JPH0226346B2 - - Google Patents

Info

Publication number
JPH0226346B2
JPH0226346B2 JP56215316A JP21531681A JPH0226346B2 JP H0226346 B2 JPH0226346 B2 JP H0226346B2 JP 56215316 A JP56215316 A JP 56215316A JP 21531681 A JP21531681 A JP 21531681A JP H0226346 B2 JPH0226346 B2 JP H0226346B2
Authority
JP
Japan
Prior art keywords
conductive powder
conductive
connection
organic polymer
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56215316A
Other languages
Japanese (ja)
Other versions
JPS58115779A (en
Inventor
Ryoichi Sado
Toshuki Kawaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP21531681A priority Critical patent/JPS58115779A/en
Publication of JPS58115779A publication Critical patent/JPS58115779A/en
Publication of JPH0226346B2 publication Critical patent/JPH0226346B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Combinations Of Printed Boards (AREA)

Description

【発明の詳細な説明】 本発明は新規かつ改良された電気接続構造なら
びにその接続方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new and improved electrical connection structure and method of connection thereof.

従来、少なくとも2枚の同種または異種のプリ
ント回路基板の相対向する引出接続端子部間を接
続したり、あるいはプリント回路基板の接続端子
部に相対してフラツトワイヤーケーブルの接続端
子部を接続する方法の一つとして、平行導電路か
らなる相対向する接続端子部間に、各種電導性粒
子や導電性短繊維(一般に配向されている)を分
散配合してなる接着性有機高分子マトリツクスの
層を介在させて、接着接続する方法および構造が
知られている。
Traditionally, it has been used to connect the opposing drawer connection terminals of at least two printed circuit boards of the same or different types, or to connect the connection terminals of a flat wire cable opposite the connection terminals of the printed circuit boards. One method is to create a layer of an adhesive organic polymer matrix containing various conductive particles and short conductive fibers (generally oriented) dispersed between opposing connection terminals consisting of parallel conductive paths. There are known methods and structures for adhesively connecting the two.

しかしながら、上記導電性粒子や導電性短繊維
は、そのすべてを同じ粒径あるいは同り長さとす
ることが実質的に不可能で、したがつて、接続部
の対向接続端子間は該対向接続端子間に介在する
導電体粒子あるいは導電体繊維のうち、粒径ある
いは長さの分布の内で最も含有率の少ない方に属
する粒径の大きなもの、あるいは長さの長いもの
によつて対向端子間の距離が規制され、この粒径
または長さの大きい(長い)もののみによつて導
通が得られ粒度分布の大部分の割合を占める±σ
の範囲の導電性粒子あるいは導電性繊維は直接導
通に関与しないため、導通密度が小さく、従つて
対向する端子の水平投影面が重なり合う、換言す
れば端子の接続のための対向面積の大きいところ
でしか信頼度の高い電気的接続が得られず、その
結果上記した接続方法では実装密度が上らず、小
間隔端子配列には不適で、しかも固化後の有機高
分子マトリツクスとそれに含まれる導電性粒子あ
るいは導電性短繊維との間には熱膨張に差がある
ため、その接触状態は熱変化に対して極めて不安
定であつて電気的接続の信頼性が低いものであつ
た。
However, it is virtually impossible to make all of the above-mentioned conductive particles and conductive short fibers have the same particle size or the same length. Among the conductive particles or conductive fibers interposed between them, those with large particle sizes or long ones that belong to the smallest content in the particle size or length distribution are used to connect opposing terminals. The distance is regulated, and conduction is obtained only by particles with a large (long) diameter or length, and ±σ accounts for the majority of the particle size distribution.
Conductive particles or conductive fibers in the range of A highly reliable electrical connection cannot be obtained, and as a result, the above-mentioned connection method does not increase the packaging density, is not suitable for small-spaced terminal arrangements, and, moreover, the organic polymer matrix and the conductive particles contained therein after solidification cannot be obtained. In addition, since there is a difference in thermal expansion between the conductive short fibers, the contact state is extremely unstable against thermal changes, and the reliability of electrical connection is low.

本発明はかかる不利、欠点を解決するべく提案
された新規かつ改良された電気接続構造に関する
ものであつて、これは相対向する。回路基板上の
接続端子部および/または部品の接続端子間を、
接着性有機高分子マトリツクス中に該マトリツク
ス100容量部に対し0.05〜40容量部の導電性粉粒
体を分散配合してなる異方導電体層を介して電気
的に接続してなる接続構造であつて、上記接続端
子部の少なくとも一方の接続端子の表面を250℃
以下の熱的変態点を有する材質をもつて構成し、
上記導電性粉粒体を上記材質に喰込ませてなるこ
とを特徴とするものであり、本発明はまた上記の
ような電気接続構造を得るための接続方法を提供
するものであつて、これは少なくとも一方の接続
端子部の端子の表面を250℃以下の熱的変態点を
有する材質をもつて構成してなる、相対向する回
路基板および/または部品の該接続端子部間に、
接着性有機高分子マトリツクス中に該マトリツク
ス100容量部に対し0.05〜40容量部の導電性粉粒
体を分散配合してなるフイルムないしシート状成
形体を配置し、該接続端子部間を250℃以下の温
度下に加圧して該マトリツクスを塑性流動させ、
上記導電性粉粒体を上記端子の少なくとも裏面に
喰込ませた後冷却固化させるとを特徴とするもの
である。
The present invention relates to a new and improved electrical connection structure proposed to overcome these disadvantages and drawbacks. Connect the connection terminals on the circuit board and/or between the connection terminals of the components.
A connection structure in which 0.05 to 40 parts by volume of conductive powder is dispersed in an adhesive organic polymer matrix and electrically connected via an anisotropic conductor layer, which is made by dispersing 0.05 to 40 parts by volume of conductive powder per 100 parts by volume of the matrix. Heat the surface of at least one of the connection terminals above to 250℃.
Consisting of a material with the following thermal transformation point,
The present invention is characterized in that the above-mentioned conductive powder is embedded in the above-mentioned material, and the present invention also provides a connection method for obtaining the above-mentioned electrical connection structure. between the connecting terminal portions of opposing circuit boards and/or components, where the terminal surface of at least one of the connecting terminal portions is made of a material having a thermal transformation point of 250°C or less,
A film or sheet-like molded product made by dispersing 0.05 to 40 parts by volume of conductive powder per 100 parts by volume of the matrix in an adhesive organic polymer matrix is placed, and the temperature between the connecting terminals is kept at 250°C. The matrix is made to plastically flow by applying pressure at a temperature of:
The method is characterized in that the conductive powder is bitten into at least the back surface of the terminal and then cooled and solidified.

以下、本発明を詳細に説明すると、本発明の接
続構造は相対向する同種または異種のプリント回
路基板間の接続はもとより、これら各プリント基
板に対する各種回路部品の接続のほか、これら部
品間の接続にも適用できるもので、特に本発明で
いう部品の内には、ICパツケージ、ICキヤリア、
その他各種半導体装置あるいは素子、あるいはセ
ラミツク素子などのいわゆる回路部品、回路素子
の他に、液晶、EL、LED等の各種表示装置ない
し素子、さらにはフラツトワイヤーケーブル等が
含まれ、この部品は部品の表面に平行導電体路か
らなる引出接続端子部を設けてなるものおび複数
のリード線あるいはリード端子を有するいわゆる
有端子部品のいずれもが含まれるのである。
The present invention will be described in detail below.The connection structure of the present invention is applicable not only to connections between opposing printed circuit boards of the same or different types, but also to connections between various circuit components to each of these printed circuit boards, as well as connections between these components. In particular, the parts referred to in the present invention include IC packages, IC carriers,
In addition to various other semiconductor devices or elements, so-called circuit parts such as ceramic elements, and circuit elements, various display devices or elements such as liquid crystal, EL, and LED, and even flat wire cables are included. This includes both those in which a lead-out connection terminal portion consisting of parallel conductor paths is provided on the surface of the device, and so-called terminal-containing components having a plurality of lead wires or lead terminals.

まず、本発明において各種プリント回路基板上
の引出接続端子および/または部品の接続端子
は、相対向する端子の少なくとも一方が少なくと
もその表面が250℃以下の熱的変態点を有する材
質で構成する必要があるが、これには例えば錫
(溶点232℃)、ハンダ(溶点183℃)等の低溶点金
属ないし合金、金属粉末、カーボンブラツク、
グラフアイト等の導電体粉粒体をフイラーとした
導電性ペースト、導電性インク、導電性塗料、導
電性接着剤からなるもの、あるいは、従来公知
の端子部材、たとえば(c−1)銅、アルミニウ
ム、ニツケル等の金属箔と、紙、ガラス繊維など
の充填材で複合強化されたフエノール樹脂、エポ
キシ樹脂、ポリアミド樹脂、ジアリルフタレート
樹脂、ポリイミド樹脂、あるいは他の化合物を添
加ないし化合させてなる変性樹脂等からなる強化
積層樹脂板をエツチングして得た導電路、または
(c−2)上記の金属箔と、トリアジン樹脂、ポ
リイミド、ポリエチレンテレフタレート等のフイ
ルムとの積層樹脂板をエツチングして得た端子、
あるいは(c−3)この端子に必要に応じて金、
白金等の貴属めつきを施した端子の他、(c−4)
上記積層樹脂板にアルミニウム、銅などを蒸着し
た後エツチングして得た端子、あるいは(c−
5)この端子に上記と同様のめつきを施してなる
端子等の表面に上記した、からなるものを被
覆したものから構成される。
First, in the present invention, at least one of the drawer connection terminals on various printed circuit boards and/or the connection terminals of components must be made of a material having a thermal transformation point of 250°C or less on at least the surface thereof. These include, for example, low melting point metals or alloys such as tin (melting point 232°C), solder (melting point 183°C), metal powder, carbon black,
A conductive paste containing conductive powder such as graphite as a filler, a conductive ink, a conductive paint, a conductive adhesive, or a conventionally known terminal member, such as (c-1) copper, aluminum Modified resins made by adding or combining phenolic resins, epoxy resins, polyamide resins, diallyl phthalate resins, polyimide resins, or other compounds compositely reinforced with metal foils such as , nickel, and fillers such as paper and glass fibers. or (c-2) a terminal obtained by etching a laminated resin plate of the above metal foil and a film of triazine resin, polyimide, polyethylene terephthalate, etc. ,
Or (c-3) If necessary, add gold to this terminal.
In addition to terminals plated with precious metals such as platinum, (c-4)
A terminal obtained by vapor-depositing aluminum, copper, etc. on the laminated resin plate and etching it, or (c-
5) This terminal is formed by plating the same as above, and the surface thereof is coated with the above-mentioned material.

上記接続端子は通常これを回路基板表面あるい
は部品の表面に密に平行配列して、一括して接
着、接続する場合、その厚みは少なくとも2〜
3μm以上あればよく、またそれが塗膜あるいは
銅箔等で構成された10〜40μmの厚みのものは、
その隣接間隙が100μm以上あれば、DC500V印加
で2000MΩ、1分間の絶縁体力を有する。
When the above connection terminals are normally arranged closely parallel to the surface of a circuit board or component and bonded and connected all at once, the thickness of the connection terminals is at least 2 to 2 mm.
It is sufficient if it is 3 μm or more, and if it is made of a coating film or copper foil, etc. and has a thickness of 10 to 40 μm,
If the adjacent gap is 100 μm or more, it will have an insulating force of 2000 MΩ for 1 minute when DC 500 V is applied.

一方、本発明における接着性有機高分子マトリ
ツクスは、たとえばポリアミド、ポリエチレン、
ポリプロピレン、ポリ酢酸ビニル、ポリメチルメ
タアクリレート、ポリエステル、ポリウレタン、
あるいはこれらの共配合、共重合、またはエポキ
シ樹脂、フエノール樹脂、ウレタン樹脂、未硬化
ニトリルゴム、未硬化ブチルゴム、未硬化クロロ
プレンゴム、未硬化シリコーンゴムあるいはこれ
ら熱可塑性樹脂、熱硬化性樹脂、ゴム状体等を2
種以上含む変性樹脂等を、ホツトメルト接着性組
成物、粘着組成物等の形態として選ばれ、必要に
応じて添加される、硬化剤、架橋剤、その助剤、
補強充填剤、顔料、安定剤、チタン有機化合物、
シラン化合物等のカツプリング剤、増粘剤等を含
むことができ、250℃以下好ましくは250℃〜60℃
の範囲で塑性流動するものとされる。
On the other hand, the adhesive organic polymer matrix in the present invention is made of, for example, polyamide, polyethylene,
Polypropylene, polyvinyl acetate, polymethyl methacrylate, polyester, polyurethane,
Or co-blending, copolymerization, or epoxy resin, phenolic resin, urethane resin, uncured nitrile rubber, uncured butyl rubber, uncured chloroprene rubber, uncured silicone rubber, or these thermoplastic resins, thermosetting resins, rubber-like body etc. 2
A curing agent, a crosslinking agent, an auxiliary agent thereof, which is selected as a form of a hot melt adhesive composition, a pressure-sensitive adhesive composition, etc., containing at least one modified resin, etc., and added as necessary.
reinforcing fillers, pigments, stabilizers, titanium organic compounds,
Can contain coupling agents such as silane compounds, thickeners, etc., below 250°C, preferably between 250°C and 60°C
Plastic flow is assumed to occur within the range of .

上記接着性有機高分子マトリツクスには、導電
性粉粒体として、金、銀、銅、アルミニウム、ニ
ツケル、タングステン、チタン、コバルトあるい
はこれらを含す合金、タングステンカーバイド、
チタンカーバイド、ニツケルカルボニル等の導電
性金属化合物単体の粉粒を分散配合したもの、あ
るいは上記金属粉粒体やカーボンブラツクを導電
性付与剤として、これらを熱硬化性樹脂マトリツ
クスあるいは高融点熱可塑性樹脂マトリツクス、
たとえばフエノール樹脂、エポキシ樹脂、シリコ
ーン樹脂あるいはこれらの変性樹脂、6−6ナイ
ロン、ポリエチレンテレフタレート、ポリアミド
イミド、ポリカーボネート、ポリアセタール、ポ
リエーテル、ポリアリレート、ポリアクリロニト
リル等に分散配合し、その比抵抗を10-4〜102
Ω・cmの導電性を有する成形体としたのち、これ
を粉砕して粉粒体としたもの、さらには導電性有
機金属化合物、導電性有機高分子物質、その他人
造グラフアイト等の粉粒体の0.5〜2000μmの粒径
から、たとえば400メツシユパス平均粒径7μm、
1μm〜325メツシユパス平均粒径10μmとしたも
のが適宜選択される。
The adhesive organic polymer matrix may include gold, silver, copper, aluminum, nickel, tungsten, titanium, cobalt or alloys containing these, tungsten carbide,
A mixture of dispersed particles of a single conductive metal compound such as titanium carbide and nickel carbonyl, or a thermosetting resin matrix or a high melting point thermoplastic resin using the above-mentioned metal powder or carbon black as a conductivity imparting agent. matrix,
For example, phenol resin, epoxy resin, silicone resin, or modified resin thereof, 6-6 nylon, polyethylene terephthalate, polyamideimide, polycarbonate, polyacetal, polyether, polyarylate, polyacrylonitrile, etc. are dispersed and blended, and the specific resistance is reduced to 10 - 4 to 10 2
After forming a molded body with conductivity of Ω/cm, it is crushed into powder and granules, as well as powder and granules of conductive organometallic compounds, conductive organic polymer substances, and other artificial graphite. From the particle size of 0.5 to 2000 μm, for example, 400 mesh pass average particle size of 7 μm,
A particle having an average particle diameter of 1 μm to 325 mesh passes of 10 μm is appropriately selected.

上記した導電性粉粒体は、上記接着性有機高分
子マトリツクスに対する分散性、前記接着端子の
材質によつて適宜選択使用されるが、導電性粉粒
体の分散配合に際して、これが該有機高分子マト
リツクスの溶融状態もしくは、溶剤を加えた溶液
の状態で、溶融状態、溶液状態に融解ないし大き
く膨潤されないように導電性粉粒体と接着性有機
高分子マトリツクスとの相溶性を予じめ調べ、互
いに親和性の小さいもの同志の組合せを選択する
ように留意することが望ましい。
The conductive powder described above is appropriately selected and used depending on the dispersibility in the adhesive organic polymer matrix and the material of the adhesive terminal. Investigating the compatibility between the conductive powder and the adhesive organic polymer matrix in advance in a molten state of the matrix or in the state of a solution containing a solvent, so as not to melt or swell significantly in the molten state or solution state. It is desirable to take care to select combinations that have low affinity for each other.

上記接着性有機高分子マトリツクスに対する導
電性粉粒体の配合割合については、導電性粉粒体
を分散配合した際に導電性粉粒体が膨張したり、
溶融したりして接着性有機高分子マトリツクス自
体に導電性が付与されないよう(絶縁性を損なわ
ないよう)に、接着性有機高分子マトリツクス
100容量部に対して導電性粉粒体を0.05〜40容量
部、好ましくは0.5〜30容量部、さらに好ましく
は2〜25容量部とされる。なお、導電性粉粒体の
配合割合はその粉粒径の小さいものの分布割合が
多いもの程その配合割合を少なくできるが、しか
し0.05容量部より少ないと接続構造体の導通密度
が小さいものとなつて接続の信頼性が低くなり、
逆に40容量部を超えると、接続構造体を得るに際
して加熱加圧するとき、導電体性粉粒体間に横へ
の連鎖が生じやすく、隣接端子間の絶縁性維持が
困難になるという理由に基づいたものである。
Regarding the blending ratio of the conductive powder to the adhesive organic polymer matrix, the conductive powder may expand when the conductive powder is dispersed and blended.
The adhesive organic polymer matrix should be used to prevent it from melting and imparting conductivity to the adhesive organic polymer matrix itself (so as not to impair its insulation properties).
The amount of the conductive powder is 0.05 to 40 parts by volume, preferably 0.5 to 30 parts by volume, and more preferably 2 to 25 parts by volume per 100 parts by volume. The mixing ratio of the conductive powder can be reduced as the distribution ratio of the small particles increases, but if it is less than 0.05 part by volume, the conduction density of the connected structure will be low. connection becomes less reliable.
On the other hand, if the capacitance exceeds 40 parts, lateral chains tend to occur between the conductive particles when heating and pressurizing to obtain a connected structure, making it difficult to maintain insulation between adjacent terminals. It is based on

このようにして導電性粉粒体の分散配合された
接着性有機高分子マトリツクスは、本発明におい
ては通常、フイルム状ないしシート状に成形され
るか、あるいは塗膜の形態で接続端子部の表面に
形成される。このフイルム状ないしシート状成形
体は、導電性粉粒体の分散配合された接着性有機
高分子マトリツクスを離型剤が塗布されたプラス
チツクフイルムないしシートあるいは天然、合成
紙に塗布ないしトツピングすることにより容易に
得ることができ、これは通常該離型紙と共に種々
形状に裁断され、使用に際して該離型紙が引剥さ
れる。上記フイルム状ないしシート状成形体ある
いは塗膜の厚さは、その中に含まれる導電性粉粒
体の最大粒径より大きく、最大粒径の3倍以下、
好ましくは2倍以下、さらに好ましくは1.5倍以
下とされるが、これはその厚さが厚すぎると絶縁
性マトリツクスの層が熱圧時に接続端子部から流
出したり、はみ出しやすい状態になり、接続端子
間の導電性粒子の数を少なくするおそれがあるた
めである。
In the present invention, the adhesive organic polymer matrix in which the conductive particles are dispersed is usually formed into a film or sheet, or in the form of a coating on the surface of the connection terminal. is formed. This film-like or sheet-like molded product is produced by coating or topping a plastic film or sheet coated with a release agent or natural or synthetic paper with an adhesive organic polymer matrix in which conductive powder particles are dispersed. It can be easily obtained, and is usually cut into various shapes together with the release paper, and the release paper is peeled off before use. The thickness of the film-like or sheet-like molded product or coating film is larger than the maximum particle size of the conductive powder contained therein, and not more than 3 times the maximum particle size,
The thickness is preferably 2 times or less, and more preferably 1.5 times or less, but this is because if the thickness is too thick, the insulating matrix layer will easily flow out or protrude from the connection terminal part during hot pressing, resulting in poor connection. This is because there is a risk of reducing the number of conductive particles between the terminals.

しかして、本発明における導電性粉粒体を含む
接着性有機高分子マトリツクスからなるフイルム
状ないしシート状成形体あるいは塗膜は、250℃
以下、好ましくは60〜250℃の温度で、1〜10
Kg/cm2の圧力下に、塑性流動を起し、しかもその
接着性能が最も活性化状態にあることが望まし
く、これは60℃より低いものは温度試験で70℃程
度の温度試験に耐えにくく、また250℃を超える
ものはその加熱加圧下における接続作業時に接続
部より流動する有機高分子マトリツクスが空気に
触れて炭化し易く、この炭化物に起因して電気特
性が低下し、また近接して配置された他の電気回
路、回路素子あるいは部品に悪影響を及ぼす危険
があるからであり、上記温度範囲は好ましくは75
〜240℃、さらに好ましくは100〜220℃とするこ
とがよい。
Therefore, the film-like or sheet-like molded product or coating film made of the adhesive organic polymer matrix containing conductive powder or granules in the present invention can be heated at 250°C.
Below, preferably at a temperature of 60 to 250℃, 1 to 10
It is desirable that plastic flow occurs under a pressure of Kg/cm 2 , and that the adhesive performance is in the most activated state.It is difficult to withstand a temperature test of about 70°C if it is lower than 60°C. In addition, if the temperature exceeds 250℃, the organic polymer matrix flowing from the connection part during connection work under heat and pressure is likely to be carbonized when exposed to air, and the electrical properties will deteriorate due to this carbide. This is because there is a risk of adversely affecting other electrical circuits, circuit elements, or parts arranged, and the above temperature range is preferably 75°C.
The temperature is preferably 100 to 220°C, more preferably 100 to 220°C.

以下添加図面に基づいて本発明を説明する。 The present invention will be explained below based on the additional drawings.

第1図は2つの被接続体の接続前の斜視図を示
すものであり、第2図はこれら被接続体を接着接
続一体化してなる本発明になる電気接続体の平行
導電路に沿つて切断した一部切欠き拡大断面図、
第3図は該平行導電路に直交する方向に沿つて切
断した一部切欠き拡大断面図であり、図中10は
剛性を有するプリント回路基板の引出接続端子
部、20は剛性を有するプリント回路基板の接続
端子部であり、30は導電性粉粒体の分散配合さ
れた接着性有機高分子マトリツクスをもつてシー
ト状に成形された小片である。
Fig. 1 shows a perspective view of two objects to be connected before they are connected, and Fig. 2 shows a view along the parallel conductive path of an electrical connection object of the present invention in which these objects to be connected are integrated by adhesive bonding. A partially cutaway enlarged cross-sectional view,
FIG. 3 is a partially cutaway enlarged sectional view taken along a direction perpendicular to the parallel conductive path, in which 10 is a lead-out connection terminal portion of a rigid printed circuit board, and 20 is a rigid printed circuit. This is a connection terminal portion of the substrate, and 30 is a small piece formed into a sheet shape with an adhesive organic polymer matrix in which conductive powder is dispersed.

第1図〜第3図におけるプリント回路基板1
1,21はたとえば厚さ1.6mmのフエノールなど
の剛性合成樹脂基板の表面に、導電性ペーストあ
るいは導電性インク等からなる250℃以下の熱的
変態点を有する導電性粉粒体の分散配合された接
着性有機高分子マトリツクスからなる互いに平行
な引出端子12,22を配設してなるものであ
り、したがつて、この接続端子12,22は容易
に熱変形し得る。第1図〜第3図を示す電気接続
構造を得るには、第1図に示す状態から、回路基
板の接続端子部20を回路基板の引出接続端子部
10の相対向して近づけて密接し、ついで回路基
板の接続端子部20の背面に250℃前後に加熱し
た、金属性ホツトバー(こて)を押圧する。この
際、該ホツトバーはたとえば熱伝導性のすぐれた
硬度(JIS K 6301)20〜70で厚さが50〜500μ
mのシリコーンゴムシートを介在して押圧するこ
とがよく、該ホツトバーの熱により導電性粉粒体
の分散配合された接着性有機高分子マトリツクス
からなる小片30は塑性流動して、第3図に示す
ように接続端子12の間、および対向接続端子2
2間の空隙に密に充填されると共に、該有機高分
子マトリツクス31中に分散配合された導電性粉
粒体32は、上記こての圧力下に対向する接続端
子電極12,22の間に接触され、この際回路基
板21およびその接続端子22はその剛性のうえ
に変形せず導電性粉粒体を押圧移動させ、接続端
子12,22に喰込み、粉粒径の小さいもの迄、
相対向する接続端子12,22の導通に関与する
ので上記導電性粉粒体32の粒径が不揃いである
にもかかわらず、より多くの導電性粉粒体が対向
接続端子12,22間の電気的接続に関与させる
ことができる。
Printed circuit board 1 in Figures 1 to 3
Nos. 1 and 21, for example, are made by dispersing and blending conductive powder or granules having a thermal transformation point of 250°C or less made of conductive paste or conductive ink on the surface of a rigid synthetic resin substrate such as phenol with a thickness of 1.6 mm. The connection terminals 12 and 22 are arranged parallel to each other and made of an adhesive organic polymer matrix, and therefore, these connection terminals 12 and 22 can be easily deformed by heat. In order to obtain the electrical connection structure shown in FIGS. 1 to 3, from the state shown in FIG. Then, a metal hot bar (trowel) heated to about 250° C. is pressed against the back side of the connection terminal portion 20 of the circuit board. In this case, the hot bar has a hardness of 20 to 70 (JIS K 6301) with excellent thermal conductivity and a thickness of 50 to 500 μm.
The small piece 30 made of the adhesive organic polymer matrix in which the conductive powder is dispersed is plastically fluidized by the heat of the hot bar, as shown in FIG. As shown, between the connection terminals 12 and the opposite connection terminal 2
The conductive powder 32 that is densely filled in the gap between the two and dispersed in the organic polymer matrix 31 is heated between the connecting terminal electrodes 12 and 22 facing each other under the pressure of the trowel. At this time, the circuit board 21 and its connecting terminals 22 do not deform due to their rigidity, and press and move the conductive powder, bite into the connecting terminals 12, 22, and even particles with small diameter
Since the conductive powder 32 is involved in the conduction between the opposing connection terminals 12 and 22, even though the particle diameters of the conductive powder 32 are uneven, more of the conductive powder is connected between the opposing connection terminals 12 and 22. Can be involved in electrical connections.

上記のようにして加熱したこてを押し当てて、
一定時間の経過後に接着性有機高分子マトリツク
スの塑性流動を確認したら、該こてを取除けばよ
く、該接着性有機高分子マトリツクスは冷却硬化
して本発明になる電気的接続構造を得ることがで
きる。
Press the heated iron as above,
After confirming the plastic flow of the adhesive organic polymer matrix after a certain period of time, the trowel may be removed, and the adhesive organic polymer matrix is cooled and hardened to obtain the electrical connection structure of the present invention. Can be done.

第4図は、本発明はなる電気接続構造の他の実
施態様を示すもので、これはやはり剛性の基板1
1上に、導電性ペーストあるいはインクの被膜1
2aを有する銅箔などからなる引出端子電極12
bを設けたプリント回路基板の接続端子部10
と、可撓性フイルム上に導電性インクからなる接
続端子電極22bを印刷成形してなるプリント回
路基板21の接続端子部20を接着接続してなる
ものであつて、ここではそれぞれ粒径の異なるよ
り多くの導電性粉粒体32が、相対向する接続端
子電極12b,22bの双方に喰込んで電気的接
続が達成されている。
FIG. 4 shows another embodiment of the electrical connection structure of the present invention, which also includes a rigid substrate 1.
1, a conductive paste or ink coating 1
Output terminal electrode 12 made of copper foil or the like having 2a
Connecting terminal section 10 of a printed circuit board provided with b
and a connecting terminal portion 20 of a printed circuit board 21 which is formed by printing and molding a connecting terminal electrode 22b made of conductive ink on a flexible film. More of the conductive powder 32 bites into both of the opposing connection terminal electrodes 12b, 22b to achieve electrical connection.

第5図はさらに他の実施態様を示すものであつ
て、これはポリエステルシートなどからなる可撓
性基板11上に導電性ペーストあるいはインクか
らなる引出端子電極12bを設けた可撓性プリン
ト回路基板の接続端子部10とポリイミドなどか
らなる可撓性基板上に銅箔などからなる可撓性接
続端子22を設けた可撓性プリント基板21の接
続端子20との接続構造である。
FIG. 5 shows still another embodiment, which is a flexible printed circuit board in which a lead terminal electrode 12b made of conductive paste or ink is provided on a flexible substrate 11 made of a polyester sheet or the like. This is a connection structure between the connecting terminal portion 10 of the flexible printed circuit board 21 and the connecting terminal 20 of a flexible printed circuit board 21 in which a flexible connecting terminal 22 made of copper foil or the like is provided on a flexible substrate made of polyimide or the like.

以上説明した通り、本発明の接続構造並びに接
続方法は、プリント回路基板上の接続端子部およ
び/または部品の接続端子部間を、接着性有機高
分子マトリツクス中に導電性粉粒体を分散配合し
てなる絶縁性物質の層を介して電気的に接続して
なる接続構造において、上記導電性粉粒体を対向
する接続端子電極の表面内に喰込ませてなるもの
であるから、上記導電性粉粒体のそれぞれに粉粒
径の違いがあるとしても、より多くのものをその
電気的接続に関与させることができるので接続密
度が高く、したがつてより信頼度の高い電気的接
続を達成できるので、その実用的価値はすこぶる
大きい。
As explained above, the connection structure and connection method of the present invention include dispersing and blending conductive powder in an adhesive organic polymer matrix between connection terminals on a printed circuit board and/or between connection terminals of components. In the connection structure formed by electrically connecting through a layer of an insulating material, the conductive powder is embedded into the surface of the opposing connection terminal electrode. Even if the particles have different particle sizes, more particles can be involved in the electrical connection, resulting in a higher connection density and therefore a more reliable electrical connection. Since it can be achieved, its practical value is enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明になる接続構造の代表
的実施態様を示すものであつて、第1図は接続前
の2つの被接続体の斜視図、第2図はその接続後
の平行導電路に沿う一部切欠き拡大断面図、第3
図は該平行導電路に直交する方向に沿う一部切欠
き断面図である。第4図、第5図は本発明になる
接続構造のそれぞれ異なる他の代表的実施態様の
断面図である。 10,20……接続端子部、11,21……基
板、12,22……接続端子、30……接着性有
機高分子成形体、31……有機高分子マトリツク
ス、32……導電性粉粒体。
1 to 3 show typical embodiments of the connection structure according to the present invention, in which FIG. 1 is a perspective view of two connected objects before connection, and FIG. 2 is a perspective view of two connected objects after connection. Partially cutaway enlarged sectional view along the parallel conductive path, 3rd
The figure is a partially cutaway cross-sectional view along a direction perpendicular to the parallel conductive paths. FIGS. 4 and 5 are cross-sectional views of other different representative embodiments of the connection structure according to the present invention. 10, 20... Connection terminal portion, 11, 21... Substrate, 12, 22... Connection terminal, 30... Adhesive organic polymer molded body, 31... Organic polymer matrix, 32... Conductive powder particles body.

Claims (1)

【特許請求の範囲】 1 相対向する、回路基板上の接続端子部およ
び/または部品の接続端子部間を、接着性有機高
分子マトリツクス中に該マトリツクス100容量部
に対し0.05〜40容量部の導電性粉粒体を分散配合
してなる異方導電体層を介して電気的に接続して
なる接続構造であつて、上記接続端子部の少なく
とも一方の接続端子の表面を250℃以下の熱的変
態点を有する材質をもつて構成し、上記導電性粉
粒体を上記材質に喰込ませてなることを特徴とす
る電気接続構造。 2 少なくとも一方の接続端子部の端子の表面を
250℃以下の熱的変態点を有する材質をもつて構
成してなる、相対向する回路基板および/または
部品の該接続端子部間に、接着性有機高分子マト
リツクス中に該マトリツクス100容量部に対し
0.05〜40容量部の導電性粉粒体を分散配合してな
るフイルムないしシート状成形体を配置し、該接
続端子部間を250℃以下の温度下に加圧して該マ
トリツクスを塑性流動させ、上記導電性粉粒体を
上記端子の少なくとも裏面に喰込ませた後冷却固
化させることを特徴とする電気接続方法。
[Claims] 1. Connecting terminals on circuit boards and/or connecting terminals of components facing each other in an adhesive organic polymer matrix containing 0.05 to 40 parts by volume per 100 parts by volume of the matrix. A connection structure in which electrical connection is made through an anisotropic conductor layer made by dispersing and blending conductive powder, and the surface of at least one of the connection terminals is heated to a temperature of 250°C or less. 1. An electrical connection structure characterized in that the structure is made of a material having a transformation point, and the conductive powder is embedded in the material. 2. Touch the surface of the terminal of at least one of the connection terminals.
100 parts by volume of the matrix in an adhesive organic polymer matrix between the connecting terminals of opposing circuit boards and/or components made of a material having a thermal transformation point of 250°C or less. Against
A film or sheet-like molded body made by dispersing 0.05 to 40 parts by volume of conductive powder or granules is arranged, and pressure is applied between the connecting terminals at a temperature of 250°C or less to cause the matrix to plastically flow, An electrical connection method characterized in that the conductive powder is bitten into at least the back surface of the terminal and then cooled and solidified.
JP21531681A 1981-12-28 1981-12-28 Electrically connecting structure and method of electrically connecting same Granted JPS58115779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21531681A JPS58115779A (en) 1981-12-28 1981-12-28 Electrically connecting structure and method of electrically connecting same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21531681A JPS58115779A (en) 1981-12-28 1981-12-28 Electrically connecting structure and method of electrically connecting same

Publications (2)

Publication Number Publication Date
JPS58115779A JPS58115779A (en) 1983-07-09
JPH0226346B2 true JPH0226346B2 (en) 1990-06-08

Family

ID=16670289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21531681A Granted JPS58115779A (en) 1981-12-28 1981-12-28 Electrically connecting structure and method of electrically connecting same

Country Status (1)

Country Link
JP (1) JPS58115779A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133677A (en) * 1983-12-21 1985-07-16 株式会社精工舎 Heat fusion-bonding connection cable
JPS60140685A (en) * 1983-12-28 1985-07-25 日本写真印刷株式会社 Filmlike electrode connector and method of producing same
JPS60170177A (en) * 1984-02-13 1985-09-03 日本黒鉛工業株式会社 Conductive anisotropic heat seal connector member
JPS60177576A (en) * 1984-02-23 1985-09-11 シャープ株式会社 Method of connecting liquid crystal display element
JPS6164085A (en) * 1984-09-04 1986-04-02 ダイソー株式会社 Electric member
JPS61195568A (en) * 1985-02-25 1986-08-29 松下電器産業株式会社 Film connector
JPS61195569A (en) * 1985-02-25 1986-08-29 松下電器産業株式会社 Film connector and manufacture thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121192A (en) * 1974-08-14 1976-02-20 Seikosha Kk DODENSEISETSU CHAKUSHIITO
JPS5259889A (en) * 1975-11-13 1977-05-17 Seiko Epson Corp Sticking conductivity anisotropy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55153780U (en) * 1979-04-20 1980-11-06

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121192A (en) * 1974-08-14 1976-02-20 Seikosha Kk DODENSEISETSU CHAKUSHIITO
JPS5259889A (en) * 1975-11-13 1977-05-17 Seiko Epson Corp Sticking conductivity anisotropy

Also Published As

Publication number Publication date
JPS58115779A (en) 1983-07-09

Similar Documents

Publication Publication Date Title
DE69716270T2 (en) ADHESIVE FILM FOR CONNECTING A CIRCUIT AND A PCB
EP0613590B1 (en) Die mounting with uniaxial conductive adhesive
US5302456A (en) Anisotropic conductive material and method for connecting integrated circuit element by using the anisotropic conductive material
CN101669258B (en) The method of attachment of electric conductor, conductor connection member, syndeton and solar module
US5084211A (en) Anisotropically electroconductive adhesive
US20040108133A1 (en) Elastic conductive resin, and electronic device including elastic conductive bumps made of the elastic conductive resin
KR20020034075A (en) Conductive adhesive, apparatus for mounting electronic component, and method for mounting the same
JPH0831350B2 (en) Manufacturing method of conductive anisotropic heat seal connector member for fine pitch
JP7513430B2 (en) Method for manufacturing joined body, joined body, and conductive particle-containing hot melt adhesive sheet
JPH0623349B2 (en) Anisotropic conductive adhesive
JPH0226346B2 (en)
JP2010251336A (en) Anisotropic conductive film and method for manufacturing connection structure using the same
JP4661914B2 (en) Electrode connection method
JPH06333965A (en) Anisotropic conductive adhesive sheet
JPH041476B2 (en)
JPS6331904B2 (en)
JP4282097B2 (en) Circuit board connection method, connection structure, and adhesive film used therefor
JP2836337B2 (en) Anisotropic conductive resin film adhesive
JPH0197382A (en) Anisotropic conductive connector and its manufacture
JPS60140790A (en) Coupling sheet
JPH08273441A (en) Anisotropic electric conduction film and its preparation
JPS58111202A (en) Thermal pressure conductive composition and connecting structure member
JPS61171009A (en) Anisotropic conductive sheet
JP6431572B2 (en) Connection film, connection film manufacturing method, connection structure, connection structure manufacturing method, and connection method
JPS62115678A (en) Connector