁束密度B10≧1.90Tの優れた特性を有する高磁束密度方向性珪素鋼板を得ることができる。しかも、従来のスラブ加熱炉による1350℃という高温再加熱作業は全く不要となり、鋼片の保有熱は完全に活用されるため著しいエネルギー効率の向上に帰することになり、従来法の難点と考えられていたスラブ高温加熱による作業上の大きな課題も解決できる。 As in the present invention, AlN obtained by rapid cooling in a hot rolling finish rolling mill (tandem mill) from a state in which it is completely dissolved in a solid cast piece produced by continuous casting is uniformly and finely dispersed. It is sufficient to generate primary recrystallized nuclei with excellent crystal orientation, and at the same time, it has a sufficient effect of suppressing crystal growth, and the crystal structure obtained by casting is destroyed by hot rolling. Therefore, there is no adverse effect of the abnormally grown grains of the slab by conventional high-temperature heating, and uniform and complete secondary recrystallized grains are formed by final annealing, and the magnetic flux density direction has excellent characteristics of magnetic flux density B10 ≧ 1.90T. -Resistant silicon steel sheet can be obtained. Moreover, the high-temperature reheating operation of 1350 ° C. in the conventional slab heating furnace is completely unnecessary, and the retained heat of the steel slab is fully utilized, which leads to a significant improvement in energy efficiency. It can also solve the major work problems caused by high-temperature heating of slabs.
以下に本発明を詳細に説明する。
まず、本発明の溶鋼中に含有する各成分の限定理由を説明する。
CはSi量に応じて熱延中に一定のγ変態を生じせしめるために必要な元素であり、0.010%未満では2次再結晶を安定して生成できない。また0.075%を超えると脱炭焼鈍時間が長くなり、生産上好ましくないのでその含有量を0.010〜0.075%にした。
Siは2.95%未満では高級高磁束密度方向性珪素鋼板としては優れた鉄損値が得られない。また、4%を超えて添加すると脆性のために冷間圧延時に割れ等が発生するので好ましくなく、その含有量を2.95〜4.0%にした。
酸化溶性AlおよびNはインヒビターとして適当なAlNを生成させるために必要な元素であり、且つそのために十分な量として0.010〜0.040%,0.0010〜0.0150%の範囲とした。
S,SeはMnとMnS、MnSeを形成し、2次再結晶のための析出分散相として作用する。そのためにこれらを単独または双方で0.005%〜0.015%含有させる。その他、必要に応じ、インヒビターを強くする目的でSb:0.005〜0.2%,Nb:0.005〜0.2%、Mo:0.003〜0.1、Cu:0.02〜0.2%、Sn:0.02〜0.3%の群から選ばれた少なくとも1種を含有させる事ができる。
The present invention is described in detail below.
First, the reason for limitation of each component contained in the molten steel of the present invention will be described.
C is an element necessary for causing a certain γ transformation during hot rolling depending on the amount of Si, and if it is less than 0.010%, secondary recrystallization cannot be stably generated. On the other hand, if it exceeds 0.075%, the decarburization annealing time becomes longer, which is not preferable for production, so the content is made 0.010 to 0.075%.
If Si is less than 2.95%, an excellent iron loss value cannot be obtained as a high-grade high magnetic flux density directional silicon steel sheet. Further, if added over 4%, it is not preferable because cracks and the like occur during cold rolling due to brittleness, and its content is set to 2.95 to 4.0%.
Oxidation-soluble Al and N are elements necessary for producing AlN suitable as an inhibitor, and the sufficient amount thereof is in the range of 0.010 to 0.040% and 0.0010 to 0.0150%. .
S and Se form Mn, MnS, and MnSe, and act as a precipitated dispersed phase for secondary recrystallization. Therefore, these are contained individually or in an amount of 0.005% to 0.015%. In addition, Sb: 0.005 to 0.2%, Nb: 0.005 to 0.2%, Mo: 0.003 to 0.1, Cu: 0.02 to strengthen the inhibitor as necessary. At least one selected from the group of 0.2% and Sn: 0.02 to 0.3% can be contained.
本発明の高磁束密度方向性珪素鋼鈑を製造するには熱延板の状態で10nm前後(5〜50nm)のAlNを存在させることが必須であり、そのために、連続鋳造等の手段で20〜70mmの中肉厚バーを製造し、このバーの保有熱、或いは保熱炉等の温度降下を防止する加熱手段によってAlNの固溶状態を保ちながら、バー温度が1200℃以上の場合には保熱炉抽出後最大でも150秒以内で、1250℃以上の場合には最大でも500秒以内で熱間圧延機入り口まで移行させ、熱間圧延で1.5mm〜5mm厚の熱延板とし、熱延終了後600℃に達するまでの冷却時間を150秒以下とすることにより、10nm近傍(5〜500nm)の微細なAlNを析出させる。 In order to produce the high magnetic flux density directional silicon steel sheet of the present invention, it is essential that AlN having a thickness of about 10 nm (5 to 50 nm) be present in the state of a hot-rolled sheet. If the bar temperature is 1200 ° C or higher while manufacturing a medium-thickness bar of ~ 70mm and maintaining the solid solution state of AlN by the heating means to prevent the heat retention of this bar or the temperature drop of heat insulation furnace etc. Within 150 seconds at the maximum after extraction from the heat-retaining furnace, when the temperature is 1250 ° C. or higher, the transition to the hot rolling mill entrance is performed within 500 seconds at the maximum, and hot rolled steel sheet having a thickness of 1.5 mm to 5 mm by hot rolling, By setting the cooling time until reaching 600 ° C. after the hot rolling to 150 seconds or less, fine AlN in the vicinity of 10 nm (5 to 500 nm) is deposited.
本発明でバーを20〜70mmの中肉厚さに限定したのは、20mm未満では保熱に大きな設備が必要となり、また70mmを超えると仕上圧延機のみでは熱延板を得ることができず、粗圧延機が必要になり、経済的生産が達成されないためである。 In the present invention, the bar is limited to a medium thickness of 20 to 70 mm. If it is less than 20 mm, a large facility for heat retention is required. If it exceeds 70 mm, a hot rolled sheet cannot be obtained only by a finishing mill. This is because a roughing mill is required and economic production is not achieved.
20〜70mm厚のバーを製造し、圧延する手段は特に限定しない。公知の連続鋳造−熱間圧延連続設備の例を図1及び図2に模式的に示した。図1は鋳型1より抽出した中肉スラブ2を連続鋳造し、切断したスラブ3を一定の温度保持のために保熱炉4に装入したあと直ちに連続仕上熱延機5で圧延して薄手熱延帯鋼を巻取6っている。また、図2は中肉スラブ2を連続鋳造した後、巻取ってコイル7とし、該コイルをコイルボックス8に装入して温度の均一化を図った後、連続仕上熱延機5で圧延し巻き取る装置である。
The means for producing and rolling a 20 to 70 mm thick bar is not particularly limited. An example of a known continuous casting-hot rolling continuous equipment is schematically shown in FIGS. FIG. 1 shows that a
次いで図3および図4を用いて中肉厚バーの処理条件について説明する。
質量%で0.045%C,3.20%Si,0.025%Al,その他不純物を含有する珪素鋼鋼塊を圧延して40mm厚のバーを出発素材とし、これを4分割して以下の実験を試みた。これらをバー加熱炉で1300℃で3時間保持してAlNを完全に地鉄中に固溶させた後放冷し、この4種類のバーが1250℃,1210℃,1100℃,1000℃の温度になった時点で直ちに夫々1250℃,1210℃,1100℃,1000℃の温度に保った炉中に装入し、夫々1250℃で480秒間(バー加熱炉抽出後合計500秒間)、1210℃で120秒間(同合計150秒間)、1100℃で50秒間(同合計100秒間)、1000℃で20秒間(同合計50秒間)保持後熱間圧延し、圧延終了後は大気中に放冷した。この熱履歴を総合的に図示したのが図4である。この図で曲線(A)はバー加熱炉抽出後直ちに圧延を行った場合の冷却曲線、(B),(C),(D,(E)の冷却曲線は夫々上で述べた通りである。
この熱延板を冷延し、脱炭し、仕上焼鈍して最終製品とし、該製品の磁気特性(B10)を測定し、この特性と熱履歴(バー加熱炉を抽出後、保熱炉在炉時間も含めて仕上圧延機入口に到達するまでの合計時間)との関係を図3に示した。
図3から明らかな様に、図4(A)の冷却曲線で示される熱延を行った場合には、保持時間が0であるため磁気特性は図3の黒丸1で示されるように最も優れたB10特性を示し、図4の(B)の1000℃に20秒保持した後熱延を行った場合の磁気特性は図3の白丸2で示されるように保持時間が短いにもかかわらずB10特性はかなりの劣化を示し、100秒を超えれば2次再結晶そのものも不安定となる。
更に図4の(C)の1100℃に50秒保持した後熱延を行った場合の磁気特性は図3の半黒丸3で示されるように、保持時間は長いが温度が高いためにやや改善されている。更に図4の(D)の1200℃超に120秒間保持した後熱延を行った場合の磁気特性は図3の黒丸4で示されるように、保持時間は長くても温度を高くすることにより最良値に近い値を示している。
最後に図4の(E)の1250℃に480秒間保持した後熱延を行った場合の磁気特性は図3の小黒丸5で示されるように、非常に長い保持時間であるにもかかわらず最良値に比較すればやや劣る程度の値を示している。
この様にバー温度の低下はB10特性に対して致命的であるが、1200℃を超えて高い温度を確保すれば保持時間に猶予を与えることも可能となり、優れた特性が得られることが分かった。
Next, the processing conditions for the medium thickness bar will be described with reference to FIGS. 3 and 4.
Roll a silicon steel ingot containing 0.045% C, 3.20% Si, 0.025% Al, and other impurities in mass% to start a 40mm-thick bar, and divide this into 4 parts. I tried the experiment. These were kept in a bar heating furnace at 1300 ° C for 3 hours, and AlN was completely dissolved in the ground iron and then allowed to cool. These four bars had temperatures of 1250 ° C, 1210 ° C, 1100 ° C and 1000 ° C. Were immediately placed in furnaces maintained at temperatures of 1250 ° C., 1210 ° C., 1100 ° C., and 1000 ° C., respectively, at 1250 ° C. for 480 seconds (total of 500 seconds after bar heating furnace extraction), and at 1210 ° C. After holding for 120 seconds (same total 150 seconds), 1100 ° C. for 50 seconds (same total 100 seconds), and 1000 ° C. for 20 seconds (same total 50 seconds), hot rolling was performed, and after rolling, it was allowed to cool to the atmosphere. FIG. 4 shows the overall heat history. In this figure, the curve (A) is a cooling curve when rolling is performed immediately after extraction from the bar heating furnace, and the cooling curves of (B), (C), (D, (E) are as described above.
This hot-rolled sheet is cold-rolled, decarburized, finish-annealed to obtain the final product, and the magnetic properties (B10) of the product are measured. FIG. 3 shows the relationship with the total time required to reach the finishing mill entrance including the furnace time.
As is apparent from FIG. 3, when the hot rolling shown by the cooling curve in FIG. 4 (A) is performed, the retention time is 0, so that the magnetic characteristics are the best as shown by the
Further, the magnetic characteristics when hot rolling is performed after holding at 1100 ° C. for 50 seconds as shown in FIG. 4 (C) are slightly improved because the holding time is long but the temperature is high as shown by the half-
Finally, as shown in FIG. 4 (E), when the magnetic rolling is performed after holding at 1250 ° C. for 480 seconds and then performing hot rolling, the small
In this way, the decrease in the bar temperature is fatal to the B10 characteristics, but it is possible to give a grace period to the holding time if a high temperature exceeding 1200 ° C. is secured, and it is found that excellent characteristics can be obtained. It was.
図4の(B)、(C)の冷却曲線に示される熱延を行った場合には、図3から明らかなように、圧延前の保持温度が充分ではなく、これらの場合には何れもAlNの析出が進行して磁性の劣化をきたすことが示された。また図4の(C)の冷却曲線の場合には、極めて短時間に熱延機入口に到達できればある程度の磁性を確保することが可能ではあるが、製造現場での条件から判断すると、少なくとも図4(D)もしくは図4(E)の冷却曲線に沿った熱履歴でないと生産作業が出来ないことが明らかである。 When the hot rolling shown in the cooling curves of FIGS. 4B and 4C is performed, as is apparent from FIG. 3, the holding temperature before rolling is not sufficient. It has been shown that precipitation of AlN proceeds and causes magnetic deterioration. In the case of the cooling curve in FIG. 4C, it is possible to ensure a certain degree of magnetism if it can reach the hot rolling machine inlet in an extremely short time. It is clear that the production work cannot be performed unless the thermal history is along the cooling curve of 4 (D) or FIG. 4 (E).
高磁束密度方向性珪素鋼板として鉄損値が重要視される3.0〜4.0%Siの場合には、Si量が3%未満の低い場合に比べると、前記[0015]項で述べたように、処理条件がかなり厳しく、生産作業上許容される時間は比較的短い。その理由は低Siの場合にはγ変態によってAlNの固溶度が増すために析出が防止できるからである。従って、高いSi量の場合には、析出防止の手段として温度を利用するしかない。その意味はAlNの析出が温度が高ければ高いほど急速に遅れるので、仕上熱延機の入口に到達するのに時間が必要な場合には保持温度を高くすることを考えればよい。即ち、請求項4にあるように、連続鋳造で製造した中肉厚バーを熱間仕上圧延機の入口に到達せしめて熱間連続圧延を開始するまでの所用時間が200秒を超える場合には、該バーを1250〜1350℃の温度に保持するための加熱炉を通す方法や、更に該バーの温度が1000℃のように低温である場合にも該バーを1250〜1350℃の温度に保持するための加熱炉を通すような手段でAlNの析出を防止することができる。
In the case of 3.0 to 4.0% Si in which the iron loss value is regarded as important as a high magnetic flux density grain-oriented silicon steel sheet, it is described in the above [0015] section as compared with the case where the Si content is less than 3%. As described above, the processing conditions are quite severe, and the time allowed for production work is relatively short. The reason is that in the case of low Si, precipitation is prevented because the solid solubility of AlN is increased by the γ transformation. Therefore, in the case of a high Si content, temperature can only be used as a means for preventing precipitation. The meaning is that the higher the temperature of AlN precipitation, the more rapidly it delays. Therefore, if it takes time to reach the inlet of the finishing hot rolling machine, the holding temperature should be increased. That is, as described in
図5は0.046%C,3.10%Si,0.029%Alの珪素鋼鋼塊を圧延して40mm厚のバーとし1350℃で30分加熱後直ちに圧延して略1000℃で3.5厚の熱延板に仕上げ、これを熱延終了直後の冷却過程から水冷して5通りの熱延板を作成し、冷延し、脱炭し、仕上焼鈍して最終製品とした際の磁気特性と上記熱履歴との関係を図示したものである。図中太線は熱延後の冷却(水冷)開始点を示し、細線は磁気特性(B10)を示す。
この結果から、熱延終了後の材料はできる限り早い時期から急速冷却処理を行うこと、即ち、熱延終了後150秒を超えない範囲で、aのような緩冷却(大気中放冷)でなく.b.c.d.eのように高い温度から、できる限り速い速度で冷却を行うことが磁気特性を得るために必要となる。例えば、eの場合ではB10=1.95Tと高い値が得られる。150秒を超えない範囲で冷却する温度は少なくとも600℃とする。通常熱延鋼板は600℃以下になると巻き取られ、ゆっくり冷却されるためAlNの析出はしなくなる。
FIG. 5 shows that a 0.046% C, 3.10% Si, 0.029% Al silicon steel ingot is rolled into a 40 mm thick bar, heated at 1350 ° C. for 30 minutes, and then immediately rolled to approximately 1000 ° C. at 3 ° C. When finished into a 5-thick hot-rolled sheet and water-cooled from the cooling process immediately after the end of hot-rolling to create 5 types of hot-rolled sheets, cold-rolled, decarburized, and finished annealed to obtain the
From this result, the material after completion of hot rolling should be subjected to rapid cooling treatment from the earliest possible timing, that is, by slow cooling (cooling in the air) as in a range not exceeding 150 seconds after completion of hot rolling. Without. b. c. d. In order to obtain magnetic characteristics, it is necessary to perform cooling at a speed as fast as possible from a high temperature as in e. For example, in the case of e, a high value of B10 = 1.95T is obtained. The temperature for cooling in a range not exceeding 150 seconds is at least 600 ° C. Usually, a hot-rolled steel sheet is wound up when it is 600 ° C. or lower, and is cooled slowly, so that AlN does not precipitate.
図6に熱延冷却サイクルとAlN析出量との関係を示した。参考のために低Si(1.12%Si,2.17%Si)の場合の析出曲線を併記したが、これとの比較から分るようにSi量が3.10% の場合では1250℃前後からAlNの析出が始まり、1200℃以下では急速に進むのに対して1.1%Siの場合は1000℃までAlNの析出はほとんど進行せず、1000℃以下で初めて析出してくる。
これは材料のα−γ変態領域が含有C及びSi量によって増減し、AlNの析出挙動がこのγ変態の量と密接に関係しているからである。
FIG. 6 shows the relationship between the hot rolling cooling cycle and the AlN precipitation amount. For reference, the precipitation curve in the case of low Si (1.12% Si, 2.17% Si) is also shown. As can be seen from the comparison with this, it is 1250 ° C. when the Si amount is 3.10%. Precipitation of AlN begins and progresses rapidly at 1200 ° C. or less, whereas in the case of 1.1% Si, AlN deposition hardly progresses to 1000 ° C., and begins to precipitate at 1000 ° C. or less.
This is because the α-γ transformation region of the material increases or decreases depending on the amount of contained C and Si, and the precipitation behavior of AlN is closely related to the amount of γ transformation.
以上を総括してAlNによる結晶成長抑制効果を利用して優れた高磁束密度方向性珪素鋼板を製造する場合の熱間圧延条件は下記の通りとなる。
(1)2.95〜4%Siを含有する珪素鋼素材でAlNを完全に固溶した中肉厚バーを熱延する場合、該バーを鋳造後或いは加熱炉より抽出後、その保持温度に応じて1250℃以上である場合には最長でも500秒以内に、1200℃超である場合には好ましくは150秒以内に熱間仕上圧延機の入口に到達せしめて熱間圧延を開始する。
(2)上記熱延終了後の冷却は最大でも600℃までの時間が150秒を超えないことである。高温からの冷却によってAlNは析出するが、この際時間をかけて徐々に冷却すればAlNは時間の経過と共に粗大化し極端な場合には1μm 程度のサイズとなり本発明の目的には全く意味の無い形態になってしまう。完全に固溶した状態のAlNが600℃まで150秒を超えない時間で冷却されると、析出サイズは略10nm前後となり本発明に好ましい状態となる。
In summary, the hot rolling conditions for producing an excellent high magnetic flux density grain-oriented silicon steel sheet by utilizing the effect of suppressing crystal growth by AlN are as follows.
(1) When hot rolling a medium thickness bar in which AlN is completely dissolved in a silicon steel material containing 2.95 to 4% Si, the bar is heated to the holding temperature after casting or extraction from a heating furnace. Accordingly, when the temperature is 1250 ° C. or higher, the hot rolling is started by reaching the inlet of the hot finishing mill within 500 seconds at the longest, and preferably when the temperature is higher than 1200 ° C. within 150 seconds.
(2) The cooling after the end of the hot rolling is that the time to 600 ° C. does not exceed 150 seconds at the maximum. AlN is precipitated by cooling from a high temperature. At this time, if it is gradually cooled over time, the AlN coarsens with the passage of time and becomes about 1 μm in an extreme case, and has no meaning for the purpose of the present invention. It becomes a form. When AlN in a completely solid solution is cooled to 600 ° C. for a time not exceeding 150 seconds, the precipitation size becomes approximately 10 nm, which is a preferable state for the present invention.
以下に本発明を実施例に基づいて説明する。
[実施例1]
質量%で、0.045%C,3.05%Si,0.032%Alを含み残部Fe及び不可避的不純物からなる(残部規定は以下の実施例も同じにつき記述省略)珪素鋼溶鋼を連続鋳造機(以下CC機という)で60mm厚のバーとし、直ちに仕上熱延して3.0mm厚とした。仕上熱延入口温度はバー頭部が1210℃、尻部が1205℃であった。熱延板のC量は0.041%で僅かに脱炭が起こっている。これを先ず圧下率30%の冷延をして2.1mm厚とし次いで1100℃で2分間窒素中で焼鈍した後ジェット気流を吹き当てて冷却した。冷却速度は1100℃から850℃までが約18秒、850℃から400℃までが約27秒であった。この焼鈍後のAlNは0.0055%(NasAlN)と分析された。次にこれを83.3%の圧延率で冷延して0.35mm厚とした後800℃で3分間水素中で脱炭した後1200℃で20時間焼鈍した。製品の圧延方向におけるB10特性は1.93T,W17/50は1.15W/kgであった。
[比較例]実施例1と同じ成分のバーを仕上熱延機入口の前でほぼ40秒間放置した後、仕上げ熱延を開始した。その際のバーの仕上圧延開始温度はバー頭部が1150℃、尻部が1120℃であった。その後実施例1と同様に処理し、最修成品の2次再結晶率発生率を調べたところ、ほぼ50%であり、成品には成らなかった。
The present invention will be described below based on examples.
[Example 1]
Containing 0.045% C, 3.05% Si, 0.032% Al, the balance being Fe and unavoidable impurities (the remainder is omitted in the following examples as well), and silicon steel molten steel is continuously used. The bar was 60 mm thick with a casting machine (hereinafter referred to as “CC machine”) and immediately finished and hot rolled to a thickness of 3.0 mm. The finishing hot rolling inlet temperature was 1210 ° C. at the bar head and 1205 ° C. at the bottom. The amount of C in the hot-rolled sheet is 0.041%, and decarburization is slightly occurring. This was first cold-rolled at a reduction rate of 30% to a thickness of 2.1 mm, then annealed at 1100 ° C. for 2 minutes in nitrogen, and then cooled by blowing a jet stream. The cooling rate was about 18 seconds from 1100 ° C. to 850 ° C. and about 27 seconds from 850 ° C. to 400 ° C. The annealed AlN was analyzed to be 0.0055% (NasAlN). Next, this was cold rolled at a rolling rate of 83.3% to a thickness of 0.35 mm, decarburized at 800 ° C. for 3 minutes in hydrogen, and then annealed at 1200 ° C. for 20 hours. The B10 characteristic in the rolling direction of the product was 1.93 T, and W17 / 50 was 1.15 W / kg.
[Comparative Example] A bar having the same components as in Example 1 was allowed to stand for about 40 seconds in front of the finishing hot rolling machine inlet, and then finishing hot rolling was started. The finishing rolling start temperature of the bar at that time was 1150 ° C. at the bar head and 1120 ° C. at the bottom. Thereafter, the treatment was carried out in the same manner as in Example 1, and the secondary recrystallization rate occurrence rate of the most repaired product was examined.
[実施例2]
質量%で、0.048%C,3.13%Si,0.10%Mn,0.029%Al,0.029%S、含有し残部Fe及び不可避的不純物からなる(残部規定は以下の実施例も同じにつき記述省略)珪素鋼溶鋼を該CC機で50mm厚のバーとし、直ちに仕上熱延して2.8mm厚とした。仕上熱延入口温度はバー頭部が1210℃、尻部が1200℃であり、それぞれ10秒後、50秒後に熱延を終了し、その際の温度は1010℃、1000℃であった。約75秒後には巻取を完了した。熱延後のCは0.040%,AlNは0.0040%(NasAlN)と分析された。この熱延板を酸洗後87.5%の圧延率で冷延して0.35mm厚の最終ゲージとし、850℃で3分間湿水素中で脱炭した後水素中1200℃で15時間焼鈍した。製品の圧延方向におけるB10特性は夫々1.92T,W17/50 は1.05W/kgであった。
[Example 2]
Containing 0.048% C, 3.13% Si, 0.10% Mn, 0.029% Al, 0.029% S, and the balance Fe and unavoidable impurities (the balance is defined as follows) The description of the examples is also omitted. The silicon steel molten steel was made into a bar having a thickness of 50 mm by the CC machine, and immediately finished and hot rolled to a thickness of 2.8 mm. The finishing hot rolling inlet temperature was 1210 ° C. at the bar head and 1200 ° C. at the bottom, and after 10 seconds and 50 seconds, the hot rolling was finished, and the temperatures at that time were 1010 ° C. and 1000 ° C. The winding was completed after about 75 seconds. C after hot rolling was analyzed to be 0.040%, and AlN was analyzed to be 0.0040% (NasAlN). This hot-rolled sheet is pickled and cold-rolled at a rolling rate of 87.5% to obtain a final gauge of 0.35 mm thickness, decarburized in wet hydrogen at 850 ° C. for 3 minutes, and then annealed in hydrogen at 1200 ° C. for 15 hours. did. The B10 characteristics in the rolling direction of the product were 1.92 T and W17 / 50 was 1.05 W / kg, respectively.
[実施例3]
質量%で、0.050%C,3.18%Si,0.075%Mn,0.021%Al,0.035%Sを含有する珪素鋼溶鋼を該CC機で40mm厚のバーとし、直ちに仕上熱延して3.0mm厚とした。仕上熱延入口温度はバー頭部が1210℃、尻部が1205℃であり、それぞれ12秒後、53秒後に熱延を終了した。その際の温度は夫々1020℃、990℃であった。約80秒後には巻取を完了した。
これを1100℃で1分間窒素雰囲気中で連続焼鈍した後、炉の出口にある窒素ガス吹きつけ装置によって強制冷却して930℃とし、更にラミナーフロー装置によって200℃まで急速冷却した。この時のCは0.045%,AlNは0.0040%(NasAlN)と分析された。これを酸洗後88.3%圧延率で冷延して0.35mm厚の最終ゲージとし、850℃で3分間湿水素中で脱炭した後水素中1200℃で15時間焼鈍した。製品の圧延方向における磁気特性はB10が1.92T,W17/50は1.05W/kgであった。
[比較例]実施例3と同じ成分のバーを仕上熱延機入口の前でほぼ150秒間放置した後、仕上げ熱延を開始した。その際のバーの仕上圧延開始温度はバー頭部が950℃、尻部が930℃であった。その後、上記実施例3と同様一条件で最終製品まで処理した結果、2次再結晶率発生率を調べたところ、20%であり、成品には成らなかった。
[Example 3]
A silicon steel molten steel containing 0.050% C, 3.18% Si, 0.075% Mn, 0.021% Al, 0.035% S in mass% is made into a 40 mm thick bar with the CC machine, Immediately, it was hot rolled to a thickness of 3.0 mm. The finishing hot rolling inlet temperature was 1210 ° C. at the bar head and 1205 ° C. at the bottom, and the hot rolling was finished after 12 seconds and 53 seconds, respectively. The temperatures at that time were 1020 ° C. and 990 ° C., respectively. The winding was completed after about 80 seconds.
This was continuously annealed at 1100 ° C. for 1 minute in a nitrogen atmosphere, then forcedly cooled to 930 ° C. by a nitrogen gas blowing device at the outlet of the furnace, and further rapidly cooled to 200 ° C. by a laminar flow device. At this time, C was analyzed as 0.045%, and AlN was analyzed as 0.0040% (NasAlN). This was pickled and cold rolled at a rolling rate of 88.3% to obtain a final gauge having a thickness of 0.35 mm, decarburized in wet hydrogen at 850 ° C. for 3 minutes, and then annealed in hydrogen at 1200 ° C. for 15 hours. The magnetic properties in the rolling direction of the product were 1.92 T for B10 and 1.05 W / kg for W17 / 50.
[Comparative Example] A bar having the same components as in Example 3 was allowed to stand for about 150 seconds in front of the finishing hot rolling machine inlet, and then finishing hot rolling was started. The finishing rolling start temperature of the bar at that time was 950 ° C. at the bar head and 930 ° C. at the bottom. Thereafter, the final product was processed under the same conditions as in Example 3 and as a result, the secondary recrystallization rate occurrence rate was examined. As a result, it was 20%, and it was not a product.
[実施例4]
質量%で、0.050%C,3.12%Si,0.041%Al,0.030%S,0.050%Se,0.030%Teを含む珪素鋼溶鋼を該CC機で60mm厚のバーとし、直ちに仕上熱延して3.0mm厚とした。仕上熱延入口温度はバー頭部が1230℃、尻部が1210℃であり、それぞれ15秒後、60秒後に熱延を終了した。その際の温度は夫々1050℃、1020℃であった。約90秒後には巻取を完了した。
これを1100℃で2分間窒素雰囲気中で連続焼鈍した後、50%冷延し、次いで1分間1次再結晶のための焼鈍をし、更に84.7%の圧延率で0.23mmとした。これを脱炭焼鈍後、脱Se、脱Te、脱Sを伴う1200℃で20時間の仕上焼鈍をした。製品の磁気特性は、B10が1.93T、W17/50は1.05W/kgであった。
[Example 4]
Silicon steel molten steel containing 0.050% C, 3.12% Si, 0.041% Al, 0.030% S, 0.050% Se, 0.030% Te in mass% is 60 mm with the CC machine. A thick bar was formed and immediately finished and hot rolled to a thickness of 3.0 mm. The finishing hot rolling inlet temperature was 1230 ° C. at the bar head and 1210 ° C. at the bottom, and the hot rolling was finished after 15 seconds and 60 seconds, respectively. The temperatures at that time were 1050 ° C. and 1020 ° C., respectively. The winding was completed after about 90 seconds.
This was continuously annealed at 1100 ° C. for 2 minutes in a nitrogen atmosphere, then cold-rolled by 50%, then annealed for 1 minute for primary recrystallization, and further reduced to 0.23 mm at a rolling rate of 84.7%. . After decarburization annealing, this was subjected to finish annealing at 1200 ° C. for 20 hours with removal of Se, removal of Te, and removal of S. The magnetic properties of the product were 1.93 T for B10 and 1.05 W / kg for W17 / 50.
[実施例5]
質量%で、0.046%C,3.20%Si,0.031%Al,0.025%Sを含有する珪素鋼溶鋼を該CC機で50mm厚のバーとし、直ちに仕上熱延して2.5mm厚とした。仕上熱延入り口温度はバー頭部が1220℃、尻部が1205℃であり、それぞれ12秒後、50秒後に熱延を終了した。その際の温度は夫々1005℃、990℃であった。約85秒後には巻取を完了した。
これを1130℃で2分間連続焼鈍した後、酸洗いし最終板厚0.23mmに冷延した後850℃で2分間湿水素中で脱炭焼鈍した。この鋼板に重量でMgO:100に対してTiO2 :10,MnO2 :5の割合で配合し、更に硼酸0.1〜3%添加の焼鈍分離剤と、硼酸添加しない焼鈍分離剤とを区別して塗布した後1200℃で20時間水素中で焼鈍した。
下表に示す通り、このMgOへの硼酸添加によってB10特性が向上すると同時に鉄損値が低下し、また夫々のバラツキも少なくなり、方向性珪素鋼板として非常に重要なグラスフィルムの性状が良好となった。
硼酸添 磁束密度,B10(T) 鉄損値,W17/50(W/kg) 備考,
加量,% 最低 最大 平均値 差 最低 最大 平均値 差 TiO2,MnO2添加
0 1.88 1.92 1.905 0.04 1.15 1.32 1.235 0.17 なし
0.1 1.89 1.94 1.915 0.05 0.99 1.12 1.055 0.13
0.5 1.90 1.93 1.915 0.03 0.96 1.08 1.020 0.12 あり
1.0 1.91 1.93 1.920 0.02 0.94 0.98 0.960 0.04
3.0 1.88 1.91 1.895 0.03 1.02 1.17 1.095 0.15
[Example 5]
A silicon steel molten steel containing 0.046% C, 3.20% Si, 0.031% Al, 0.025% S in mass% is made into a 50 mm-thick bar with the CC machine, and immediately finished hot rolled. The thickness was 2.5 mm. The finish hot rolling entrance temperature was 1220 ° C. at the bar head and 1205 ° C. at the bottom, and the hot rolling was finished after 12 seconds and 50 seconds, respectively. The temperatures at that time were 1005 ° C. and 990 ° C., respectively. The winding was completed after about 85 seconds.
This was continuously annealed at 1130 ° C. for 2 minutes, then pickled, cold-rolled to a final thickness of 0.23 mm, and then decarburized and annealed in wet hydrogen at 850 ° C. for 2 minutes. The steel sheet is mixed with TiO 2 : 10 and MnO 2 : 5 by weight with respect to MgO: 100, and further, an annealing separator containing 0.1 to 3% boric acid and an annealing separator not containing boric acid are separated. After separately coating, it was annealed in hydrogen at 1200 ° C. for 20 hours.
As shown in the table below, the addition of boric acid to MgO improves the B10 characteristics and at the same time reduces the iron loss value, and also reduces each variation, and the glass film, which is very important as a grain-oriented silicon steel sheet, has good properties. became.
Boric acid-added magnetic flux density, B10 (T) Iron loss value, W17 / 50 (W / kg) Remarks,
Addition,% Minimum Maximum Average Difference Minimum Maximum Average Difference TiO 2 , MnO 2 added
0 1.88 1.92 1.905 0.04 1.15 1.32 1.235 0.17 None
0.1 1.89 1.94 1.915 0.05 0.99 1.12 1.055 0.13
0.5 1.90 1.93 1.915 0.03 0.96 1.08 1.020 0.12 Yes
1.0 1.91 1.93 1.920 0.02 0.94 0.98 0.960 0.04
3.0 1.88 1.91 1.895 0.03 1.02 1.17 1.095 0.15
[実施例6]
質量%で、0.04%C,3.30%Si,0.029%Alを含む珪素鋼溶鋼を該CC機で60mm厚のバーとし、直ちに仕上熱延して2.3mm厚とした。仕上熱延入口温度はバー頭部が1230℃、尻部が1205℃であり、それぞれ12秒後、45秒後に熱延を終了した。その際の温度は夫々1010℃、995℃であった。約85秒後には巻取を完了した。
この熱延板を1150℃で2分間連続焼鈍した後、急速冷却した後酸洗いし、最終板厚0.27mmに冷延した後850℃で水素中で脱炭焼鈍を行い1200℃で最終焼鈍した。冷延を行うに当たっては5通りの異なる温度での時効処理を行いながら、同一のパススケジュール(1.6mm,1.2mm,1.0mm,0.8mm,0.6mm,0.45mmの6パス)で通板した。即ち、その条件と磁気特性との関係は下表に示す通りである。
これから200℃前後でのパス間時効が効果的であることが分かる。
(1).冷延パス毎に 50 ℃×5 分熱処理 ・・B10=1.920(T),W17/50=1.024 (W/kg)
(2).冷延パス毎に150 ℃×5 分熱処理 ・・B10=1.944(T),W17/50=1.001 (W/kg)
(3).冷延パス毎に200 ℃×5 分熱処理 ・・B10=1.951(T),W17/50=0.998 (W/kg)
(4).冷延パス毎に350 ℃×5 分熱処理 ・・B10=1.925(T),W17/50=1.012 (W/kg)
(5).冷延パス毎に500 ℃×5 分熱処理 ・・B10=1.880(T),W17/50=1.195 (W/kg)
[Example 6]
A silicon steel molten steel containing 0.04% C, 3.30% Si and 0.029% Al in mass% was made into a bar having a thickness of 60 mm by the CC machine, and immediately finished by hot rolling to a thickness of 2.3 mm. The finishing hot rolling inlet temperature was 1230 ° C. at the bar head and 1205 ° C. at the bottom, and the hot rolling was finished after 12 seconds and 45 seconds, respectively. The temperatures at that time were 1010 ° C. and 995 ° C., respectively. The winding was completed after about 85 seconds.
This hot-rolled sheet was continuously annealed at 1150 ° C. for 2 minutes, then rapidly cooled and pickled, cold-rolled to a final sheet thickness of 0.27 mm, decarburized and annealed in hydrogen at 850 ° C., and finally annealed at 1200 ° C. did. When performing cold rolling, the same pass schedule (6 passes of 1.6mm, 1.2mm, 1.0mm, 0.8mm, 0.6mm, 0.45mm), with aging treatment at 5 different temperatures ). That is, the relationship between the conditions and the magnetic characteristics is as shown in the table below.
This shows that aging between passes at around 200 ° C. is effective.
(1). Heat treatment at 50 ℃ for 5 minutes for each cold rolling pass ・ ・ B10 = 1.920 (T), W17 / 50 = 1.024 (W / kg)
(2). Heat treatment at 150 ℃ for 5 minutes for each cold rolling pass ・ ・ B10 = 1.944 (T), W17 / 50 = 1.001 (W / kg)
(3). Heat treatment at 200 ℃ for 5 minutes for each cold rolling pass ・ ・ B10 = 1.951 (T), W17 / 50 = 0.998 (W / kg)
(4). Heat treatment at 350 ℃ for 5 minutes for each cold rolling pass ・ ・ B10 = 1.925 (T), W17 / 50 = 1.012 (W / kg)
(5). Heat treatment at 500 ℃ for 5 minutes for each cold rolling pass ・ ・ B10 = 1.880 (T), W17 / 50 = 1.195 (W / kg)
[実施例7]
質量%で、0.085%C,3.20%Si,0.073%Mn,0.025%S,0.025%酸可溶性Al,0.0085%N,0.08%Sn,0.07%Cuを含有する珪素鋼溶鋼を該CC機で60mm厚のバーとし、直ちに仕上熱延して2.0mmとした。仕上熱延入り口温度はバー頭部が1220℃、尻部が1201℃であり、それぞれ15秒後、55秒後に熱延を終了した。その際の温度は夫々990℃、985℃であった。約90秒後には巻取を完了した。
この熱延板を1130℃で2分間連続焼鈍した後、100℃の湯の中に急速冷却して析出熱処理を行い、酸洗いし、次いで250℃×5分間のパス間時効処理を施しながら最終板厚0.22mmに冷延した。次いで850℃で2分間Craced−NH3 中,露点62℃の雰囲気中で脱炭焼鈍を行い、更にMgOとTiO2 を混合した焼鈍分離剤を塗布し1200℃で最終焼鈍した。最終焼鈍後に張力コーティングを施した。
製品の磁気特性と結晶粒度は、B10=1.92(T),W17/50=0.88W/kg,ASTM No.5であった。Sn及びCuを添加しない場合には、B10=1.92 (T),W17/50 =0.95W/kg ,ASTM No.3であった。
[Example 7]
In mass%, 0.085% C, 3.20% Si, 0.073% Mn, 0.025% S, 0.025% acid-soluble Al, 0.0085% N, 0.08% Sn, 0.005%. Silicon steel molten steel containing 07% Cu was made into a 60 mm thick bar by the CC machine, and immediately finished hot rolled to 2.0 mm. The finishing hot rolling entrance temperature was 1220 ° C. at the bar head and 1201 ° C. at the bottom, and the hot rolling was finished after 15 seconds and 55 seconds, respectively. The temperatures at that time were 990 ° C. and 985 ° C., respectively. The winding was completed after about 90 seconds.
This hot-rolled sheet was continuously annealed at 1130 ° C. for 2 minutes, then rapidly cooled in hot water at 100 ° C., subjected to precipitation heat treatment, pickled, and then subjected to final aging treatment at 250 ° C. for 5 minutes. The sheet was cold-rolled to a thickness of 0.22 mm. Next, decarburization annealing was performed in an atmosphere of dew point of 62 ° C. in Craced-NH 3 for 2 minutes at 850 ° C., and an annealing separator mixed with MgO and TiO 2 was applied and final annealing was performed at 1200 ° C. A tension coating was applied after the final annealing.
The magnetic properties and grain size of the product are B10 = 1.92 (T), W17 / 50 = 0.88 W / kg, ASTM No. It was 5. When Sn and Cu are not added, B10 = 1.92 (T), W17 / 50 = 0.95 W / kg, ASTM No. 3.
[実施例8] 質量%で、0.05%C,3.05%Si,0.07%Mn,0.03%S,0.026%酸可溶性Al,を含有する珪素鋼溶鋼を該CC機で40mm厚のバーとして鋳造した。鋳造後単体のバーに切断しその際のバー温度は1255℃であった。これを1250℃以下に降温しないように加熱装置による温度保持を続けながら約300で秒仕上熱延機の入口に到達せしめ、直ちに熱延を開始し30mm厚さとした。仕上熱延入口温度は1220〜1230℃であり、熱延板の先端及び後端は夫々15秒、60秒後に熱延を完了した。その際の温度は夫々1030℃,1020℃であり、約70秒後には巻取を完了した。
この熱延板を1130℃で3分間連続焼鈍した後、炉の出口にある沸騰水の入った槽を潜らせる強制冷却下後酸洗し、90%の圧下率で冷延して0.3mm厚さとした。これを脱炭焼鈍した後1200℃で約20時間H2中で最終焼鈍した。
製品の圧延方向における磁気特性は、B10=1.93(T),W17/50=1.01W/kg であった。
[比較例]上記実施例8と同じ成分のバーを鋳造後、加熱装置による温度保持をすることなく仕上熱延機入口へ搬送したものは、温度が1100℃に低下しており、これを直ちに仕上げ熱延した熱延板を上記実施例3と同様一条件で最終製品まで処理し、2次再結晶粒率発生率を調べたところ、コイル全体で30%以下であり、成品にはなりえなかった。
[Example 8] A silicon steel molten steel containing 0.05% C, 3.05% Si, 0.07% Mn, 0.03% S, and 0.026% acid-soluble Al in mass% is obtained as the CC. Machined as a 40mm thick bar. After casting, it was cut into a single bar and the bar temperature at that time was 1255 ° C. While maintaining the temperature by the heating device so as not to lower the temperature to 1250 ° C. or less, the temperature reached the inlet of the finishing hot rolling machine at about 300 seconds, and immediately started hot rolling to a thickness of 30 mm. The finish hot rolling inlet temperature was 1220-1230 ° C., and the hot rolling was completed after 15 seconds and 60 seconds at the front and rear ends of the hot rolled sheet, respectively. The temperatures at that time were 1030 ° C. and 1020 ° C., respectively, and the winding was completed after about 70 seconds.
This hot-rolled sheet was continuously annealed at 1130 ° C. for 3 minutes, then forced-cooled to immerse the bath containing boiling water at the outlet of the furnace, pickled, cold-rolled at a rolling reduction of 90%, and 0.3 mm Thickness. This was decarburized and annealed at 1200 ° C. for about 20 hours in H 2 .
The magnetic properties of the product in the rolling direction were B10 = 1.93 (T) and W17 / 50 = 1.01 W / kg.
[Comparative example] After the bar having the same composition as in Example 8 was cast and conveyed to the finishing hot rolling machine inlet without holding the temperature by the heating device, the temperature dropped to 1100 ° C. The finished hot-rolled sheet was processed to the final product under the same conditions as in Example 3 and the secondary recrystallized grain ratio occurrence rate was examined. The coil was 30% or less, and it could be a finished product. There wasn't.
[実施例9] 質量%で、0.055%C,3.20%Si,0.025%S,0.30%酸可溶性Al,を含有する珪素鋼溶鋼を該CC機で30mm厚のバーとして鋳造した。鋳造後単体のバーに切断しその際のバー温度は1150℃であった。このバーを直ちに1330℃に加熱した加熱炉に挿入してサイドAlNを固溶させた後、炉から抽出し、約120秒仕上熱延機の入口に到達せしめ、直ちに熱延を開始し25mm厚さとした。仕上熱延入口温度は1210〜1220℃であり、熱延板の先端及び後端は夫々16秒、50秒後に熱延を完了した。その際の温度は夫々1010℃,998℃であり、約70秒後には巻取を完了した。
この熱延板を1130℃で2分間連続焼鈍した後、炉の出口にある霧吹き装置で強制冷却し、酸洗し、冷延して0.3mm厚にした後。835℃で3分間湿水素中で脱炭焼鈍した。この鋼板にBを800ppm 含むMgOをスラリーとして塗布し、コイルに巻いて1200℃で20時間水素中で焼鈍した。
製品の圧延方向における磁気特性は、B10=1.92(T),W17/50=0.89W/kg であった。
[比較例]上記実施例8と同じ成分のバーを鋳造後、直ちに仕上熱延機入口に搬送したものは、温度はさらに降下して1080℃まで低下していた。これを直ちに仕上げ熱延した熱延板を上記実施例3と同一条件で最終製品まで処理し、2次再結晶率発生率を調べたところ、僅か20%しか発生せず、成品にはなりえなかった。
[Example 9] A silicon steel molten steel containing 0.055% C, 3.20% Si, 0.025% S, and 0.30% acid-soluble Al in mass% is bar-shaped 30 mm thick with the CC machine. As cast. After casting, it was cut into a single bar and the bar temperature at that time was 1150 ° C. This bar was immediately inserted into a heating furnace heated to 1330 ° C. to dissolve the side AlN, and then extracted from the furnace, reached the inlet of the finishing hot rolling machine for about 120 seconds, immediately started hot rolling, and had a thickness of 25 mm. Say it. The finish hot rolling inlet temperature was 1210 to 1220 ° C., and the hot rolling was completed after 16 seconds and 50 seconds at the front end and the rear end of the hot rolled plate, respectively. The temperatures at that time were 1010 ° C. and 998 ° C., respectively, and the winding was completed after about 70 seconds.
After this hot-rolled sheet was continuously annealed at 1130 ° C. for 2 minutes, it was forcibly cooled with a sprayer at the outlet of the furnace, pickled, and cold-rolled to a thickness of 0.3 mm. Decarburization annealing was performed in wet hydrogen at 835 ° C. for 3 minutes. This steel sheet was coated with MgO containing 800 ppm of B as a slurry, wound around a coil, and annealed in hydrogen at 1200 ° C. for 20 hours.
The magnetic properties of the product in the rolling direction were B10 = 1.92 (T), W17 / 50 = 0.89 W / kg.
[Comparative Example] After the bar having the same composition as in Example 8 was cast and immediately conveyed to the finishing hot rolling machine inlet, the temperature further decreased to 1080 ° C. The hot-rolled sheet that was immediately finished and hot-rolled was processed to the final product under the same conditions as in Example 3, and the secondary recrystallization rate occurrence rate was examined. As a result, only 20% was generated and it could be a finished product. There wasn't.
Claims (4)
C :0.010〜0.075%,
Si:2.95〜4.0%,
酸可溶性Al:0.010〜0.040%,
N:0.0010〜0.0150%
S或いはSeを単独または双方で0.005〜0.1%
を含み、残部Feおよび不可避的不純物からなる溶鋼を連続的に鋳造して厚さ20〜70mmの中肉厚バーを製造し、該バーを鋳造後或いは加熱炉より抽出後(加熱炉の在炉時間を含めて)1200℃超の温度間に、かつ500秒以内に熱間仕上圧延機の入口に到達せしめて熱間連続圧延を開始し、該熱延で1.5mm〜5mm厚の熱延板とし、熱延終了後600℃に達するまでの冷却時間を150秒以下とすることを特徴とし、以下通常の冷延、中間焼鈍、脱炭焼鈍、仕上焼鈍等を行う高磁束密度方向性珪素鋼板の製造方法。 By mass C: 0.010 to 0.075%,
Si: 2.95 to 4.0%,
Acid-soluble Al: 0.010 to 0.040%,
N: 0.0010 to 0.0150%
0.005 to 0.1% of S or Se alone or both
A molten steel consisting of the remaining Fe and unavoidable impurities is continuously cast to produce a medium-thickness bar having a thickness of 20 to 70 mm. After the bar is cast or extracted from a heating furnace (in-furnace of the heating furnace) (Including the time) The hot finish rolling is started by reaching the inlet of the hot finishing mill within a temperature of over 1200 ° C. and within 500 seconds, and the hot rolling with a thickness of 1.5 mm to 5 mm is performed. A high magnetic flux density directional silicon which is made into a plate and has a cooling time of 150 seconds or less after completion of hot rolling until it reaches 600 ° C., and which performs normal cold rolling, intermediate annealing, decarburization annealing, finish annealing, etc. A method of manufacturing a steel sheet.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006247674A JP5001611B2 (en) | 2006-09-13 | 2006-09-13 | Method for producing high magnetic flux density grain-oriented silicon steel sheet |
KR1020097005090A KR20090057010A (en) | 2006-09-13 | 2007-06-11 | Process for manufacturing grain-oriented silicon steel sheet of high magnetic flux density |
EP07745437A EP2077164A1 (en) | 2006-09-13 | 2007-06-11 | Process for manufacturing grain-oriented silicon steel sheet of high magnetic flux density |
US12/310,769 US20090199935A1 (en) | 2006-09-13 | 2007-06-11 | Method of production of high flux density grain-oriented silicon steel sheet |
CNA2007800340603A CN101516537A (en) | 2006-09-13 | 2007-06-11 | Process for manufacturing grain-oriented silicon steel sheet of high magnetic flux density |
PCT/JP2007/062183 WO2008032483A1 (en) | 2006-09-13 | 2007-06-11 | Process for manufacturing grain-oriented silicon steel sheet of high magnetic flux density |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006247674A JP5001611B2 (en) | 2006-09-13 | 2006-09-13 | Method for producing high magnetic flux density grain-oriented silicon steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008069391A JP2008069391A (en) | 2008-03-27 |
JP5001611B2 true JP5001611B2 (en) | 2012-08-15 |
Family
ID=39183552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006247674A Active JP5001611B2 (en) | 2006-09-13 | 2006-09-13 | Method for producing high magnetic flux density grain-oriented silicon steel sheet |
Country Status (6)
Country | Link |
---|---|
US (1) | US20090199935A1 (en) |
EP (1) | EP2077164A1 (en) |
JP (1) | JP5001611B2 (en) |
KR (1) | KR20090057010A (en) |
CN (1) | CN101516537A (en) |
WO (1) | WO2008032483A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10889880B2 (en) | 2015-03-05 | 2021-01-12 | Jfe Steel Corporation | Grain-oriented electrical steel sheet and method for manufacturing same |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9180505B2 (en) * | 2010-01-29 | 2015-11-10 | Toshiba Mitsubishi-Electric Industral Systems Corporation | Water injection controller, water injection control method, and water injection control program for rolling lines |
WO2012089696A1 (en) * | 2011-01-01 | 2012-07-05 | Tata Steel Nederland Technology Bv | Process to manufacture grain-oriented electrical steel strip and grain-oriented electrical steel produced thereby |
WO2014020369A1 (en) | 2012-07-31 | 2014-02-06 | Arcelormittal Investigación Y Desarrollo Sl | Method of production of grain-oriented silicon steel sheet grain oriented electrical steel sheet and use thereof |
CN103805918B (en) * | 2012-11-15 | 2016-01-27 | 宝山钢铁股份有限公司 | A kind of high magnetic induction grain-oriented silicon steel and production method thereof |
CN109906277B (en) * | 2016-11-01 | 2021-01-15 | 杰富意钢铁株式会社 | Method for producing grain-oriented electromagnetic steel sheet |
JP6631725B2 (en) * | 2016-11-01 | 2020-01-15 | Jfeスチール株式会社 | Manufacturing method of grain-oriented electrical steel sheet |
KR102295735B1 (en) * | 2017-02-20 | 2021-08-30 | 제이에프이 스틸 가부시키가이샤 | Method for manufacturing grain-oriented electrical steel sheet |
CN112391512B (en) * | 2019-08-13 | 2022-03-18 | 宝山钢铁股份有限公司 | High magnetic induction oriented silicon steel and manufacturing method thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1965559A (en) | 1933-08-07 | 1934-07-03 | Cold Metal Process Co | Electrical sheet and method and apparatus for its manufacture and test |
GB873149A (en) * | 1956-11-08 | 1961-07-19 | Yawata Iron & Steel Co | Method of producing oriented silicon steel |
JPS597768B2 (en) * | 1981-05-30 | 1984-02-21 | 新日本製鐵株式会社 | Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties |
JPH02121704A (en) * | 1988-11-01 | 1990-05-09 | Nkk Corp | Method for hot rolling electrical steel sheet |
JPH02258922A (en) | 1989-03-30 | 1990-10-19 | Nippon Steel Corp | Production of grain-oriented silicon steel sheet with high magnetic flux density |
JP2580403B2 (en) | 1991-05-17 | 1997-02-12 | 新日本製鐵株式会社 | Hot rolling method for continuous cast slab for unidirectional electrical steel sheet. |
WO1997019353A1 (en) | 1995-11-17 | 1997-05-29 | Universal Healthwatch, Inc. | Chemiluminescent assay methods and devices for detecting target analytes |
IT1290172B1 (en) * | 1996-12-24 | 1998-10-19 | Acciai Speciali Terni Spa | PROCEDURE FOR THE PRODUCTION OF GRAIN ORIENTED MAGNETIC SHEETS, WITH HIGH MAGNETIC CHARACTERISTICS. |
US6309473B1 (en) * | 1998-10-09 | 2001-10-30 | Kawasaki Steel Corporation | Method of making grain-oriented magnetic steel sheet having low iron loss |
IT1317894B1 (en) * | 2000-08-09 | 2003-07-15 | Acciai Speciali Terni Spa | PROCEDURE FOR THE REGULATION OF THE DISTRIBUTION OF INHIBITORS IN THE PRODUCTION OF MAGNETIC SHEETS WITH ORIENTED GRAIN. |
-
2006
- 2006-09-13 JP JP2006247674A patent/JP5001611B2/en active Active
-
2007
- 2007-06-11 US US12/310,769 patent/US20090199935A1/en not_active Abandoned
- 2007-06-11 EP EP07745437A patent/EP2077164A1/en not_active Withdrawn
- 2007-06-11 WO PCT/JP2007/062183 patent/WO2008032483A1/en active Application Filing
- 2007-06-11 CN CNA2007800340603A patent/CN101516537A/en active Pending
- 2007-06-11 KR KR1020097005090A patent/KR20090057010A/en not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10889880B2 (en) | 2015-03-05 | 2021-01-12 | Jfe Steel Corporation | Grain-oriented electrical steel sheet and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
KR20090057010A (en) | 2009-06-03 |
WO2008032483A1 (en) | 2008-03-20 |
US20090199935A1 (en) | 2009-08-13 |
EP2077164A1 (en) | 2009-07-08 |
CN101516537A (en) | 2009-08-26 |
JP2008069391A (en) | 2008-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5001611B2 (en) | Method for producing high magnetic flux density grain-oriented silicon steel sheet | |
EP2470679B1 (en) | Process to manufacture grain-oriented electrical steel strip | |
US9831020B2 (en) | Method of production of grain-oriented silicon steel sheet grain oriented electrical steel sheet and use thereof | |
JP5782527B2 (en) | Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof | |
JPS6160896B2 (en) | ||
JPS5813606B2 (en) | It's hard to tell what's going on. | |
JP2001152250A (en) | Method for producing grain-oriented silicon steel sheet excellent in magnetic property | |
WO2012089696A1 (en) | Process to manufacture grain-oriented electrical steel strip and grain-oriented electrical steel produced thereby | |
CN117355622A (en) | Method for producing oriented electrical steel sheet | |
KR100831756B1 (en) | Process for the control of inhibitors distribution in the production of grain oriented electrical steel strips | |
EP0527495B1 (en) | Method of producing non-oriented electrical steel sheet having good magnetic properties | |
JP4585144B2 (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties | |
JPH059580A (en) | Production of grain-oriented silicon steel sheet extremely excellent in magnetic property | |
JPH08269552A (en) | Production of grain oriented silicon steel sheet having ultrahigh magnetic flux density | |
CN117460851A (en) | Method for producing oriented electrical steel sheet | |
JP2009012033A (en) | Method for manufacturing hot-rolled steel strip for grain oriented silicon steel sheet, and method for manufacturing grain oriented silicon steel sheet | |
JP2784687B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP6228956B2 (en) | Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof | |
JP4258156B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP4206538B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2807366B2 (en) | Method for producing oriented silicon steel sheet having uniform and good magnetic properties | |
JPH08157963A (en) | Production of grain oriented silicon steel sheet | |
JPH0699750B2 (en) | Method for producing grain-oriented silicon steel sheet having good electromagnetic characteristics | |
JP2735899B2 (en) | Method for producing unidirectional silicon steel sheet with uniform magnetic properties | |
CN118696135A (en) | Method for producing oriented electrical steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090323 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120424 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120518 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5001611 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150525 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150525 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |