JPH02260653A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPH02260653A
JPH02260653A JP8349789A JP8349789A JPH02260653A JP H02260653 A JPH02260653 A JP H02260653A JP 8349789 A JP8349789 A JP 8349789A JP 8349789 A JP8349789 A JP 8349789A JP H02260653 A JPH02260653 A JP H02260653A
Authority
JP
Japan
Prior art keywords
region
film
active base
base region
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8349789A
Other languages
Japanese (ja)
Inventor
Toru Yamaoka
徹 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP8349789A priority Critical patent/JPH02260653A/en
Publication of JPH02260653A publication Critical patent/JPH02260653A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To form a highly reliable semiconductor integrated circuit by a method wherein a silicon oxide film and a silicon nitride film are continuously grown to form a composite film and an active base region is protected with the composite film from plasma damage. CONSTITUTION:A composite film formed by growing continuously a silicon oxide film 22 and a silicon nitride film 23, which are formed by performing a selective etching or the like, is formed on an active base region of a lateral P-N-P transistor and moreover, a silicon oxide film 9 is selectively formed. Then, a continuously grown polycrystalline silicon film is selectively etched to form gate electrodes 10 and electrodes 24, with which the active base region is covered. After that, an emitter region, a collector region and the like are formed by an impurity implantation to form a bipolar transistor and the like. Thereby, the active base region is protected by the comsite film from damage due to plasma during production, a recombined current is inhibited and a reduction in a current amplification factor is prevented. Moreover, depletion and inversion of the vicinity of the surface of the active base region are prevented and a high-reliability semiconductor integrated circuit, in which there is no leakage current between the emitter and the collector, is formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、同一半導体基板内にバイポーラトランジスタ
とMOSトランジスタを形成する半導体集積回路の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor integrated circuit in which a bipolar transistor and a MOS transistor are formed within the same semiconductor substrate.

従来の技術 近年、半導体集積回路の高速化やアナログ・デジタル共
存機能が望まれ、バイポーラトランジスタとCMO8(
相補型Mo5)トランジスタを同一基板内に集積化した
B i −CMO3集債回路が注目されている。とりわ
け高性能のアナログ回路をデジタル回路と1チツプに集
積するために高性能のpnp トランジスタがnpnト
ランジスタ及びMOS トランジスタと共存するB i
 −CMO8集精回路装置の実現が望まれている。従来
のBi−CMO3集積回路装置は第2図aに示すような
構造をしていた。以下、第2図aを参照して従来のB 
i −CMO8集積回路装置の構造とその製造方法の一
例について説明する。
Conventional technology In recent years, there has been a desire for higher speed semiconductor integrated circuits and coexistence of analog and digital functions, and bipolar transistors and CMO8 (
A B i -CMO3 collector circuit in which complementary Mo5) transistors are integrated on the same substrate is attracting attention. In particular, in order to integrate high-performance analog circuits with digital circuits on one chip, high-performance PNP transistors coexist with NPN transistors and MOS transistors.
- It is desired to realize a CMO8 integrated circuit device. A conventional Bi-CMO3 integrated circuit device had a structure as shown in FIG. 2a. Hereinafter, with reference to FIG. 2a, the conventional B
An example of the structure of an i-CMO8 integrated circuit device and its manufacturing method will be described.

まず、n型埋め込み領域2,21及びn型埋め込み領域
3,31が選択的に形成されたp型単結晶シリコン基板
1の上に比抵抗が1〜5Ωcmのn型またはp型のシリ
コンエピタキシャル層4を形成し、n型埋め込み領域2
,21の上にはこれにつながるnウェル領域5を、また
、n型埋め込み領域3の上にはこれにつながる分離領域
6を形成し、n型埋め込み領域31の上にはnウェル領
域7を形成する。さらに選択酸化法により、厚いシリコ
ン酸化膜8を成長させ、素子間を分離する。
First, an n-type or p-type silicon epitaxial layer having a resistivity of 1 to 5 Ωcm is formed on a p-type single crystal silicon substrate 1 on which n-type buried regions 2 and 21 and n-type buried regions 3 and 31 are selectively formed. 4 and n-type buried region 2
, 21 are formed with an n-well region 5 connected thereto, above the n-type buried region 3 with an isolation region 6 connected therewith, and above the n-type buried region 31 with an n-well region 7 formed. Form. Furthermore, by selective oxidation, a thick silicon oxide film 8 is grown to isolate the elements.

さらにゲート酸化膜となる薄いシリコン酸化膜9を形成
し、この上に多結晶シリコン膜などを選択的に形成して
ゲート電極10を形成する。次にn型の不純物を選択的
にイオン注入してnチャネルMOS トランジスタのn
−ソース領域11及びn−ドレイン領域111とし、シ
リコン酸化膜などによりゲート電極10に側壁12を形
成した後、n型の不純物を選択的にイオン注入してnチ
ャネルMOSトランジスタのn+ソース領域13及びn
+ドレイン領域113とすることにより、nチャネルM
OS トランジスタのLDD構造を形成すると同時に横
型pnpトランジスタのベースコンタクト領域14を形
成する。さらに、p型の不純物を選択的にイオン注入し
てpチャネルMOSトランジスタのp+ソース領域15
及びp+ドレイン領域115を形成すると同時に横型p
npトランジスタのエミッタ領域16及びコレクタ領域
17を形成する。
Furthermore, a thin silicon oxide film 9 to be a gate oxide film is formed, and a polycrystalline silicon film or the like is selectively formed on this film to form a gate electrode 10. Next, n-type impurities are selectively ion-implanted to form an n-channel MOS transistor.
- After forming a source region 11 and an n- drain region 111 and forming a side wall 12 on the gate electrode 10 using a silicon oxide film or the like, n-type impurities are selectively ion-implanted to form an n+ source region 13 and an n-channel MOS transistor. n
+ drain region 113, n-channel M
At the same time as forming the LDD structure of the OS transistor, the base contact region 14 of the lateral pnp transistor is formed. Furthermore, p-type impurity is selectively ion-implanted to form the p+ source region 15 of the p-channel MOS transistor.
and p+ drain region 115, and at the same time the lateral p+
An emitter region 16 and collector region 17 of an np transistor are formed.

第2図すは第2図aに示された半導体集積回路装置のう
ちの横型pnpトランジスタの平面図である。18.1
9.20はそれぞれ横型pnpトランジスタのエミッタ
、ベース、コレクタに対するコンタクト窓であり、26
は横型pnp トランジスタの活性ベース領域である。
FIG. 2 is a plan view of a lateral pnp transistor of the semiconductor integrated circuit device shown in FIG. 2a. 18.1
9.20 are the contact windows for the emitter, base, and collector of the lateral pnp transistor, respectively, and 26
is the active base region of the lateral pnp transistor.

発明が解決しようどする課題 この様な従来の半導体集積回路の製造方法では横型pn
p トランジスタの活性ベース領域26に製造途中工程
で再結合電流増加の原因となるプラズマダメージが入り
やすく、余分なベース電流の増加により電流増幅率が減
少するという欠点を有していた。また横型pnpトラン
ジスタの活性ベース領域26の表面電位が安定化されな
いために、活性ベース領域の表面近傍の空乏化及び反転
が生じやす(なり、エミッタコレクタ間のリーク電流が
増大し、素子の信頼性が低下するという欠点を有してい
た。本発明はこのような上記従来の課題を解決するもの
で、製造途中工程のプラズマダメージから活性ベース領
域1を保護して再結合電流の増加を抑制し、電流増幅率
の低下を防止するものである。更に、活性ベース領域の
表面電位を安定化することにより、活性ベース領域の表
面近傍の空乏化及び反転を防いでエミッタコレクタ間の
リーク電流を防止した信頼性の高い半導体集積回路の製
造方法を提供することを目的とする。
Problems to be Solved by the Invention In the conventional manufacturing method of semiconductor integrated circuits, horizontal pn
The active base region 26 of the p-transistor is prone to plasma damage that causes an increase in recombination current during the manufacturing process, and the current amplification factor decreases due to the excess base current increase. Furthermore, since the surface potential of the active base region 26 of the lateral pnp transistor is not stabilized, depletion and inversion near the surface of the active base region are likely to occur (this increases leakage current between the emitter and collector, reducing the reliability of the device). The present invention solves the above-mentioned conventional problems by protecting the active base region 1 from plasma damage during the manufacturing process and suppressing the increase in recombination current. This prevents the current amplification factor from decreasing.Furthermore, by stabilizing the surface potential of the active base region, it prevents depletion and inversion near the surface of the active base region, thereby preventing leakage current between the emitter and collector. The purpose of the present invention is to provide a method for manufacturing a highly reliable semiconductor integrated circuit.

課題を解決するための手段 これらの課題を解決するために本発明の半導体集積回路
の製造方法は、薄い酸化膜と窒化膜を連続して成長し複
合膜を設ける工程と、前記複合膜を選択的に除去して少
なくともバイポーラトランジスタとなる領域上に前記複
合膜を残留させる工程と、ゲート酸化膜と多結晶シリコ
ン膜を連続的に成長した後前記多結晶シリコン膜を選択
的にエツチングしてMOSトランジスタのゲート電極と
同時に横型バイポーラトランジスタの活性ベース領域上
に電極を形成する工程と、前記電極をマスクにして不純
物を注入してMOSトランジスタのソース領域及びドレ
イン領域と横型バイポーラトランジスタのエミッタ領域
及びコレクタ領域を同時に形成する工程と、横型バイポ
ーラトランジスタのエミッタと前記活性ベース領域上の
電極を電気的に接続する工程を有している。
Means for Solving the Problems In order to solve these problems, the method for manufacturing a semiconductor integrated circuit of the present invention includes a step of successively growing a thin oxide film and a nitride film to form a composite film, and selecting the composite film. a step of leaving the composite film on at least a region that will become a bipolar transistor; and a step of successively growing a gate oxide film and a polycrystalline silicon film and then selectively etching the polycrystalline silicon film to form a MOS. A step of forming an electrode on the active base region of the lateral bipolar transistor at the same time as the gate electrode of the transistor, and implanting impurities using the electrode as a mask to form the source region and drain region of the MOS transistor and the emitter region and collector of the lateral bipolar transistor. and electrically connecting the emitter of the lateral bipolar transistor and the electrode on the active base region.

作用 この構成により、横型pnp トランジスタの活性ベー
ス領域はMOS トランジスタのゲート電極として用い
る導電膜で覆われているために活性ベース領域に製造途
中工程で再結合電流の原因となるプラズマダメージが入
るのを防げるので、余分なベース電流の増加による電流
増幅率の低下を抑制することができる。また横型pnp
トランジスタの活性ベース領域の表面電位を安定化する
ことができ、活性ベース表面近傍の空乏化及び反転を防
げるのでエミッタコレクタ間のリーク電流の増加を防ぐ
ことができ、信頼性の低下を抑制することができる。
Effect: With this configuration, the active base region of the lateral pnp transistor is covered with a conductive film used as the gate electrode of the MOS transistor, so it is possible to prevent plasma damage that causes recombination current from entering the active base region during the manufacturing process. Therefore, it is possible to suppress a decrease in current amplification factor due to an increase in excess base current. Also horizontal pnp
The surface potential of the active base region of the transistor can be stabilized, and depletion and inversion near the surface of the active base can be prevented, thereby preventing an increase in leakage current between the emitter and collector, thereby suppressing a decrease in reliability. I can do it.

実施例 本発明の一実施例について第1図a−eの断面図と第1
図fの平面図を参照しながら説明する。
Embodiment Regarding an embodiment of the present invention, cross-sectional views of FIGS.
This will be explained with reference to the plan view of FIG. f.

まず第1図aのように、n型埋め込み領域2゜21及び
n型埋め込み領域3,31が選択的に形成されたp型車
結晶シリコン基板1の上に、比抵抗0.3〜10ΩCm
のn型またはp型のシリコンエピタキシャル層4を形成
し、n型埋め込み領域2.21の上にはこれにつながる
nウェル領域5を、また、n型埋め込み領域3の上には
これにつながる分離領域6を形成し、n型埋め込み領域
31の上にはnウェル領域7を形成する。さらに選択酸
化法により厚いシリコン酸化膜8を成長させ、素子間を
分離する。
First, as shown in FIG.
An n-type or p-type silicon epitaxial layer 4 is formed, an n-well region 5 is formed on the n-type buried region 2.21, and an isolation layer is formed on the n-type buried region 3. A region 6 is formed, and an n-well region 7 is formed on the n-type buried region 31. Furthermore, a thick silicon oxide film 8 is grown by selective oxidation to isolate the elements.

次に第1図すのように薄いシリコン酸化膜22を形成し
た後連続的にシリコン窒化膜23を形成し、バイポーラ
トランジスタ領域にシリコン窒化膜23が残るようにシ
リコン窒化膜23を選択的に除去し、MOSトランジス
タのスレシュホールド電圧制御の不純物ドープを行なう
。この後、MOSトランジスリス1域の薄いシリコン酸
化膜22をシリコン窒化膜23をマスクとして選択的に
除去する。
Next, as shown in Figure 1, after forming a thin silicon oxide film 22, a silicon nitride film 23 is continuously formed, and the silicon nitride film 23 is selectively removed so that it remains in the bipolar transistor region. Then, impurity doping is performed to control the threshold voltage of the MOS transistor. Thereafter, the thin silicon oxide film 22 in the MOS transistor 1 area is selectively removed using the silicon nitride film 23 as a mask.

次に第1図Cのようにシリコン窒化膜23をマスクとし
てゲート酸化膜となる薄いシリコン酸化膜9を選択的に
形成し、連続的に多結晶シリコン膜を成長してこれを選
択的にエツチングすることによりMOSトランジスタの
ゲート電極10及び横型pnp トランジスタの活性ベ
ース領域を覆う電極24を形成する。
Next, as shown in FIG. 1C, a thin silicon oxide film 9 that will become a gate oxide film is selectively formed using the silicon nitride film 23 as a mask, and a polycrystalline silicon film is continuously grown and selectively etched. By doing so, an electrode 24 covering the gate electrode 10 of the MOS transistor and the active base region of the lateral pnp transistor is formed.

次に第1図dのよう°にn型の不純物を選択的にイオン
注入してnチャネルMOSトランジスタのn−ソース領
域11及びn−ドレイン領域111とし、シリコン酸化
膜などによりゲート電極10に側壁12を形成する。
Next, as shown in FIG. 1d, n-type impurities are selectively ion-implanted to form the n-source region 11 and n-drain region 111 of the n-channel MOS transistor, and the side walls of the gate electrode 10 are formed with a silicon oxide film or the like. form 12.

次に第1図eのようにn型の不純物を選択的にイオン注
入してnチャネルMOS トランジスタのn+ソース領
域13及びn+ドレイン領域113とすることにより、
nチャネルMOSトランジスタのLDD構造を形成する
と同時に横型pnp トランジスタのベースコンタクト
領域14を形成する。さらに、p型の不純物を選択的に
イオン注入して、pチャネルMOSトランジスタのp+
ソース領域15、p+ドレイン領域115及び横型pn
pトランジスタのエミッタ領域16、コレクタ領域17
を同時に形成する。この時電極24の下に活性ベース領
域26が形成される。
Next, as shown in FIG. 1e, by selectively ion-implanting n-type impurities to form the n+ source region 13 and n+ drain region 113 of the n-channel MOS transistor,
At the same time as forming the LDD structure of the n-channel MOS transistor, the base contact region 14 of the lateral pnp transistor is formed. Furthermore, by selectively ion-implanting p-type impurities, p+
Source region 15, p+ drain region 115 and horizontal pn
Emitter region 16 and collector region 17 of p-transistor
are formed at the same time. At this time, an active base region 26 is formed under the electrode 24.

第1図fは本発明の半導体集積回路装置の横型pnp 
トランジスタの平面図であり、(図示していないが)活
性ベース領域26は表面上方を電極24に覆われ、電極
24の電位はコンタクト窓18とコンタクト窓25を電
気的に接続してエミッタと同電位にする。
FIG. 1f shows a lateral pnp semiconductor integrated circuit device of the present invention.
2 is a plan view of a transistor, in which an active base region 26 (not shown) is covered above the surface by an electrode 24, the potential of which is the same as that of the emitter by electrically connecting contact windows 18 and 25; FIG. potential.

以上のように構成された本実施例によれば、横型pnp
 トランジスタの活性ベース領域26の表面をシリコン
酸化膜22.シリコン窒化膜23及び多結晶シリコン電
極24から構成される複合膜で覆うため、製造途中工程
のプラズマダメージが活性ベース領域26に入ることを
防止し再結合電流の増加を抑制できるため、電流増幅率
の低下を防ぐ事が可能となる。また電極24はエミッタ
引出し電極と電気的に接続することによってエミッタ領
域16と同電位になるため、活性ベース領域26の表面
近−傍の空乏化及び反転を防止できエミッタ領域16と
コレクタ領域17の間のリーク電流を防止することが可
能で信頼性の高い素子を実現できる。
According to this embodiment configured as described above, the horizontal pnp
The surface of the active base region 26 of the transistor is covered with a silicon oxide film 22. Since it is covered with a composite film composed of a silicon nitride film 23 and a polycrystalline silicon electrode 24, plasma damage during the manufacturing process can be prevented from entering the active base region 26, and an increase in recombination current can be suppressed, thereby increasing the current amplification factor. It is possible to prevent a decrease in Further, since the electrode 24 has the same potential as the emitter region 16 by being electrically connected to the emitter extraction electrode, depletion and inversion near the surface of the active base region 26 can be prevented. It is possible to prevent leakage current between the two and realize a highly reliable element.

発明の効果 以上のように本発明は、横型pnp トランジスタの活
性ベース領域をエミッタと同電位の導電膜と絶縁膜とで
構成され°た複合膜で覆うことにより電流増幅率の低下
を防ぎ、活性ベース領域の表面電位を安定化することが
可能なため信頼性の高い半導体集積回路の製造方法を実
現する事ができる。
Effects of the Invention As described above, the present invention prevents a decrease in the current amplification factor by covering the active base region of a lateral pnp transistor with a composite film composed of a conductive film and an insulating film having the same potential as the emitter. Since the surface potential of the base region can be stabilized, a highly reliable semiconductor integrated circuit manufacturing method can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による半導体集積回路装置を示
す断面図と平面図、第2図a、bは従来構造の半導体集
積回路装置を示す断面図と平面図である。 1・・・・・・p型車結晶シリコン基板、9・・・・・
・シリコン酸化膜、10・・・・・・ゲート電極、14
・・・・・・ベースコンタクト領域、16・・・・・・
エミッタ領域、17・・・・・・コレクタ領域、26・
・・・・・活性ベース領域、22・・・・・・シリコン
酸化膜、23・・・・・・シリコン窒化膜、24・・・
・・・電極。 代理人の氏名 弁理士 粟野重孝 ほか1名萬1図 1 図 14゛−ヘースゴンタグト↑貢域 I6−  エミ・7ダ傾罷戒 17°゛コレググ領職 2J−−一活框ベース領域 /−P翌単沼品シリコン基板 Q、ZZ−−シワボン酸メ巳4稟。 10・−ケート酸、涯 、ダ 24−t、 ! f・・−P!単綺晶ンリゴン基板
FIG. 1 is a sectional view and a plan view showing a semiconductor integrated circuit device according to an embodiment of the present invention, and FIGS. 2a and 2b are a sectional view and a plan view showing a semiconductor integrated circuit device having a conventional structure. 1...P-type car crystal silicon substrate, 9...
・Silicon oxide film, 10...Gate electrode, 14
...Base contact area, 16...
Emitter region, 17... Collector region, 26.
... Active base region, 22 ... Silicon oxide film, 23 ... Silicon nitride film, 24 ...
···electrode. Name of agent: Patent attorney Shigetaka Awano and 1 other person 1 Figure 1 Figure 14゛- Hesgontagt ↑ Tribute area I6- Emi 7da resignation precept 17°゛ Koregugu ryoshoku 2J--Ikkatsuka base area/-P next Simple silicon substrate Q, ZZ--siwabonic acid memi 4 grades. 10.-Kate acid, 24-t, ! f...-P! Monocrystalline silicon substrate

Claims (1)

【特許請求の範囲】[Claims] 薄い酸化膜と窒化膜を連続して成長し複合膜を設ける工
程と、前記複合膜を選択的に除去して少なくともバイポ
ーラトランジスタとなる領域上に前記複合膜を残留させ
る工程と、ゲート酸化膜と多結晶シリコン膜を連続的に
成長した後前記多結晶シリコン膜を選択的にエッチング
して、MOSトランジスタのゲート電極と同時に横型バ
イポーラトランジスタの活性ベース領域上に電極を形成
する工程と、前記電極をマスクにして不純物を注入して
MOSトランジスタのソース領域及びドレイン領域と横
型バイポーラトランジスタのエミッタ領域及びコレクタ
領域を同時に形成する工程と、横型バイポーラトランジ
スタのエミッタと前記活性ベース領域上の電極を電気的
に接続する工程を備えた半導体集積回路の製造方法。
a step of successively growing a thin oxide film and a nitride film to form a composite film; a step of selectively removing the composite film to leave the composite film at least on a region that will become a bipolar transistor; and a step of forming a gate oxide film. a step of sequentially growing a polycrystalline silicon film and then selectively etching the polycrystalline silicon film to form an electrode on the active base region of the lateral bipolar transistor at the same time as the gate electrode of the MOS transistor; A step of simultaneously forming the source region and drain region of the MOS transistor and the emitter region and collector region of the lateral bipolar transistor by implanting impurities using a mask, and electrically connecting the electrodes on the emitter of the lateral bipolar transistor and the active base region. A method for manufacturing a semiconductor integrated circuit, which includes a connecting process.
JP8349789A 1989-03-31 1989-03-31 Manufacture of semiconductor integrated circuit Pending JPH02260653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8349789A JPH02260653A (en) 1989-03-31 1989-03-31 Manufacture of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8349789A JPH02260653A (en) 1989-03-31 1989-03-31 Manufacture of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH02260653A true JPH02260653A (en) 1990-10-23

Family

ID=13804117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8349789A Pending JPH02260653A (en) 1989-03-31 1989-03-31 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH02260653A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267586A (en) * 1992-03-18 1993-10-15 Sanyo Electric Co Ltd Output protection network
JP2009295654A (en) * 2008-06-03 2009-12-17 Seiko Epson Corp Manufacturing method of semiconductor device, and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267586A (en) * 1992-03-18 1993-10-15 Sanyo Electric Co Ltd Output protection network
JP2009295654A (en) * 2008-06-03 2009-12-17 Seiko Epson Corp Manufacturing method of semiconductor device, and semiconductor device

Similar Documents

Publication Publication Date Title
US5065208A (en) Integrated bipolar and CMOS transistor with titanium nitride interconnections
JP3308505B2 (en) Semiconductor device
US5019523A (en) Process for making polysilicon contacts to IC mesas
KR910006672B1 (en) Semiconductor integrated circuit device and its manufacturing method
EP0278619A1 (en) Integrated bipolar and CMOS transistor fabrication process
US20030080394A1 (en) Control of dopant diffusion from polysilicon emitters in bipolar integrated circuits
US5045493A (en) Semiconductor device and method of manufacturing the same
US5242849A (en) Method for the fabrication of MOS devices
JP2000068372A (en) Semiconductor device and manufacture thereof
JPH02260653A (en) Manufacture of semiconductor integrated circuit
JPH0345548B2 (en)
JP2845544B2 (en) Method for manufacturing semiconductor device
JP3303550B2 (en) Method for manufacturing semiconductor device
JPH067556B2 (en) MIS type semiconductor device
JPH02241057A (en) Manufacture of semiconductor integrated circuit
JP2572658B2 (en) Manufacturing method of intelligent power semiconductor device
JPS6146062A (en) Semiconductor device
KR20050000001A (en) Semiconductor device and manufacturing method thereof
JP3309529B2 (en) Method for manufacturing semiconductor device
KR100188093B1 (en) High speed bicmos transistor and manufactruing method thereof
JP3040211B2 (en) Manufacturing method of semiconductor integrated circuit
JPS6129149A (en) Semiconductor integrated circuit device
JPH0645533A (en) Cmos type field effect semiconductor device and its manufacture
JP2678081B2 (en) Semiconductor integrated circuit device
KR0164729B1 (en) Latch-up protection bi-cmos and its manufacture using oxigen implantation