JP2807366B2 - Method for producing oriented silicon steel sheet having uniform and good magnetic properties - Google Patents

Method for producing oriented silicon steel sheet having uniform and good magnetic properties

Info

Publication number
JP2807366B2
JP2807366B2 JP3301893A JP30189391A JP2807366B2 JP 2807366 B2 JP2807366 B2 JP 2807366B2 JP 3301893 A JP3301893 A JP 3301893A JP 30189391 A JP30189391 A JP 30189391A JP 2807366 B2 JP2807366 B2 JP 2807366B2
Authority
JP
Japan
Prior art keywords
slab
rolling
temperature
width
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3301893A
Other languages
Japanese (ja)
Other versions
JPH05140650A (en
Inventor
文彦 竹内
俊人 高宮
隆史 小原
央修 下向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3301893A priority Critical patent/JP2807366B2/en
Publication of JPH05140650A publication Critical patent/JPH05140650A/en
Application granted granted Critical
Publication of JP2807366B2 publication Critical patent/JP2807366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、変圧器、その他電気
機器類の鉄心材料として、とくに表面性状に優れ、均一
かつ良好な磁気特性を有し、さらに生産性も良好な一方
向性けい素鋼板の製造方法を提案しようとするものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a one-way silicon material having excellent surface properties, uniform and good magnetic properties and good productivity, particularly as a core material for transformers and other electric equipment. It is intended to propose a method for manufacturing a steel sheet.

【0002】方向性けい素鋼板は、主として変圧器及び
その他の電気機器の鉄心材料として、いわゆる積鉄心又
は巻き鉄心として使用されるもので、磁束密度、鉄損な
どの磁気特性が優れていることが基本的に重要である。
BACKGROUND OF THE INVENTION Grain-oriented silicon steel sheets are mainly used as so-called stacked iron cores or wound iron cores as core materials for transformers and other electric equipment, and have excellent magnetic properties such as magnetic flux density and iron loss. Is basically important.

【0003】この方向性けい素鋼板の製造において、と
くに重要なことは、いわゆる最終仕上げ焼鈍で一次再結
晶粒から{110}<001>方位の結晶に二次再結晶
させることにある。このような二次再結晶粒の生成を効
果的に促進させるためには、一次再結晶粒の成長を抑制
するインヒビターと称する分散相を必要とする。かかる
インヒビターの代表的なものには、MnS 、MnSe、AlN 及
び VN のような硫化物や窒化物等で、鋼中への溶解度が
極めて小さい物質が用いられている。また、Sb、Sn、A
s、Pb、Cu、Mo等の粒界偏析型成分もインヒビターとし
て利用されている。
In the production of a grain-oriented silicon steel sheet, it is particularly important that secondary recrystallization is performed from primary recrystallized grains to {110} <001> oriented crystals by so-called final finish annealing. In order to effectively promote the generation of such secondary recrystallized grains, a dispersed phase called an inhibitor for suppressing the growth of primary recrystallized grains is required. Typical examples of such inhibitors include sulfides and nitrides such as MnS, MnSe, AlN and VN, which have extremely low solubility in steel. Also, Sb, Sn, A
Grain boundary segregation-type components such as s, Pb, Cu, and Mo are also used as inhibitors.

【0004】これらのインヒビターの効果は最終仕上げ
焼鈍前までに均一かつ適正なサイズにインヒビターが分
散することによって達成される。そのためには、熱間圧
延前にスラブを高温加熱して、インヒビター成分を十分
に固溶させておき、熱間圧延工程以降、二次再結晶まで
の工程で析出分散状態を制御すること、さらに1回又は
2回以上の冷間圧延及び1回又は2回以上の焼鈍によっ
て得られる一次再結晶粒組織を板厚方向全体にわたって
適当な大きさの結晶粒にし、かつ均一に分散させること
が肝要である。
[0004] These inhibitor effects are achieved by dispersing the inhibitors in a uniform and appropriate size prior to final finish annealing. For this purpose, the slab is heated to a high temperature before hot rolling, and the inhibitor component is sufficiently dissolved, and after the hot rolling step, the precipitation and dispersion state is controlled in the steps up to the secondary recrystallization. It is important that the primary recrystallized grain structure obtained by one or more times of cold rolling and one or more times of annealing be crystallized to a suitable size throughout the thickness direction and uniformly dispersed. It is.

【0005】上記スラブの高温加熱において、インヒビ
ターの固溶が不十分な場合には十分な二次再結晶が得ら
れなくなり、磁気特性が劣化する。また、インヒビター
の固溶は、スラブ加熱を高温・長時間にするほど完全固
溶状態に近づくが、その反面、結晶粒の粗大化が進行す
ることが知られている。
[0005] In the above-mentioned slab heating at a high temperature, if the solid solution of the inhibitor is insufficient, sufficient secondary recrystallization cannot be obtained and the magnetic properties deteriorate. Further, it is known that the solid solution of the inhibitor approaches a completely solid solution state as the slab heating is performed at a higher temperature for a longer time, but on the other hand, the coarsening of the crystal grains progresses.

【0006】ところで、近年の鉄鋼製造工程において
は、スラブの製造法が、造塊・分塊圧延法から連続鋳造
法に大部分が移行している。かかる連続鋳造法を方向性
けい素鋼板に単純に適用しようとすると、分塊圧延によ
る結晶組織の微細化工程が省略されるため、連続鋳造法
固有の急冷凝固による柱状晶粒が発達する。この柱状晶
の発生を抑止する手段としては、電磁攪拌又は超音波振
動を加える方法が知られている。しかしながら、これら
の方法は操業が容易である利点はあるが、柱状晶の発生
については軽減する程度で完全に防止することは困難で
ある。一方鋳込み温度を液相線近くまで下げれば柱状晶
の発生を防ぐことはできるが、介在物の浮上性が低下し
品質を劣化させたり、ノズル詰まりにより鋳造ができな
くなったりする。このように連続鋳造においては柱状晶
の発生を防止することは難かしく、その発生は不可避で
ある。
[0006] In recent years, in the steelmaking process in recent years, the method of producing slabs has largely shifted from the ingot making / bulking rolling method to the continuous casting method. If such a continuous casting method is simply applied to a grain-oriented silicon steel sheet, the step of refining the crystal structure by slab rolling is omitted, and columnar grains develop by rapid solidification inherent in the continuous casting method. As means for suppressing the generation of columnar crystals, a method of applying electromagnetic stirring or ultrasonic vibration is known. However, although these methods have the advantage of easy operation, it is difficult to completely prevent the generation of columnar crystals to the extent that they are reduced. On the other hand, if the casting temperature is lowered to near the liquidus line, the generation of columnar crystals can be prevented. However, the levitation of inclusions is reduced and the quality is deteriorated, and casting becomes impossible due to nozzle clogging. As described above, it is difficult to prevent the generation of columnar crystals in continuous casting, and the generation is inevitable.

【0007】さてこの柱状晶粒は、スラブの高温加熱時
に異常粒成長を起しやすく、熱延後に粗大な延伸粒とし
て残存する。この粗大な延伸粒は冷延・焼鈍を経た後も
再結晶しにくく、その部分はインヒビターによる抑制力
効果が十分であっても最終仕上げ焼鈍で{110}<0
01>方位の二次再結晶が不完全ないわゆる帯状細粒組
織となり、この部分では磁気特性が劣化する。
The columnar grains tend to cause abnormal grain growth when the slab is heated at a high temperature, and remain as coarse elongated grains after hot rolling. The coarse stretched grains are unlikely to recrystallize even after cold rolling and annealing, and that portion is {110} <0 in the final finish annealing even if the inhibitory effect of the inhibitor is sufficient.
The secondary recrystallization of the <01> orientation results in a so-called band-like fine grain structure in which the magnetic properties are deteriorated.

【0008】一方、製品の磁気特性の測定は通常JIS
法(JIS C 2550)に基づき、幅30mm×長さ28
0mm 寸法の試片約500 g(板厚0.30mmの場合24〜28枚)
をコイル幅方向に採取したもので行われる。このため、
上記試片中に幅30mmの帯状細粒部が1〜2枚混入しても
磁気特性値は大幅な劣化を示さず、不良部の存在に気づ
かないのが現状であり、しかも、該製品板は最終仕上げ
焼鈍において二次再結晶、純化及びフォルステライト被
膜の被成を同一工程で行うため、一度製品化したものは
外見上からの区別もつかず、不良部は容易に除去できな
いという問題がある。
[0008] On the other hand, the measurement of magnetic properties of a product is usually performed according to JIS.
Based on the law (JIS C 2550), width 30mm x length 28
Approximately 500 g of 0mm size specimen (24-28 sheets with 0.30mm thickness)
Is collected in the coil width direction. For this reason,
Even if one or two strip-like fine grains with a width of 30 mm are mixed in the above-mentioned specimen, the magnetic property value does not show significant deterioration, and at present, the existence of a defective part is not noticed. In the final finish annealing, secondary recrystallization, purification and forsterite coating are performed in the same process, so that once produced, there is no apparent distinction, and there is a problem that defective parts cannot be easily removed. .

【0009】さらに、このような帯状細粒が生成したコ
イルを、通常の製品コイル幅約1000mmから50mm又は100m
m 程度の板幅にスリットして巻鉄心用材とする場合に
は、スリット幅全体に占める帯状細粒部の割合が極端に
高まり鉄心の磁気特性を著しく悪化させるという問題が
ある。したがって、連鋳スラブからの方向性けい素鋼板
の製造においては帯状細粒の生成を防止することが重要
になる。
[0009] Further, the coil formed by such band-like fine particles is used for a normal product coil width of about 1000 mm to 50 mm or 100 m.
When slitting to a sheet width of about m to obtain a material for a wound core, there is a problem that the ratio of the band-like fine grains to the entire slit width is extremely increased, and the magnetic properties of the iron core are remarkably deteriorated. Therefore, it is important to prevent the generation of band-like fine grains in the production of a grain-oriented silicon steel sheet from a continuously cast slab.

【0010】また、鉄心用として用いられるけい素鋼板
表面には、通常電気的絶縁被膜が施され、積層して使用
する場合にその層間を電気的に絶縁し、過電流損失を低
減する方策がとられているが、該鋼板表面にきずがあっ
たり、平滑性が劣る場合には、商品価値が低下するのみ
ならず、占積率を低下させ、さらに、鉄心組立て時の締
め付けによって絶縁性が低下し、局所的に発熱をおこ
し、変圧器事故の原因にもなる。したがって、方向性け
い素鋼板においては、表面きずがなく、表面の平滑性に
優れていることも重要である。
[0010] Further, an electrical insulating coating is usually applied to the surface of a silicon steel sheet used for an iron core, and when laminated and used, there is a measure to electrically insulate the layers and reduce overcurrent loss. However, when the surface of the steel sheet has flaws or has poor smoothness, not only the commercial value is reduced, but also the space factor is reduced, and the insulation property is reduced by tightening at the time of assembling the iron core. The temperature decreases, causing local heat generation, which may cause a transformer accident. Therefore, it is also important that the grain-oriented silicon steel sheet has no surface flaws and has excellent surface smoothness.

【0011】[0011]

【従来の技術】連鋳スラブから方向性けい素鋼板を製造
するに当って、帯状細粒の生成を防止する手段として
は、例えば、特公昭50−37009 号公報に高磁束密度一方
向性珪素鋼板の製造方法、特公昭54−27820 号公報にス
ラブからキューブオンエッジ配向ケイ素鉄を製造する方
法、特開昭62−10213 号公報及び特開昭62−130217号公
報に電磁特性の良好な方向性けい素鋼板の製造方法、特
開平3−115529号公報に磁気特性の均一な一方向性けい
素鋼板の製造方法などが開示されており、連鋳スラブを
加熱固溶する前に、予め圧下率をそれぞれ30〜70%、5
〜50%、15〜50%、10〜50%、1〜10%の圧延を施した
後、1260〜1440℃に再加熱し、最終の熱間圧延を行う方
法が提案されている。
2. Description of the Related Art In producing a grain-oriented silicon steel sheet from a continuously cast slab, as means for preventing the formation of band-like fine grains, for example, Japanese Patent Publication No. 50-37009 discloses a high magnetic flux density unidirectional silicon. Japanese Patent Publication No. 54-27820 discloses a method of producing cube-on-edge oriented silicon iron from a slab, and Japanese Patent Application Laid-Open Nos. 62-10213 and 62-130217 show a good direction of electromagnetic characteristics. Japanese Unexamined Patent Publication (Kokai) No. 3-115529 discloses a method for producing a unidirectional silicon steel sheet having uniform magnetic properties. 30-70% each, 5
A method has been proposed in which after performing rolling at 50%, 15-50%, 10-50%, and 1-10%, reheating to 1260 to 1440 ° C. and final hot rolling are performed.

【0012】これらの方法は連鋳スラブに予め歪を加え
ておくことによりその後のスラブ加熱で再結晶させ、結
晶粒の粗大化を抑えようとするものである。ところが、
予め歪を付与したスラブを誘導加熱炉に適用した場合に
は、帯状細粒の発生を防止できても、板幅両端部近傍位
置で二次再結晶しないという問題が発生した。
In these methods, a strain is applied to the continuous cast slab in advance so that the slab is recrystallized by heating the slab to suppress the coarsening of crystal grains. However,
When a pre-strained slab is applied to an induction heating furnace, there is a problem in that secondary recrystallization does not occur in the vicinity of both ends of the sheet width even though the generation of band-like fine grains can be prevented.

【0013】つぎに、特開平1−162725号公報の磁気特
性の良好な珪素鋼板の製造方法には、スラブに5%以
上の増厚圧延を施した後、誘導加熱により表面温度を13
50〜1500℃に加熱する方法、スラブに5%以上の増厚
圧延を施し、引き続き分塊圧延にてスラブ厚みを低減し
た後、誘導加熱によりスラブ表面温度を1350〜1500℃に
加熱する方法、誘導加熱によりスラブ表面温度を1350
〜1500℃に加熱し、5%以上の増厚圧延を施した後、引
き続き熱間圧延を行う方法が提案されている。
Next, in the method for producing a silicon steel sheet having good magnetic properties disclosed in Japanese Patent Application Laid-Open No. 1-162725, a slab is subjected to a thickness rolling of 5% or more, and then the surface temperature is reduced to 13% by induction heating.
A method of heating the slab to 50 to 1500 ° C., applying a thickening rolling of 5% or more to the slab, and subsequently reducing the slab thickness by slab rolling, and then heating the slab surface temperature to 1350 to 1500 ° C. by induction heating, Slab surface temperature of 1350 by induction heating
There has been proposed a method in which the sheet is heated to about 1500 ° C., subjected to a thickness rolling of 5% or more, and then hot-rolled.

【0014】しかしながら、の方法においては、圧延
ロールあるいはプッシャーなどで5%以上増厚した場合
には、スラブの厚みが均等に増厚されず、いわゆるドッ
グボーン形状となり、このような形状のスラブを誘導加
熱すると誘導加熱コイルに近接した部分がオーバーヒー
ト状態になり表面きずが発生するという問題があり、
の方法の場合には、スラブの増厚処理と分塊圧延処理に
より幅端部近傍の温度低下が著しく、引き続き行う誘導
加熱で均一に加熱できず、該端部近傍では二次再結晶し
ないという問題があり、の方法の場合には、5%以上
増厚して熱延率を高めた程度では、高温加熱ですでに著
しく粗大化した結晶粒を十分に破壊し再結晶させること
ができず、帯状細粒が発生する場合があるなどの問題が
あった。加えて、幅プレスでスラブ幅中央部を5%以上
増厚させるには、幅圧下率が25%を上回り、幅端部近傍
の最大増圧部で表面割れや内部割れ欠陥が発生する問題
があり、また、上記, , に共通して、スラブ表面
温度を1350〜1500℃に加熱する際、1450℃以上では部分
的に溶融が始まり、10分間以上保持すると著しい表面欠
陥が発生するという問題があった。
However, in the above method, when the thickness of the slab is increased by 5% or more by a rolling roll or a pusher, the thickness of the slab is not evenly increased, but becomes a so-called dog bone shape. When induction heating is used, there is a problem that the portion close to the induction heating coil is overheated and surface flaws are generated.
In the case of the method described above, the temperature drop near the width end is remarkable due to the slab thickening process and the slab rolling process, and it cannot be uniformly heated by the subsequent induction heating, and secondary recrystallization does not occur near the end portion. However, in the case of the above method, if the hot rolling ratio is increased by increasing the thickness by 5% or more, it is not possible to sufficiently destroy the crystal grains already remarkably coarsened by high-temperature heating and to recrystallize them. However, there are problems that band-like fine particles may be generated. In addition, in order to increase the center of the slab width by 5% or more by width pressing, the width reduction rate exceeds 25%, and surface cracks and internal cracking defects occur at the maximum pressure increasing part near the width end. There is also a problem that, when the slab surface temperature is heated to 1350 to 1500 ° C, partial melting starts at 1450 ° C or higher, and significant surface defects occur when held for 10 minutes or longer. there were.

【0015】さらに、特公昭56−18654 号公報には一方
向性電磁鋼板の製造方法として、1260℃以上のスラブ加
熱に際し、1250〜1310℃までの温度範囲を平均昇温速度
毎時150 ℃以上で加熱する方法が提案されている。しか
しながら、この方法はスラブ加熱温度が1370℃以下の条
件では結晶粒粗大化の抑制効果をあらわすが、おおむね
1380℃の高温側において粒成長抑制効果が急激に弱ま
り、1400℃以上では著しい表面の酸化と、著しい結晶粒
の粗大化が起り、期待どおりの磁気特性や表面きずのな
い鋼板が得られないという問題があった。
Further, Japanese Patent Publication No. 56-18654 discloses a method for producing a grain-oriented electrical steel sheet, in which a slab is heated at a temperature of 1260 ° C. or more at a temperature range of 1250 to 1310 ° C. at an average heating rate of 150 ° C./hour or more. Heating methods have been proposed. However, this method has an effect of suppressing the crystal grain coarsening under the condition that the slab heating temperature is 1370 ° C or less.
At a high temperature of 1380 ° C, the effect of suppressing grain growth rapidly decreases, and at temperatures above 1400 ° C, significant surface oxidation and remarkable coarsening of the grains occur, making it impossible to obtain a steel sheet with expected magnetic properties and surface flaws. There was a problem.

【0016】また、特開昭63−109115号公報には電磁特
性の良好な方向性珪素鋼板の製造方法として、スラブ中
心温度が1350℃以上になるように加熱し、この加熱に際
して表面温度1420〜1495℃の範囲で5〜60分間保持する
とともに、表面温度が1320℃以上において1420〜1495℃
に達するまで8℃/分以上で急速昇温して結晶粒の粗大
化を抑制する方法が提案されている。この方法はスラブ
温度が従来のガス加熱炉のみの方式より著しく高く、か
つ保持時間が比較的短かい。しかしながら、連鋳スラブ
をそのままこのような高温領域に加熱すると顕著な粒成
長が起り製品に帯状細粒が発生すること及び著しい表面
酸化や粒界の選択酸化により商品価値がなくなる水準の
穴や表面きずが多発することなどの問題があった。
Japanese Unexamined Patent Publication (Kokai) No. 63-109115 discloses a method for producing a grain-oriented silicon steel sheet having good electromagnetic characteristics, in which the slab is heated so that its center temperature becomes 1350 ° C. or more. Hold in the range of 1495 ° C for 5 to 60 minutes, and when the surface temperature is 1320 ° C or higher, 1420 to 1495 ° C
A method has been proposed in which the temperature is rapidly increased at a rate of 8 ° C./min or more until the crystal grain size is reached to suppress the crystal grain coarsening. In this method, the slab temperature is significantly higher than the conventional gas heating furnace alone, and the holding time is relatively short. However, when the continuous cast slab is directly heated to such a high temperature region, remarkable grain growth occurs, band-like fine grains are generated in the product, and holes and surfaces at a level where commercial value is lost due to remarkable surface oxidation and selective oxidation of grain boundaries. There were problems such as frequent wounds.

【0017】その他、スラブを誘導加熱する方法とし
て、特開昭63−100128号公報に磁気特性と表面性状の良
好な方向珪素鋼板の製造方法、特開昭63−109115号公報
に電磁特性の良好な方向性珪素鋼板の製造方法、特開平
2−138418号公報に磁気特性および表面性状に優れた方
向性電磁鋼板の製造方法として、それぞれスラブ中心温
度が1300〜1450℃、1350℃以上(表面温度が1420〜1495
℃)、1400〜1470℃にする方法が提案されている。しか
しながら、これらの方法では結晶粒粗大化の防止策がと
られていず、1380℃以上のスラブ加熱で帯状細粒が発生
するという問題があった。
In addition, as a method of inductively heating a slab, Japanese Patent Application Laid-Open No. 63-100128 discloses a method for producing a grain oriented silicon steel sheet having good magnetic properties and surface properties, and Japanese Patent Application Laid-Open No. 63-109115 discloses a method having good electromagnetic properties. Japanese Patent Application Laid-Open No. 2-138418 describes a method for producing a grain-oriented silicon steel sheet having a slab center temperature of 1300 to 1450 ° C. and a temperature of 1350 ° C. or more (surface temperature). Is 1420-1495
° C), and a method of controlling the temperature to 1400 to 1470 ° C. However, these methods do not take measures to prevent coarsening of crystal grains, and there is a problem in that strip-shaped fine grains are generated by slab heating at 1380 ° C. or higher.

【0018】[0018]

【発明が解決しようとする課題】この発明は、前記した
問題点を有利に解決し、鉄心材料として、表面性状に優
れ、しかも磁気特性が均一で良好な方向性けい素鋼板を
生産性を阻害することなく製造する方法を提案すること
を目的とするものである。
SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problems, and inhibits productivity of a grain-oriented silicon steel sheet having excellent surface properties and uniform magnetic properties as an iron core material. It is intended to propose a method of manufacturing without performing.

【0019】[0019]

【課題を解決するための手段】この発明は、方向性珪素
鋼板用の連鋳スラブから、表面性状に優れ、磁気特性が
均一かつ良好な製品を得るためのスラブ加熱方法・熱延
条件などについて鋭意研究を行った結果達成したもの
で、まず、この発明の基礎となった実験結果を以下に述
べる。
SUMMARY OF THE INVENTION The present invention relates to a slab heating method, hot rolling conditions, and the like for obtaining a product having excellent surface properties, uniform magnetic properties and good magnetic properties from a continuous cast slab for oriented silicon steel sheets. The results of intensive studies have been achieved. First, the experimental results on which the present invention is based are described below.

【0020】発明者らはスラブ結晶粒が20mm以下であれ
ば熱間圧延(粗圧延、仕上げ圧延)、冷間圧延及び焼鈍
工程において微細組織となり、製品板に帯状細粒が発生
しないことを予め知覚しており、この認識のもとに実験
を開始した。
[0020] The present inventors have previously considered that if the slab crystal grains are 20 mm or less, a microstructure will be formed in the hot rolling (rough rolling, finish rolling), cold rolling and annealing steps, and no band-like fine grains will be generated on the product sheet. He perceived and began experimenting with this recognition.

【0021】実験1 まず、製品の帯状細粒の発生起因がスラブ加熱後の粗大
結晶粒にあることから、スラブ組織の微細化方策を検討
した。
Experiment 1 First, since the generation of the band-like fine grains of the product was caused by the coarse crystal grains after slab heating, a measure for miniaturizing the slab structure was examined.

【0022】C:0.035 wt%、Si:3.15wt%、Mn:0.07
5 wt%、S:0.018 wt%を含有する215mm 厚の連鋳大型
スラブを徐冷却後、該スラブから 215(厚さ) ×200 ×2
00mmの寸法の試験片を切り出し、小型電気炉で900 〜13
50℃の温度範囲に加熱し、圧下率0〜50%の範囲の予備
熱間圧延を施した後、加熱炉で1380℃×50分間の固溶処
理を施し、結晶粒径を調査した。これらの調査結果を図
1にまとめて示す。
C: 0.035 wt%, Si: 3.15 wt%, Mn: 0.07
After slowly cooling a 215 mm thick continuous cast large slab containing 5 wt% and S: 0.018 wt%, 215 (thickness) × 200 × 2
Cut out a test piece with a size of 00mm and use a small electric furnace to 900 ~ 13
After heating to a temperature range of 50 ° C. and performing preliminary hot rolling in a rolling reduction range of 0 to 50%, a solid solution treatment was performed in a heating furnace at 1380 ° C. for 50 minutes to investigate the crystal grain size. FIG. 1 summarizes the results of these investigations.

【0023】図1は、予備熱間圧延温度をパラメーター
とする予備熱間圧延圧下率と結晶粒径の関係を示したも
ので、この図から明らかなように、結晶粒径は予備熱間
圧延温度が低く、予備熱間圧延圧下率が高いほど細粒化
し、帯状細粒を発生しない20mm以下の粒径にするために
は、900 〜1300℃の温度範囲で予備熱間圧延を行うこと
がよく、その圧下率は2%以上を必要とすることがわか
った。
FIG. 1 shows the relationship between the preliminary hot rolling reduction and the crystal grain size with the preliminary hot rolling temperature as a parameter. As is clear from FIG. Preliminary hot rolling in the temperature range of 900 to 1300 ° C is necessary to reduce the grain size to 20 mm or less, where the temperature is low and the preliminary hot rolling reduction rate is high, so that the grain size is 20 mm or less, which does not generate band-like fine grains. It was often found that the rolling reduction required 2% or more.

【0024】実験2 つぎに、上記実験1と同様の連鋳スラブから、215(厚
さ) ×200 ×200 寸法に切り出した試験片を用い、1200
℃×30分間の加熱につづいて圧下率0〜50%の予備熱間
圧延を施し、その後、1430℃×30分間の加熱につづいて
5パスの粗圧延で25及び40mm厚のシートバーとし、直ち
に2分割した後、半量を引き続き仕上げ圧延で2.4mm 厚
の熱延板とした。
Experiment 2 Next, a test piece cut into a size of 215 (thickness) × 200 × 200 from the continuous cast slab similar to the above-mentioned experiment 1 was used.
℃ × 30 minutes of heating, followed by preliminary hot rolling at a reduction rate of 0 to 50%, followed by heating at 1430 ℃ × 30 minutes, 5 passes of rough rolling into sheet bars of 25 and 40 mm thickness, Immediately after splitting into two, half of the hot rolled sheet was subjected to finish rolling to form a 2.4 mm thick hot rolled sheet.

【0025】これらの熱延板をさらに一次冷間圧延で0.
72mm厚としたのち、930 ℃で2分間の中間焼鈍を施し、
さらに二次冷間圧延を行って0.30mmの最終板厚とし、そ
の後、湿水素中で820 ℃、3分間の脱炭焼鈍を施したの
ち、MgO を主成分とする焼鈍分離剤を塗布し、水素中で
1180℃、5時間の仕上げ焼鈍を施し製品板とした。
These hot-rolled sheets were further subjected to primary cold rolling to obtain 0.1%.
After having a thickness of 72 mm, it is subjected to intermediate annealing at 930 ° C for 2 minutes,
Further, secondary cold rolling is performed to a final thickness of 0.30 mm, and thereafter, decarburizing annealing is performed at 820 ° C. for 3 minutes in wet hydrogen, and then an annealing separator mainly containing MgO is applied. In hydrogen
Finish annealing was performed at 1180 ° C. for 5 hours to obtain a product plate.

【0026】上記において材質調査は、粗圧延を終えた
各シートバーからサンプルを採取し、スラブ段階での結
晶粒の破壊・再結晶状況を調査するとともに、各製品板
について磁気特性及び結晶組織を調査した。
In the above-mentioned material examination, samples are taken from each sheet bar after rough rolling, the state of destruction and recrystallization of crystal grains in the slab stage is investigated, and the magnetic characteristics and crystal structure of each product sheet are examined. investigated.

【0027】これらの調査結果をもとに、まず、シート
バー断面における未再結晶の延伸粒発生率と粗圧延圧下
率の関係を図2に示す。この実験から、延伸粒の残存率
は予備熱延圧下率が高く、かつ粗圧延圧下率が高いほど
低い傾向が認められた。
Based on the results of these investigations, FIG. 2 shows the relationship between the unrecrystallized stretched grain generation rate and the rough rolling reduction rate in the cross section of the sheet bar. From this experiment, it was recognized that the residual ratio of the stretched grains tended to be lower as the preliminary hot rolling reduction ratio was higher and the rough rolling reduction ratio was higher.

【0028】この結果、延伸粒の残存率を2%以下にお
さえるには、予備熱延を施してスラブ粒を20mm以下に保
ち、かつ、80%以上の粗圧延圧下率が必要なことが判明
した。また、再結晶粒径も粗圧延圧下率が高いほど細か
くなる傾向になることを把握した。
As a result, it was found that in order to keep the residual ratio of the stretched grains at 2% or less, it is necessary to perform preliminary hot rolling to keep the slab grains at 20 mm or less and to have a rough rolling reduction of 80% or more. did. It was also found that the recrystallized grain size tended to be finer as the rolling reduction was higher.

【0029】つぎに、製品板の磁気特性をJIS法に準
拠した30×280mm 試験片1枚づつについて行った測定結
果と粗圧延圧下率の関係を図3に示す。磁気特性は予備
熱延圧下率が高く、かつ粗圧延圧下率の高いほうが優れ
ている。また、結晶組織調査から、予備熱延しない場合
や粗圧延圧下率が80%未満の場合に帯状細粒が発生して
いたとこを確認した。
Next, FIG. 3 shows the relationship between the measurement results obtained by measuring the magnetic properties of the product plate for each 30 × 280 mm test piece in accordance with the JIS method and the rolling reduction ratio. Magnetic properties are better when the preliminary hot rolling reduction is higher and the rough rolling reduction is higher. In addition, it was confirmed from the crystal structure investigation that band-like fine grains were generated when the preliminary hot rolling was not performed or when the rough rolling reduction was less than 80%.

【0030】実験3 上記実験結果をもとに、さらに大型スラブで実験を進め
た。C:0.037 wt%、Si:3.18wt%、Mn:0.072 wt%、
S:0.017 wt%を含有する、厚さ190mm 、215mm 、250m
m 及び300mm の連鋳スラブを、それぞれガス加熱炉で12
00℃で30分間の加熱に続いて圧下率5%の予備熱間圧延
を行い、ついで誘導加熱炉に装入して1420℃で20分間加
熱し、粗圧延で30mm厚のシートバーとしてから仕上げ圧
延で2.4mm 厚の熱延板とした。さらに該熱延板を上記実
験2と同様の条件で一次冷間圧延、中間焼鈍及び二次冷
間圧延を施して0.30mmの最終板厚とし、同じく実験2と
同様の条件で脱炭焼鈍、焼鈍分離剤塗布、仕上げ焼鈍を
施し製品板とし、磁気特性及び結晶組織を調査した。板
幅1030mmの幅両端部から15mmをそれぞれ除去した後、
幅:100mm 、長さ:400mm の試験片を切り出して測定し
た磁気特性とスラブ厚の関係を図4に示す。
Experiment 3 Based on the above experimental results, an experiment was further conducted with a large slab. C: 0.037 wt%, Si: 3.18 wt%, Mn: 0.072 wt%,
S: 190mm, 215mm, 250m containing 0.017 wt%
m and 300mm continuous cast slabs were
After heating at 00 ° C for 30 minutes, pre-rolling with 5% reduction was performed, then it was placed in an induction heating furnace, heated at 1420 ° C for 20 minutes, and finished by rough rolling to form a 30 mm thick sheet bar. Rolled into a 2.4 mm thick hot rolled sheet. Further, the hot-rolled sheet was subjected to primary cold rolling, intermediate annealing and secondary cold rolling under the same conditions as in Experiment 2 to a final thickness of 0.30 mm, and decarburizing annealing under the same conditions as in Experiment 2; The product sheet was subjected to the application of an annealing separator and finish annealing, and the magnetic properties and crystal structure were investigated. After removing 15mm from both ends of the board width 1030mm,
FIG. 4 shows the relationship between magnetic properties and slab thickness measured by cutting out a test piece having a width of 100 mm and a length of 400 mm.

【0031】この図から明らかなように、磁気特性は良
い順にスラブ厚250mm 、215mm 、190mm 、300mm となっ
ており、300mm 厚のスラブは磁気特性が著しく劣化し
た。この原因を調査した結果、300mm 厚スラブではイン
ヒビター成分Sの偏析指数(スラブ最大偏析S量と溶鋼
S量との比)が1.95と異常に高いためにインヒビターの
固溶が不十分であったと考えられた。したがって、単に
初期スラブ厚を大きくし、粗圧延圧下率を高めるのみで
は問題が解決しないことがわかり、偏析を防止し、イン
ヒビターを十分固溶できるスラブ厚の選択が重要である
ことが判明した。
As is apparent from this figure, the magnetic characteristics are slab thicknesses of 250 mm, 215 mm, 190 mm, and 300 mm in the order of good quality, and the magnetic characteristics of the 300 mm thick slab are remarkably deteriorated. As a result of investigating the cause, it is considered that the inhibitor dissolution was insufficient in the 300 mm thick slab because the segregation index of the inhibitor component S (the ratio of the maximum segregation S amount of molten slab to the amount of molten steel S) was abnormally high at 1.95. Was done. Therefore, it was found that simply increasing the initial slab thickness and increasing the rough rolling reduction ratio did not solve the problem, and it was found that it was important to select a slab thickness that could prevent segregation and sufficiently dissolve the inhibitor.

【0032】なお、スラブ厚は、1380〜1440℃の温度範
囲、5〜50分間の範囲の短時間加熱でインヒビターを十
分に固溶させるためには、偏析指数が1.50未満が得られ
る250mm を上限とし、所定の予備熱間圧延圧下率及び粗
圧延圧下率が確保できる180mm を下限とすることが好ま
しい。
The slab thickness is limited to 250 mm at which a segregation index of less than 1.50 is obtained in order to sufficiently dissolve the inhibitor by heating in a temperature range of 1380 to 1440 ° C. for a short time in a range of 5 to 50 minutes. Preferably, the lower limit is 180 mm, at which a predetermined preliminary hot rolling reduction and a rough rolling reduction can be secured.

【0033】また、上記した4種類のスラブはいずれも
板幅端部近傍の約50mm幅では二次再結晶せず、磁気特性
が著しく劣化していることが判明した。この原因につい
て、二次再結晶前の脱炭焼鈍板で調査したところ、イン
ヒビターサイズが0.5 μm レベルと大きく、このためイ
ンヒビター機能が著しく低下していたことがわかった。
Further, it was found that all of the above four types of slabs did not undergo secondary recrystallization at a width of about 50 mm near the edge of the plate width, and the magnetic characteristics were significantly deteriorated. The cause of this was investigated using a decarburized annealed plate before secondary recrystallization. As a result, it was found that the inhibitor size was as large as 0.5 μm, and the inhibitor function was significantly reduced.

【0034】実験4 上記した板幅両端部の二次再結晶不良解決策を見いだす
ために、実験3と同様の成分組成のスラブ厚:215mm の
連鋳スラブを、ガス加熱炉で1230℃で30分間加熱し、粗
圧延機で圧下率10%の予備熱間圧延を施したのち、誘導
加熱炉で加熱する前にそれぞれつぎのような処理を行っ
た。
Experiment 4 In order to find a solution to the above-mentioned secondary recrystallization failure at both ends of the sheet width, a continuously cast slab having a slab thickness of 215 mm having the same composition as in Experiment 3 was heated in a gas heating furnace at 1230 ° C. for 30 minutes. After heating for 10 minutes and performing preliminary hot rolling at a rolling reduction of 10% in a rough rolling mill, the following treatments were performed before heating in an induction heating furnace.

【0035】スラブ1:直ちに誘導加熱炉に装入した。
なお、スラブ幅端部から15mm位置の温度は幅中央部温度
に比し−120 ℃であった。 スラブ2:誘導加熱炉に装入するまでの間のテーブル上
で両サイドから加熱し、スラブ幅端部から15mm位置の温
度を幅中央部温度に比し−50℃にしてから誘導加熱炉に
装入した。 スラブ3:上記と同様の方法で加熱し、スラブ幅端部か
ら15mm位置の温度を幅中央部温度に比し−5℃にしてか
ら誘導加熱炉に装入した。 スラブ4:スラブ2の場合と同様の方法で加熱し、スラ
ブ幅端部から15mm位置の温度を幅中央部温度に比し+30
℃にしてから誘導加熱炉に装入した。
Slab 1: Immediately charged into an induction heating furnace.
The temperature at a position 15 mm from the end of the slab width was -120 ° C compared to the temperature at the center of the width. Slab 2: Heat from both sides on the table until it is charged into the induction heating furnace, and make the temperature at the position of 15 mm from the end of the slab width -50 ° C compared to the temperature at the center of the width, and then into the induction heating furnace Charged. Slab 3: Heated in the same manner as described above, the temperature at a position 15 mm from the end of the slab width was set to -5 ° C compared to the temperature at the center of the slab, and then the slab was charged into the induction heating furnace. Slab 4: Heated in the same manner as in Slab 2, and the temperature at the position 15 mm from the end of the slab width is +30 compared to the temperature at the center of the width.
C. and then charged into an induction heating furnace.

【0036】つぎに上記により誘導加熱炉に装入した各
スラブは、それぞれ誘導加熱により1410℃で25分間加熱
したのち、30mm厚のシートバーに粗圧延し、つづいて仕
上げ圧延により2.4mm 厚の熱延板とした。
Next, each slab charged into the induction heating furnace as described above was heated at 1410 ° C. for 25 minutes by induction heating, then roughly rolled into a 30 mm-thick sheet bar, followed by finish rolling to a 2.4 mm-thick sheet bar. A hot rolled sheet was used.

【0037】これらの熱延板は、実験2と同様の条件で
一次冷間圧延、中間焼鈍、二次冷間圧延を施して0.30mm
の最終板厚とし、同じく実験2と同様の条件で脱炭焼
鈍、焼鈍分離剤塗布、仕上げ焼鈍を施し製品板とした。
かくして得られた各製品板について磁気特性及び結晶組
織を調査した。板幅1030mmの板幅両端部から15mmをそれ
ぞれ除去した後、幅:100mm 、長さ:400mm の試験片を
切り出して測定した磁気特性の測定値の平均値(n=1
0)とその範囲及び結晶組織の観察結果を表1に示す。
These hot-rolled sheets were subjected to primary cold rolling, intermediate annealing, and secondary cold rolling under the same conditions as in Experiment 2 to obtain 0.30 mm
, And subjected to decarburizing annealing, application of an annealing separator, and finish annealing under the same conditions as in Experiment 2 to obtain a product sheet.
The magnetic properties and crystal structure of each product sheet thus obtained were investigated. After removing 15 mm from both ends of the plate width of 1030 mm, an average value of the measured values of the magnetic properties (n = 1) was cut out from a test piece having a width of 100 mm and a length of 400 mm.
Table 1 shows the observation results of 0), the range thereof, and the crystal structure.

【0038】[0038]

【表1】 [Table 1]

【0039】表1から明らかなように、誘導加熱炉にス
ラブを操入する前に、スラブ端部を加熱し、スラブ端部
近傍温度をスラブ幅中央部温度に対し−50〜+30℃の範
囲にすることによって、板幅端部まで二次再結晶が進行
し、前記した二次再結晶不良の問題を解決できることが
わかった。
As is clear from Table 1, before the slab is introduced into the induction heating furnace, the slab end is heated, and the temperature near the slab end is in the range of -50 to + 30 ° C. with respect to the temperature at the center of the slab width. By doing so, it was found that secondary recrystallization progressed to the end of the sheet width, and the above-mentioned problem of secondary recrystallization failure could be solved.

【0040】この理由は明確ではないが、スラブ幅方向
に大きな温度差が生じている場合に誘導加熱ではインヒ
ビターの固溶に必要な温度にまで昇温せず、十分に均熱
されないためと考えられる。なお、上記温度差を+30℃
を上回るようにスラブ端部を加熱すると、オーバーヒー
トによる表面欠陥が生じる。
The reason for this is not clear, but it is considered that when a large temperature difference occurs in the slab width direction, the induction heating does not raise the temperature to the temperature necessary for solid solution of the inhibitor, and the temperature is not sufficiently uniform. Can be The above temperature difference is + 30 ° C
When the end of the slab is heated so as to exceed the range, surface defects due to overheating occur.

【0041】実験5 幅方向の磁気特性を均一にし、しかも高い磁気特性を容
易に得ようとするためには、スラブ厚を選定することが
重要である。しかし、このために適用できるスラブ厚の
範囲は狭く、連鋳モールドサイズの変更を頻繁に行わな
ければならず、モールドサイズ変更による他鋼種を含め
た連鋳操業の生産性が著しく低下するという問題が新た
に発生した。
Experiment 5 In order to make the magnetic properties uniform in the width direction and to easily obtain high magnetic properties, it is important to select the slab thickness. However, the range of slab thickness applicable for this purpose is narrow, and the size of the continuous casting mold must be changed frequently, and the productivity of the continuous casting operation including other steel types due to the change of the mold size is significantly reduced. Newly occurred.

【0042】そこで、偏析をおさえ、粗圧延率を高めて
磁気特性の向上をはかり、かつ、生産性も向上できる手
段として、インヒビター成分の偏析が小さく、他鋼種に
も比較的多く用いられている215mm 厚の連鋳スラブを用
い、幅プレスで増厚する方法で上記問題の解決策を検討
した。
Therefore, as a means for suppressing segregation, increasing the rough rolling ratio and improving the magnetic properties and improving the productivity, the segregation of the inhibitor component is small, and it is used relatively frequently in other steel types. A solution to the above problem was studied by using a 215 mm thick continuous cast slab and increasing the thickness with a width press.

【0043】C:0.041 wt%、Si : 3.35 wt%、Mn:0.
073 wt%、Se:0.019 wt%、Sb:0.025 wt%、Mo:0.01
2 wt%を含有する215mm 厚の連鋳スラブ6本を、ガス加
熱炉で1100℃に加熱後、幅プレスにより圧下率2%、4
%、8%、15%、25%及び35%の6条件で幅圧下を加
え、直ちに215mm 厚に平坦化圧延を行い、引き続き誘導
加熱炉で1430℃、15分間の加熱を施した。
C: 0.041 wt%, Si: 3.35 wt%, Mn: 0.
073 wt%, Se: 0.019 wt%, Sb: 0.025 wt%, Mo: 0.01
Six 215mm thick continuous cast slabs containing 2 wt% were heated to 1100 ° C in a gas heating furnace, and then reduced by 2% by a width press.
%, 8%, 15%, 25% and 35% were applied under a width reduction, flattened and rolled immediately to a thickness of 215 mm, and subsequently heated at 1430 ° C. for 15 minutes in an induction heating furnace.

【0044】なお、ガス加熱炉から抽出し幅プレスを行
うまでの間及び幅プレスから誘導加熱炉に操入するまで
の間のテーブル上ではスラブをその両サイドからバーナ
ーで加熱し、幅端部から15mm位置と中央部との温度差を
0〜−20℃以内に保持した。
The slab was heated from both sides by a burner on the table from the gas heating furnace until it was extracted and subjected to the width pressing, and from the width pressing to the operation into the induction heating furnace. The temperature difference between the position 15 mm from the center and the central part was kept within 0 to -20 ° C.

【0045】誘導加熱炉から抽出したスラブは、粗圧延
により35mm厚のシートバーとし、続いて仕上げ圧延によ
り2.7mm 厚の熱延板とした。これらの熱板をさらに一次
冷間圧延で0.82mm厚としたのち、950 ℃で1分間の中間
焼鈍を施し、さらに二次冷間圧延を行って0.30mmの最終
板厚とし、その後、湿水素中で820 ℃、2分間の脱炭焼
鈍を施したのち、MgO を主成分とする焼鈍分離剤を塗布
し、水素中で1180℃、5時間の仕上げ焼鈍を施し製品板
とした。かくして得られた製品板について磁気特性、結
晶組織及び表面欠陥の発生状況について調査した。それ
らの結果を表2に示す。
The slab extracted from the induction heating furnace was rough-rolled into a 35 mm-thick sheet bar, followed by finish rolling into a 2.7 mm-thick hot-rolled sheet. These hot plates are further cold-rolled to a thickness of 0.82 mm, subjected to intermediate annealing at 950 ° C. for 1 minute, further cold-rolled to a final plate thickness of 0.30 mm, and then wet-hydrogen After decarburizing annealing at 820 ° C. for 2 minutes in the atmosphere, an annealing separator containing MgO as a main component was applied thereto, and subjected to finish annealing at 1180 ° C. for 5 hours in hydrogen to obtain a product plate. The product sheets thus obtained were investigated for magnetic properties, crystal structure and occurrence of surface defects. Table 2 shows the results.

【0046】[0046]

【表2】 [Table 2]

【0047】表2から、幅圧下率8〜25%において帯状
細粒の発生がなく、磁気特性の向上が得られた。一方、
幅圧下率4%以下では中央部での増圧がわずかしか得ら
れず、帯状細粒の防止効果が小さく、また35%以上の幅
圧下率では端部近傍にいわゆるドッグボーンが顕著に発
生し、この部分で表面や内部に割れが生じていた。
As can be seen from Table 2, no band-like fine particles were generated at a width reduction ratio of 8 to 25%, and the magnetic properties were improved. on the other hand,
At a width reduction ratio of 4% or less, only a small increase in pressure at the center is obtained, and the effect of preventing band-like fine particles is small. At a width reduction ratio of 35% or more, a so-called dog bone is remarkably generated near the end. At this portion, cracks occurred on the surface and inside.

【0048】以上に示した一連の実験結果から、表面疵
を防ぎ、磁気特性の良好かつ均一な方向性けい素鋼板
を、その生産性を阻害することなく得るためには、つぎ
の,, 及びに従う必要のあることが判明した。
From the results of a series of experiments described above, in order to prevent surface flaws and to obtain a oriented silicon steel sheet having good and uniform magnetic properties without impairing the productivity, the following,,, and It turned out that we needed to follow.

【0049】 スラブ加熱前に圧下率8%以上好まし
くは25%以下の幅圧下を加える。 つぎに、圧下率2〜30%の平坦化予備圧延を施す。 予備圧延後のスラブは端部温度と幅中央部温度との
差ΔTが−50℃≦ΔT≦+30℃の範囲になるように加熱
し、引き続き誘導加熱炉に装入して加熱する。 加熱炉から抽出したスラブは、合計圧下率80%以上
の粗圧延を施す。
Before the slab is heated, a width reduction of 8% or more, preferably 25% or less is applied. Next, flattening preliminary rolling with a rolling reduction of 2 to 30% is performed. The slab after the pre-rolling is heated so that the difference ΔT between the end portion temperature and the width center portion temperature is in the range of −50 ° C. ≦ ΔT ≦ + 30 ° C., and then charged into an induction heating furnace and heated. The slab extracted from the heating furnace is subjected to rough rolling with a total draft of 80% or more.

【0050】この発明は、上記知見のもとに構成された
ものであり、その要旨は以下の通りである。
The present invention has been made based on the above findings, and the gist is as follows.

【0051】Si:2.5 wt%以上、4.0 wt%以下を含むけ
い素鋼スラブを、高温加熱して熱間圧延を施し、その後
1回又は中間焼鈍をはさむ2回以上の冷間圧延を行って
最終板厚に仕上げたのち、脱炭焼鈍し、ついで焼鈍分離
剤を塗布し仕上げ焼鈍を施して一方向性けい素鋼板を製
造するに当り、上記スラブの高温加熱に先立ち、該スラ
ブを熱間にて圧下率8%以上の幅圧下加工と、圧下率2
%以上、30%以下の平たん化予備圧延を施し、引き続い
て、スラブ端部表面温度とスラブ中央部表面温度との温
度差ΔTを−50℃<ΔT<+30℃の範囲内に調整してか
ら誘導加熱により1380℃以上、1440℃以下の温度範囲に
加熱し、圧下率80%以上の粗圧延につづいて仕上げ圧延
を行う熱間圧延を施すことを特徴とする表面性状に優れ
均一かつ良好な磁気特性を有する方向性けい素鋼板の製
造方法である。ここに、平坦化予備圧延は巾圧下によっ
て断面がドックボーン形状になったものを平ロール等に
よりおおむね矩形形状にする圧延であり、予備圧延圧下
率は粒成長を抑制する目的より巾圧下で増厚量が最小と
なる巾中央値で表わす。なお粗圧下率が不足しない範囲
において、平ロール等により初期スラブ厚より薄くなる
まで併せて圧延することも予備圧延に含まれる。
Si: A silicon steel slab containing 2.5 wt% or more and 4.0 wt% or less is subjected to hot rolling by heating at a high temperature, and then to cold rolling once or twice with intermediate annealing. After finishing to the final sheet thickness, decarburizing annealing, then applying an annealing separator and performing finish annealing to produce a unidirectional silicon steel sheet, prior to heating the slab to high temperature, hot slab Width reduction of 8% or more and reduction of 2
% Or more and 30% or less and then flattening preliminary rolling, and then adjusting the temperature difference ΔT between the slab end surface temperature and the slab center surface temperature to within a range of −50 ° C. <ΔT <+ 30 ° C. It is heated to a temperature range of 1380 ° C or higher and 1440 ° C or lower by induction heating, and is subjected to hot rolling in which rough rolling with a rolling reduction of 80% or more is performed followed by finish rolling. This is a method for producing a grain-oriented silicon steel sheet having excellent magnetic properties. Here, flattening pre-rolling is rolling in which the cross-section of a dockbone shape is reduced by width reduction into a generally rectangular shape using flat rolls, etc., and the pre-rolling reduction rate increases under width pressure for the purpose of suppressing grain growth. Expressed by the median width at which the thickness becomes minimum. Preliminary rolling includes rolling to a thickness smaller than the initial slab thickness using a flat roll or the like within a range where the rough rolling reduction is not insufficient.

【0052】[0052]

【作用】この発明の素材である含けい素鋼は、従来公知
の成分組成のものも十分適合するが、中でも好適な代表
組成をあげるとつぎの通りである。
The silicon-containing steel used as the material of the present invention has well-known conventional component compositions. Among them, preferred representative compositions are as follows.

【0053】C:0.01〜0.10wt% Cは、熱間圧延、冷間圧延中の組織の均一微細化のみな
らず、ゴス方位の発達に有用な成分であり、少なくとも
0.01wt%以上含有させることが好ましい。しかしなが
ら、0.10wt%を超えて含有させるとかえってゴス方位に
乱れが生じるのでその上限は0.10wt%とすることが好ま
しい。
C: 0.01 to 0.10 wt% C is a component useful not only for uniform micronization of the structure during hot rolling and cold rolling but also for development of the Goss orientation.
It is preferable to contain 0.01 wt% or more. However, if the content exceeds 0.10 wt%, the Goss orientation will be disturbed, so the upper limit is preferably set to 0.10 wt%.

【0054】Si:2.5 〜4.0 wt% Siは、鋼板の比抵抗を高め、鉄損の低減に有効に寄与す
るが、4.0 wt%を上回ると冷延性が損なわれ、一方、2.
5 wt%に満たないと比抵抗が低下するだけでなく、二次
再結晶・純化のために行われる最終高温焼鈍中にα−γ
変態によって結晶方位のランダム化を生じ、十分な鉄損
改善効果が得られない。したがって、その含有量は2.5
wt%以上、4.0 wt%以下とする。
Si: 2.5 to 4.0 wt% Si increases the specific resistance of the steel sheet and effectively contributes to the reduction of iron loss. However, if it exceeds 4.0 wt%, the cold rolling property is impaired.
If it is less than 5 wt%, not only the specific resistance decreases, but also α-γ during final high-temperature annealing performed for secondary recrystallization and purification.
The transformation causes randomization of the crystal orientation, and a sufficient iron loss improvement effect cannot be obtained. Therefore, its content is 2.5
wt% and 4.0 wt% or less.

【0055】Mn:0.02〜0.12wt% Mnは、熱間脆化を防止するため少なくとも0.02wt%以上
含有させることが好ましいが、あまり多すぎると磁気特
性を劣化させるので、その上限は0.12wt%とすることが
好ましい。
Mn: 0.02 to 0.12 wt% Mn is preferably contained at least 0.02 wt% or more in order to prevent hot embrittlement, but if it is too much, the magnetic properties are deteriorated. It is preferable that

【0056】S, Seのうちから選ばれる1種以上:0.00
5 〜0.06wt% S、Seは、いずれも方向性けい素鋼板の二次再結晶を制
御するインヒビターとして有力な成分である。抑制力の
観点から含有量は、0.005 wt%以上とすることが好まし
いが、0.06wt%を超えるとその効果が損なわれる。した
がって、その含有量の下限及び上限はそれぞれ0.005 wt
%及び0.06wt%程度とすることが好ましい。
One or more selected from S and Se: 0.00
5 to 0.06 wt% S and Se are both effective components as inhibitors for controlling secondary recrystallization of grain-oriented silicon steel sheets. From the viewpoint of suppressing power, the content is preferably 0.005 wt% or more, but if it exceeds 0.06 wt%, the effect is impaired. Therefore, the lower and upper limits of the content are 0.005 wt
% And about 0.06 wt%.

【0057】Al:0.005 〜0.10wt% , N:0.004 〜0.
015 wt% AlとNは、AlN となりインヒビターとして作用する。イ
ンヒビターとして作用させるためには、Alは0.005 〜0.
10wt%、Nは0.004 〜0.015 wt%の範囲で含有させるこ
とが好ましい。すなわち、上記含有量の下限未満では抑
制力が不足し、上限を超えると結晶粒が粗大化して抑制
力を損う。
Al: 0.005 to 0.10 wt%, N: 0.004 to 0.
015 wt% Al and N become AlN and act as inhibitors. To act as an inhibitor, Al is 0.005--0.
Preferably, 10 wt% and N are contained in the range of 0.004 to 0.015 wt%. That is, if the content is less than the lower limit, the suppressing power is insufficient, and if it exceeds the upper limit, the crystal grains are coarsened and the suppressing power is impaired.

【0058】ここに、上記したMnS 、MnSe系及びAlN系
はそれぞれ併用が可能である。また、インヒビター成分
としては上記したS、Se及びAlの他に、Cu、Sn、Sb、Mo
及びPなども有利に適合するので、それぞれ小量併せて
含有させることもでき、これらの成分の好適含有量範囲
はCu及びSn:各0.01〜0.15wt%、Sb及びMo:各0.005 〜
0.1 wt%、P:0.01〜0.2 wt%である。なお、これらの
各インヒビター成分についても、単独使用及び複合使用
いずれもが適合する。
Here, the above-mentioned MnS, MnSe-based and AlN-based can be used in combination. In addition, as the inhibitor component, in addition to the above-mentioned S, Se and Al, Cu, Sn, Sb, Mo
And P, etc., are advantageously compatible, so that they can be contained together in small amounts, respectively. The preferred content ranges of these components are Cu and Sn: 0.01 to 0.15 wt% each, and Sb and Mo: 0.005 to 0.005 each.
0.1 wt%, P: 0.01 to 0.2 wt%. In addition, about each of these inhibitor components, both independent use and combined use are suitable.

【0059】つぎに、この発明の製造工程条件について
述べる。常法により溶製した上記成分組成を有する180
〜250mm 厚の連鋳スラブを、まず予備加熱する。この予
備加熱温度は、1300℃を超えると予備熱延で付与した歪
が早期に回復し、結晶粒の微細化効果が弱まり、900 ℃
未満では鋼の熱間強度が高くなり変形のためのエネルギ
ーが大きくなりすぎる。したがって、結晶粒の微細化効
果が得られ、かつ、熱間加工が容易である温度範囲とし
て、900 ℃以上、1300℃以下とすることが好ましい。
Next, the manufacturing process conditions of the present invention will be described. 180 having the above component composition melted by an ordinary method
First, the continuous casting slab of ~ 250mm thickness is preheated. When the preheating temperature exceeds 1300 ° C., the strain imparted by the pre-rolling is quickly recovered, the effect of refining the crystal grains is weakened, and
If it is less than 10, the hot strength of the steel increases and the energy for deformation becomes too large. Therefore, it is preferable that the temperature range is 900 ° C. or higher and 1300 ° C. or lower as a temperature range in which the effect of refining crystal grains can be obtained and hot working is easy.

【0060】この予備加熱をしたスラブを圧下率8%以
上の幅圧下を加える。圧下率8%未満では、十分な幅方
向中央部の増厚が得られず帯状細粒の防止効果が小さ
い。なお、25%を超えると端部近傍にいわゆるドッグボ
ーンが顕著に発生し、表面や内部に割れが生じやすくな
る。したがって、幅圧下圧下率は8%以上とし、その上
限は25%以下とすることが好ましい。
The pre-heated slab is subjected to a width reduction of 8% or more. If the rolling reduction is less than 8%, a sufficient thickening at the center in the width direction cannot be obtained, and the effect of preventing band-like fine particles is small. When the content exceeds 25%, a so-called dog bone is remarkably generated in the vicinity of the end portion, and cracks easily occur on the surface or inside. Therefore, the width reduction is preferably 8% or more, and the upper limit thereof is preferably 25% or less.

【0061】ここで、幅圧下は前記したプレスのみなら
ず、縦型ロール、エッジャーなどこの目的に適合するも
のであればよい。
Here, the width reduction may be not only the above-mentioned press but also a vertical roll, an edger or any other suitable for this purpose.

【0062】幅圧下につづいて、圧下率2〜30%の平た
ん化予備圧延を施す。平たん化予備圧延は、スラブ表面
を平たん化するために必要であるが、さらにスラブ結晶
粒の細粒化をはかるために必要である。圧下率が2%未
満ではスラブ結晶粒を20mm以下に微細化することができ
ず、一方、30%を超えると熱間圧延における粗圧延での
圧下率が低下し、シートバーにおける延伸粒の残存率が
高くなる。したがって、その圧下率は2%以上、30%以
下とする。
Following the width reduction, flattening preliminary rolling is performed at a reduction ratio of 2 to 30%. The flattening pre-rolling is necessary for flattening the slab surface, but is also necessary for reducing the slab crystal grains. If the rolling reduction is less than 2%, the slab crystal grains cannot be refined to 20 mm or less. On the other hand, if it exceeds 30%, the rolling reduction in the rough rolling in hot rolling decreases, and the stretched grains remain in the sheet bar. Rate is higher. Therefore, the rolling reduction is 2% or more and 30% or less.

【0063】予備圧延後のスラブは、幅端部と幅中央部
との温度差ΔTが、−50℃≦ΔT≦+30℃となるように
加熱したのち誘導加熱炉に装入する。このΔTが−50℃
より低く外れるとその後の誘導加熱で十分な均熱が得ら
れず、幅端部ではインヒビターの固溶に必要な温度に達
せず、+30℃より高く外れるとオーバーヒートによる表
面欠陥が生じる。したがってΔTは、−50℃≦ΔT≦+
30℃の範囲とする。
The slab after the preliminary rolling is heated so that the temperature difference ΔT between the width end and the width center satisfies −50 ° C. ≦ ΔT ≦ + 30 ° C., and then charged into the induction heating furnace. This ΔT is −50 ° C.
If the temperature falls below a lower level, sufficient induction heating cannot be obtained by subsequent induction heating, the temperature required for the solid solution of the inhibitor does not reach at the width end, and if the temperature rises higher than + 30 ° C., surface defects due to overheating occur. Therefore, ΔT is −50 ° C. ≦ ΔT ≦ +
Keep in the range of 30 ° C.

【0064】なお、スラブ幅端部を温度制御する方法
は、ガスバーナーを用いる方法が好適であるが、誘導加
熱又は抵抗加熱などの電気的方法、あるいは、搬送中端
部を保温し、温度差の増大を防ぐことも有効である。
As a method of controlling the temperature of the slab width end portion, a method using a gas burner is preferable. It is also effective to prevent the increase.

【0065】誘導加熱炉に装入したスラブを、ここでイ
ンヒビターが固溶するまで加熱する。通常インヒビター
の固溶処理には1250℃以上で、しかも低温では長時間保
持、高温では短時間保持が利用されている。この発明で
はスラブ結晶粒を粗大化させずかつ表面きずを防止する
ために、加熱温度は1380℃以上、1440℃以下とし、さら
にこの加熱にあたっては、不活性ガス雰囲気を用い、加
熱時間を5分間以上50分間以内の短時間加熱とすること
が望ましい。
The slab charged in the induction heating furnace is heated here until the inhibitor is dissolved. Usually, the solid solution treatment of the inhibitor is carried out at 1250 ° C. or higher, and for a long time at a low temperature, and for a short time at a high temperature. In the present invention, in order to prevent slab crystal grains from coarsening and to prevent surface flaws, the heating temperature is 1380 ° C. or more and 1440 ° C. or less, and in this heating, an inert gas atmosphere is used, and the heating time is 5 minutes. It is desirable that the heating be performed for a short time within 50 minutes or more.

【0066】誘導加熱炉での加熱につづいて熱間圧延を
行うが、この際スラブ結晶粒を破壊しその微細化をはか
るため、粗圧延での圧下率は80%以上を必要とする。こ
の粗圧延に引き続き仕上げ圧延で1.4 〜3.5mm厚の熱延
鋼帯とする。
Hot rolling is performed after heating in the induction heating furnace. In this case, the rolling reduction in the rough rolling needs to be 80% or more in order to break down the slab crystal grains and make them finer. After this rough rolling, a hot rolled steel strip having a thickness of 1.4 to 3.5 mm is formed by finish rolling.

【0067】さらに、この熱延鋼帯を酸洗後、一回又は
中間焼鈍を挟む2回以上の冷間圧延を行い、脱炭焼鈍、
焼鈍分離剤塗布、仕上げ焼鈍を施し方向性けい素鋼帯と
するが、これらの工程は常法に従えばよい。
Further, after pickling this hot-rolled steel strip, cold rolling is performed once or two or more times with intermediate annealing, and decarburizing annealing is performed.
Although a directional silicon steel strip is formed by applying an annealing separator and finish annealing, these steps may be performed according to a conventional method.

【0068】[0068]

【実施例】実施例1 C:0.042 wt%、Si : 3.35 wt%、Mn:0.072 wt%、S
e:0.019 wt%、Sb:0.025 wt%及びMo:0.012 wt%を
含有し、残部は実質的に鉄よりなる250mm 厚のスラブ
を、表3に示す条件で、ガス加熱炉で予備加熱し、つづ
いて幅圧下、平たん化予備圧延を施したのち、スラブ端
部と中央部との温度差ΔTを調整した。これにつづき、
誘導加熱炉に装入し、1430℃で15分間加熱した。
EXAMPLES Example 1 C: 0.042 wt%, Si: 3.35 wt%, Mn: 0.072 wt%, S
e: a 250 mm thick slab containing 0.019 wt% of Sb, 0.025 wt% of Sb, and 0.012 wt% of Mo, and the balance substantially consisting of iron, was preheated in a gas heating furnace under the conditions shown in Table 3; Subsequently, after flattening preliminary rolling was performed under the width pressure, the temperature difference ΔT between the end and the center of the slab was adjusted. Following this,
It was charged in an induction heating furnace and heated at 1430 ° C. for 15 minutes.

【0069】[0069]

【表3】 [Table 3]

【0070】つぎに、誘導加熱炉から抽出したこれらの
スラブは、それぞれ粗圧延により40mm厚のシートバーと
してから仕上げ圧延により2.0mm 厚の熱延板とした。つ
いでこれらの熱延板に950 ℃、1分間の熱延板焼鈍を施
し、一次冷間圧延で板厚0.60mmとしたのち、1000℃で2
分間の中間焼鈍を施し、二次冷間圧延で0.23mmの最終板
厚とした。つぎに湿水素中で820 ℃、3分間の脱炭焼鈍
を施したのち、MgO を主成分とする焼鈍分離剤を塗布
し、水素中で1200℃、5時間の仕上げ焼鈍を施して方向
性けい素鋼板とした。
Next, these slabs extracted from the induction heating furnace were each converted into a sheet bar having a thickness of 40 mm by rough rolling, and then a hot-rolled sheet having a thickness of 2.0 mm by finish rolling. Next, these hot-rolled sheets were annealed at 950 ° C. for 1 minute, and the first cold-rolling was performed to a sheet thickness of 0.60 mm.
And then subjected to secondary cold rolling to a final thickness of 0.23 mm. Next, after decarburizing annealing at 820 ° C. for 3 minutes in wet hydrogen, an annealing separator containing MgO as a main component is applied, and then subjected to finish annealing at 1200 ° C. for 5 hours in hydrogen to perform directional quenching. An element steel plate was used.

【0071】かくして得られた960 〜1200mm幅のコイル
両幅端部から15mmをそれぞれ除去したのち、コイルの先
後端及び中央部からサンプルを採取し、JIS法にもと
づく磁気特性を測定するとともに表面きずの有無と二次
再結晶状況を調査した。これらの調査結果を前掲表3に
併記して示した。
After removing 15 mm from both ends of the coil having a width of 960 to 1200 mm thus obtained, samples were taken from the front and rear ends and the center of the coil, and the magnetic characteristics based on the JIS method were measured and the surface flaw was measured. And the state of secondary recrystallization were investigated. The results of these surveys are shown in Table 3 above.

【0072】表3から明らかなように、この発明を適用
することにより、製品厚の薄いものでも、表面きず、帯
状細粒の発生がなく、磁気特性の改善がはかれている。
As is evident from Table 3, the application of the present invention does not cause surface flaws or band-like fine particles even with a thin product, and improves the magnetic characteristics.

【0073】実施例2 C:0.075 wt%、Si : 3.20 wt%、Mn:0.075 wt%、S
e:0.020 wt%、Sb:0.025 wt%、Cu:0.04wt%、Sn:
0.03wt%、Mo:0.012 wt%及びN:0.0085wt%を含有
し、残部は実質的に鉄よりなる215mm 厚の連鋳スラブ
を、表4に示す条件で、ガス加熱炉で予備加熱し、つづ
いて幅圧下、平たん化予備圧延を施したのち、スラブ端
部と中央部との温度差ΔTを調整した。ひきつづき、誘
導加熱炉に装入し1420℃で20分間加熱した。
Example 2 C: 0.075 wt%, Si: 3.20 wt%, Mn: 0.075 wt%, S
e: 0.020 wt%, Sb: 0.025 wt%, Cu: 0.04 wt%, Sn:
A 215 mm thick continuously cast slab containing 0.03 wt%, Mo: 0.012 wt% and N: 0.0085 wt%, the balance being substantially iron, was preheated in a gas heating furnace under the conditions shown in Table 4, Subsequently, after flattening preliminary rolling was performed under the width pressure, the temperature difference ΔT between the end and the center of the slab was adjusted. Subsequently, it was charged into an induction heating furnace and heated at 1420 ° C. for 20 minutes.

【0074】[0074]

【表4】 [Table 4]

【0075】つぎに、誘導加熱炉から抽出したこれらの
スラブは、それぞれ粗圧延により35mm厚のシートバーと
してから仕上げ圧延により2.8mm 厚の熱延板とした。つ
いでこれらの熱延板を一次冷間圧延で板厚1.8mm とした
のち、1100℃で2分間の中間焼鈍を施し、二次冷間圧延
で0.30mmの最終板厚とした。つぎに湿水素中で840 ℃、
3分間の脱炭焼鈍を施したのち、MgO を主成分とする焼
鈍分離剤を塗布し、水素中で1200℃、20時間の仕上げ焼
鈍を施して方向性けい素鋼板とした。
Next, these slabs extracted from the induction heating furnace were each subjected to rough rolling to form a 35 mm-thick sheet bar, and then to finish rolling to obtain a 2.8 mm-thick hot-rolled sheet. Next, these hot-rolled sheets were subjected to primary cold rolling to a sheet thickness of 1.8 mm, then subjected to intermediate annealing at 1100 ° C. for 2 minutes, and subjected to secondary cold rolling to a final sheet thickness of 0.30 mm. Next, in wet hydrogen at 840 ° C,
After decarburizing annealing for 3 minutes, an annealing separator containing MgO as a main component was applied, and finish annealing was performed in hydrogen at 1200 ° C. for 20 hours to obtain a grain-oriented silicon steel sheet.

【0076】かくして得られた960 〜1200mm幅のコイル
両幅端部から15mmをそれぞれ除去したのち、コイルの先
後端及び中央部からサンプルを採取し、JIS法にもと
づく磁気特性を測定するとともに表面きずの有無と二次
再結晶状況を調査した。これらの調査結果を前掲表4に
併記した。
After removing 15 mm from both ends of the coil having a width of 960 to 1200 mm thus obtained, samples were taken from the front and rear ends and the center of the coil, and the magnetic characteristics based on the JIS method were measured and the surface flaw was measured. And the state of secondary recrystallization were investigated. The results of these surveys are shown in Table 4 above.

【0077】表4から明らかなように、この発明を適用
することにより、高磁束密度方向性けい素鋼板であって
も表面きず及び帯状細粒が発生することなく、かつ、磁
気特性の改善がはかれている。
As is clear from Table 4, application of the present invention makes it possible to prevent surface flaws and band-like fine grains from occurring even in a high magnetic flux density oriented silicon steel sheet, and to improve the magnetic properties. Has been removed.

【0078】[0078]

【発明の効果】この発明は、連鋳スラブを予備加熱して
幅圧下、平たん化予備圧延を施し、スラブ幅方向の温度
差を制御して誘導加熱炉に装入しインヒビターを十分に
固溶する加熱を施す各工程の処理条件を適正化し、さら
にその後の粗圧延での圧下率を適正化することにより、
表面きずの発生を防止し、かつ、帯状細粒のない均一な
二次再結晶組織を生成させ、均一かつ優れた磁気特性を
有する方向性けい素鋼板を生産性を阻害することなく製
造するものであり、
According to the present invention, the continuous casting slab is pre-heated, subjected to flattening pre-rolling under a width reduction, and the temperature difference in the slab width direction is controlled, and the slab is charged into an induction heating furnace to sufficiently solidify the inhibitor. By optimizing the processing conditions of each step of applying heating to melt, and further optimizing the draft in the subsequent rough rolling,
Produces a grain-oriented silicon steel sheet that prevents surface flaws and generates a uniform secondary recrystallized structure without band-like fine grains, and that has uniform and excellent magnetic properties without impairing productivity. And

【0079】この発明によって得られる方向性けい素鋼
板は、優れた磁気特性と共に変圧器事故などに対す安全
性に優れ、電気機器類の鉄心として有利に用いることが
できる。
The grain-oriented silicon steel sheet obtained by the present invention has excellent magnetic properties and excellent safety against transformer accidents and the like, and can be advantageously used as an iron core of electrical equipment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】予備熱間圧延圧下率と結晶粒径の関係を示すグ
ラフである。
FIG. 1 is a graph showing a relationship between a preliminary hot rolling reduction and a crystal grain size.

【図2】粗圧延圧下率とシートバーにおける延伸粒残存
率の関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a rough rolling reduction ratio and a residual ratio of stretched grains in a sheet bar.

【図3】粗圧延圧下率と方向性けい素鋼板製品の磁束密
度B8の関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a rolling reduction and a magnetic flux density B8 of a grain-oriented silicon steel sheet product.

【図4】連鋳スラブの厚さと方向性けい素鋼板製品の磁
束密度B8の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the thickness of a continuous cast slab and the magnetic flux density B8 of a grain-oriented silicon steel sheet product.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下向 央修 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社 水島製鉄所内 (56)参考文献 特開 平3−133501(JP,A) 特公 昭52−47179(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C21D 8/12──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Osamu Shimomu 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. Kawasaki Steel Corporation Mizushima Works (56) References JP-A-3-133501 (JP) , A) JP-B-52-47179 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) C21D 8/12

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Si:2.5 wt%以上、4.0 wt%以下を含む
けい素鋼スラブを、高温加熱して熱間圧延を施し、その
後1回又は中間焼鈍をはさむ2回以上の冷間圧延を行っ
て最終板厚に仕上げたのち、脱炭焼鈍し、ついで焼鈍分
離剤を塗布し仕上げ焼鈍を施して一方向性けい素鋼板を
製造するに当り、 上記スラブの高温加熱に先立ち、該スラブを熱間にて圧
下率8%以上の幅圧下加工と、圧下率2%以上、30%以
下の平たん化予備圧延を施し、引き続いて、スラブ端部
表面温度とスラブ中央部表面温度との温度差ΔTを−50
℃≦ΔT≦+30℃の範囲内に調整してから誘導加熱によ
り1380℃以上、1440℃以下の温度範囲に加熱し、圧下率
80%以上の粗圧延につづいて仕上げ圧延を行う熱間圧延
を施すことを特徴とする表面性状に優れ均一かつ良好な
磁気特性を有する方向性けい素鋼板の製造方法。
1. A silicon steel slab containing not less than 2.5 wt% and not more than 4.0 wt% of Si is subjected to hot rolling by heating at a high temperature, and then cold rolling is performed once or twice or more with intermediate annealing. After finishing to a final sheet thickness, decarburizing annealing, and then applying an annealing separator and performing finish annealing to produce a unidirectional silicon steel sheet, prior to high-temperature heating of the slab, the slab Width reduction with hot reduction of 8% or more, flattening pre-rolling with a reduction of 2% or more and 30% or less, and then the temperature of the slab end surface temperature and the slab center surface temperature The difference ΔT is -50
After adjusting the temperature within the range of ℃ ≤ ΔT ≤ + 30 ° C, heat it to a temperature range of 1380 ° C or more and 1440 ° C or less by induction heating,
A method for producing a grain-oriented silicon steel sheet having excellent surface properties and uniform and excellent magnetic properties, characterized by performing hot rolling in which finish rolling is performed after rough rolling of 80% or more.
JP3301893A 1991-11-18 1991-11-18 Method for producing oriented silicon steel sheet having uniform and good magnetic properties Expired - Fee Related JP2807366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3301893A JP2807366B2 (en) 1991-11-18 1991-11-18 Method for producing oriented silicon steel sheet having uniform and good magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3301893A JP2807366B2 (en) 1991-11-18 1991-11-18 Method for producing oriented silicon steel sheet having uniform and good magnetic properties

Publications (2)

Publication Number Publication Date
JPH05140650A JPH05140650A (en) 1993-06-08
JP2807366B2 true JP2807366B2 (en) 1998-10-08

Family

ID=17902399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3301893A Expired - Fee Related JP2807366B2 (en) 1991-11-18 1991-11-18 Method for producing oriented silicon steel sheet having uniform and good magnetic properties

Country Status (1)

Country Link
JP (1) JP2807366B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3345540B2 (en) * 1995-06-30 2002-11-18 川崎製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
KR100480002B1 (en) * 1999-12-28 2005-03-30 주식회사 포스코 A method for manufacturing grain oriented electrical steel sheet with superior magnetic property
WO2023157765A1 (en) * 2022-02-15 2023-08-24 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247179A (en) * 1975-10-11 1977-04-14 Kayaba Ind Co Ltd Shock absorber with rolling prevention function
JPH0713268B2 (en) * 1989-07-12 1995-02-15 新日本製鐵株式会社 Hot Rolling Method for Continuously Cast Unidirectional Electrical Steel Slab

Also Published As

Publication number Publication date
JPH05140650A (en) 1993-06-08

Similar Documents

Publication Publication Date Title
JP5001611B2 (en) Method for producing high magnetic flux density grain-oriented silicon steel sheet
JPS5813606B2 (en) It&#39;s hard to tell what&#39;s going on.
JPH0586455B2 (en)
JP2883226B2 (en) Method for producing thin grain silicon steel sheet with extremely excellent magnetic properties
JP2807366B2 (en) Method for producing oriented silicon steel sheet having uniform and good magnetic properties
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP3340754B2 (en) Method for producing unidirectional silicon steel sheet having uniform magnetic properties in the sheet width direction
JP2009012033A (en) Method for manufacturing hot-rolled steel strip for grain oriented silicon steel sheet, and method for manufacturing grain oriented silicon steel sheet
JP4753558B2 (en) Method for rolling hot rolled steel strip for grain-oriented electrical steel and method for producing grain-oriented electrical steel sheet
JP3849146B2 (en) Method for producing unidirectional silicon steel sheet
JP3133855B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2919290B2 (en) Method for producing hot rolled silicon steel sheet with excellent surface properties
JP2002105537A (en) Method for manufacturing grain oriented silicon steel sheet hardly causing edge crack and having satisfactory film characteristic, excellent magnetic property and high magnetic flux density
JP3336172B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP2735899B2 (en) Method for producing unidirectional silicon steel sheet with uniform magnetic properties
JP3227057B2 (en) Method for producing hot rolled silicon steel sheet with excellent surface properties
JP3612717B2 (en) Method for producing grain-oriented silicon steel sheet
JP3474629B2 (en) Method of manufacturing hot rolled ultra-high silicon electromagnetic steel sheet
JP4200526B2 (en) Method for producing unidirectional silicon steel sheet
JP3536306B2 (en) Method for producing oriented silicon steel sheet excellent in magnetic properties with few steel sheet flaws
JP3849310B2 (en) Method for producing grain-oriented electrical steel sheet without ear cracks
JPH0892644A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JP3858280B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP2735898B2 (en) Method for producing unidirectional silicon steel sheet with uniform magnetic properties

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080724

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090724

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100724

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100724

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110724

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees