JPH02259511A - Interference measuring instrument - Google Patents

Interference measuring instrument

Info

Publication number
JPH02259511A
JPH02259511A JP8234789A JP8234789A JPH02259511A JP H02259511 A JPH02259511 A JP H02259511A JP 8234789 A JP8234789 A JP 8234789A JP 8234789 A JP8234789 A JP 8234789A JP H02259511 A JPH02259511 A JP H02259511A
Authority
JP
Japan
Prior art keywords
interference
light
light source
section
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8234789A
Other languages
Japanese (ja)
Inventor
Toru Jinguji
神宮司 徹
Masaru Otsuka
勝 大塚
Satoshi Haneya
羽矢 聰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8234789A priority Critical patent/JPH02259511A/en
Publication of JPH02259511A publication Critical patent/JPH02259511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To improve the measurement accuracy and remeasurement performance of the instrument by making luminous flux incident on an interference part from a light source part in the best state. CONSTITUTION:A light source part which includes a light source 1 such as a laser and the interference part having a means such as a condenser lens 3 which receives the luminous flux from the light source 1 and forms a measurement wave front at least on a body 13 to be measured are arranged separately. Then a luminous flux optimizing means has a half-mirror 6 provided in the optical path of the interference part, a photosensor 7 which receives split light from the half-mirror 6, a total reflecting mirror 2 which receives the signal from the photosensor 7 and controls the state of incidence of the incidence luminous flux on the interference part from the light source part into the best state so that the detection light of the sensor 7 has a peak value, and a control means constituted of a driving mechanism which drives them as to at least two degrees of freedom, etc. Consequently, the state of the luminous flux which is incident on the interference part from the light source part is optimized automatically to measure the shape of the body to be measured with high accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光源部と干渉部が分難して配設され光源部か
ら干渉部への入射光束の入射状態を最適化する手段を備
えた干渉測定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is provided with means for optimizing the incident state of the incident light beam from the light source section to the interference section, in which the light source section and the interference section are arranged separately. The present invention relates to an interference measurement device.

[従来の技術] 従来、物体表面の形状等を光の干渉作用を利用してに精
度に測定する干渉測定装置・が知られている0例えば、
トワイマ・ンーグリーン干渉計では、光源からの光束を
干渉部の八−フミラー等の分割手段で2光束に分難し、
方から参照光を形成し他方から被検面からの光を形成し
両光束の干渉をとってこれにより形成される干渉縞を解
析することで被検面の形状などが測定されろ。
[Prior Art] Conventionally, there have been known interference measuring devices that accurately measure the shape of the surface of an object using the interference effect of light.
In the Twyma-Green interferometer, the light beam from the light source is divided into two light beams by a splitting means such as an eight-point mirror in the interference section.
The shape of the surface to be measured can be measured by forming a reference beam from one side and light from the surface to be measured from the other side, interfering with both beams, and analyzing the interference fringes formed thereby.

[発明が解決しようとする課題] しかし乍ら、従来の干渉測定装置においては、光源及び
干渉部を、振動等の影響等を考慮して、同一定盤上に配
置するのが通常の例であった。しかし、高精度な測定を
達成するには、光源等の発熱体が干渉部の近傍にあると
、これからの熱の影響で参照ミラーや測定波面を作る光
学エレメント等が熱膨張してこれらの位置が変化し、測
定精度や再測性に問題があった。
[Problem to be Solved by the Invention] However, in conventional interference measurement devices, the light source and the interference part are usually placed on the same board, taking into consideration the influence of vibrations, etc. there were. However, in order to achieve high-precision measurements, if a heat generating element such as a light source is located near the interference part, the reference mirror and the optical elements that form the measurement wavefront will thermally expand due to the influence of the heat, causing the position of these parts to expand. There were problems with measurement accuracy and repeatability.

この為、測長器等で光源と干渉部が分難されて高精度な
測定を可能にぜんとした干渉測定装置が提案されている
。しかし、被検面の形状を高精度に測定する干渉測定装
置において、例えば、被検物の形状に合わせて干渉部を
動かす必要がある方式では、光源からの入射光束に対し
て干渉部のずれを生じないように駆動機構で干渉部を動
かすのは不可能であり、干渉部を動かす度に入射光束と
干渉部のアライメントを目視により手動で行なわねばな
らず、測定精度が劣化するという問題がある。
For this reason, a complete interference measuring device has been proposed that uses a length measuring device or the like to separate the light source and the interference part to enable highly accurate measurement. However, in an interferometric measurement device that measures the shape of a test surface with high precision, for example, in a method that requires the interference part to be moved according to the shape of the test object, the deviation of the interference part with respect to the incident light beam from the light source It is impossible to move the interference part using a drive mechanism without causing interference, and each time the interference part is moved, the alignment between the incident light beam and the interference part must be manually performed by visual inspection, which causes the problem of deterioration of measurement accuracy. be.

従って、本発明の目的は、上記問題点に鑑み、光源部と
干渉部とを分難して配設する構成としつつ光源部から干
渉部への入射光束が常に最適状態に保たれる様に成され
た干渉測定装置を提供することにある。
Therefore, in view of the above-mentioned problems, an object of the present invention is to provide a configuration in which the light source section and the interference section are separately disposed, and the incident light flux from the light source section to the interference section is always maintained in an optimal state. The object of the present invention is to provide an interference measurement device that can be used to measure interference.

[課題を解決するための手段] 上記目的を達成するための本発明においては、レーザな
どの光源を含む光源部と、この光源からの光束を受けて
少なくとも被検物への測定波面を形成する集光レンズな
どの手段を有する干渉部とが分難して配設され、被検物
へ適当な測定波面が入射される様に光源部と干渉部との
相対位置関係が変化させられるときに光源部から干渉部
に光軸ずれな(最適に光束が入射される様にする光束最
適化手段が設けられている。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a light source unit including a light source such as a laser, and a light source unit that receives a light beam from the light source to form at least a measurement wavefront to a test object. The light source and the interference section having means such as a condensing lens are arranged separately, and the relative positional relationship between the light source section and the interference section is changed so that an appropriate measurement wavefront is incident on the test object. A beam optimizing means is provided so that the beam is optimally incident on the interference portion from the interference portion.

具体的には、光束最適化手段は、干渉部の光路中に設け
られたハーフミラ−などの光束分割手段と、この光束分
割手段からの分割光を受ける光検出手段と、この検出手
段から信号を受けて、この検出手段の検出光がピーク値
となる様に上記光源部から干渉部への入射光束の入射状
態を制御する全反射ミラーやこれを少なくとも2自由度
に関して駆動する駆動機構などから成る制御手段とを有
する。
Specifically, the beam optimization means includes a beam splitting means such as a half mirror provided in the optical path of the interference section, a light detection means that receives the divided light from the beam splitting means, and a signal from the detection means. The total reflection mirror is configured to control the incident state of the incident light beam from the light source section to the interference section so that the detection light of the detection means reaches a peak value, and a drive mechanism that drives the mirror in at least two degrees of freedom. and control means.

また、光束最適化手段は、光源部と干渉部の相対位置関
係を検知する手段とこの手段による検知に基づいて制御
される全反射ミラーとを有したり、また干渉部の位置、
角度を検知する手段ととの手段による検知に基づいて制
御される全反射ミラーとを有したりしても良い。
The light flux optimization means may include means for detecting the relative positional relationship between the light source section and the interference section, and a total reflection mirror that is controlled based on the detection by this means.
It may also include means for detecting the angle and a total reflection mirror that is controlled based on the detection by the means.

[作用] 上記の構成を有する本発明においては、上記のごとき光
束最適化手段を有するので、光源部と干渉部が分難され
て両省の相対位置が変化しても光源部から干渉部への光
束の入射状態は自動的に最適化される。
[Function] The present invention having the above configuration includes the above-mentioned light flux optimization means, so even if the light source section and the interference section are separated and the relative positions of the two sections change, the light source section does not reach the interference section. The incident state of the luminous flux is automatically optimized.

[実施例] 第1図は本発明の1実施例を示し、この例は本発明を凹
面形状測定のトワイマン−グリーン干渉計に適用したも
のである。
[Embodiment] FIG. 1 shows an embodiment of the present invention, in which the present invention is applied to a Twyman-Green interferometer for measuring the shape of a concave surface.

同図において、1はH,−N、レーザ等の光源、2は光
源からの光束を反射して干渉部へ導く全反射ミラーであ
り、このミラー2には2自由度の駆動機構がついていて
反射光束の位置を制御出来る様になっている。3はこの
反射光束を受ける集光レンズ、4は集光レンズ3で形成
されるスポット近傍に設けられたピンホール板、5はこ
のスポット位置を焦点位置としたコリメータレンズ、6
はハーフミラ−で、ここで分割された一方の光はフォト
センサー7へ、他方の光は偏光ビームスプリッタ−8へ
導かれる。フォトセンサー7で得られた信号は全反射ミ
ラー2の駆動機構を制御するのに用いられ、この信号が
常にピーク値になる様に上記駆動機構は制御系で制御さ
れる。
In the figure, 1 is a light source such as H, -N, laser, etc., and 2 is a total reflection mirror that reflects the light beam from the light source and guides it to the interference part.This mirror 2 is equipped with a drive mechanism with two degrees of freedom. The position of the reflected light beam can be controlled. 3 is a condensing lens that receives this reflected light flux; 4 is a pinhole plate provided near the spot formed by the condensing lens 3; 5 is a collimator lens with this spot position as its focal position; 6
is a half mirror, and one of the split lights is guided to a photosensor 7, and the other light is guided to a polarizing beam splitter 8. The signal obtained by the photosensor 7 is used to control the drive mechanism of the total reflection mirror 2, and the drive mechanism is controlled by the control system so that this signal always has a peak value.

9は%波長板、lOは参照ミラー 11は図波長板、1
2は集光レンズ、13は被検物であり、偏光ビームスプ
リッタ−8へ導かれた光はここで偏光方向に従って2方
向に分割され、一方の光は電波長板9で円偏光とされて
参照ミラー10で反射され、再び残液長板を通ることで
偏光方向が最初と比べて90度回転した状態で偏光ビー
ムスプリッタ−8に戻り今度はここを透過する。他方の
光は残液長板11で円偏光とされて集光レンズ12を通
過後、被検物13で反射され、再び集光レンズ12と残
液長板11を通過して偏光ビームスプリッタ−8に戻る
が、ここでも戻ってきた光束の偏光方向が最初と比・べ
て90度回転した状態になっているのでこの光は今度は
偏光ビームスプリッタ−8で反射されて下方に向かう。
9 is the % wave plate, lO is the reference mirror, 11 is the diagram wave plate, 1
2 is a condenser lens, 13 is a test object, and the light guided to the polarizing beam splitter 8 is split into two directions according to the polarization direction, and one of the lights is made into circularly polarized light by an electric wave plate 9. It is reflected by the reference mirror 10, passes through the residual liquid elongated plate again, returns to the polarizing beam splitter 8 with the polarization direction rotated by 90 degrees compared to the initial state, and is transmitted through there this time. The other light is circularly polarized by the residual liquid long plate 11, passes through the condenser lens 12, is reflected by the object 13, passes through the condenser lens 12 and the residual liquid long plate 11 again, and is sent to the polarizing beam splitter. 8, the polarization direction of the returned light beam is now rotated by 90 degrees compared to the initial direction, so this light is now reflected by the polarizing beam splitter 8 and directed downward.

こうして参照光と被検物13からの光波が合成されて偏
光板14及びミラー15を通過後%集光ミラー16によ
りCCD等の撮像素子17において干渉縞として観察さ
れる。
In this way, the reference light and the light wave from the object 13 are combined, pass through the polarizing plate 14 and the mirror 15, and are then observed by the focusing mirror 16 as interference fringes on the imaging device 17, such as a CCD.

第1図に示す如く、光源1及び撮像素子17などの熱源
となるエレメントは光源部として、偏光ビームスプリッ
タ−8や集光レンズ12等を含む干渉部から分難されて
配設されている。
As shown in FIG. 1, elements serving as a heat source such as the light source 1 and the image sensor 17 are arranged as a light source section separated from an interference section including the polarizing beam splitter 8 and the condensing lens 12.

以上の構成において、集光レンズ12からの測定波面が
被検物13の被検面の形状と略一致し、撮像素子17上
の干渉縞が測定可能な程度に粗ければ(すなわち、撮像
素子17の隣接する画素に結像される被検面の隣接部分
の形状の測定波面からの差異の差が使用波長の半分を越
えなければ)干渉部と被検物13の相対位置間係を動か
さなく・でもよいが、上記干渉縞が細かすぎる場合は動
かす必要がある。この場合、被検物13を動かさないな
らば、干渉部を動かして測定可能とする必要があり、こ
の際、干渉部を単に動かすだけであると干渉部と光源部
の位置関係が適正な状態からずれ測定が不可能になる恐
れがある。
In the above configuration, if the measurement wavefront from the condensing lens 12 substantially matches the shape of the surface to be measured of the object 13 and the interference fringes on the image sensor 17 are rough enough to be measurable (i.e., the image sensor (If the difference between the shape of the adjacent portion of the test surface imaged on the 17 adjacent pixels from the measurement wavefront exceeds half of the wavelength used), the relative positional relationship between the interference part and the test object 13 is moved. It may be done without it, but if the interference fringes are too fine, it is necessary to move it. In this case, if the test object 13 is not moved, it is necessary to move the interference part to enable measurement. In this case, simply moving the interference part will ensure that the positional relationship between the interference part and the light source is in the appropriate state. There is a risk that deviation measurement may become impossible.

従って、上述した様にフォトセンサー7の信号が常にピ
ークになるように反射ミラー2を駆動制御して、干渉部
と光源部を適正位置関係に置き正しい測定が可能となる
様にしている。
Therefore, as described above, the reflection mirror 2 is driven and controlled so that the signal from the photosensor 7 is always at its peak, and the interference section and the light source section are placed in a proper positional relationship to enable correct measurement.

上記実施例はトワイマン−グリーン干渉計の例であった
が本発明、はフィゾー干渉計、シアリング干渉計など他
の型の干渉計にも適用できる。
Although the above embodiment was an example of a Twyman-Green interferometer, the present invention can be applied to other types of interferometers such as a Fizeau interferometer and a Shearing interferometer.

また、上記実施例では、光源部の光源からの光束が干渉
部に常に正しく入射する様にする為に 光路中にフォト
センサーを挿入する型の検知手段を設けているが、光源
部と干渉部間に別系統に光学系を組んで・それにより光
源部と干渉部間の相対位置を知ってミラー2などを制御
しても良い。
Furthermore, in the above embodiment, in order to ensure that the light flux from the light source of the light source always enters the interference part correctly, a detection means of the type that inserts a photosensor into the optical path is provided. An optical system may be set up in a separate system in between, and the relative position between the light source section and the interference section may be known to control the mirror 2 and the like.

更に、干渉部のステージ台にレファレンスミラーを付け
て、測長器で干渉部の位置、角度を測定してミラー2の
駆動機構を制御しても良い。
Furthermore, a reference mirror may be attached to the stage stand of the interference section, and the position and angle of the interference section may be measured with a length measuring device to control the drive mechanism of the mirror 2.

光源部の方を動かすことも考えられ、この場合にも同様
に、光束が干渉部に正しく入射する様に補正すればよい
It is also possible to move the light source section, and in this case as well, it is sufficient to correct the light beam so that it correctly enters the interference section.

[発明の効果] 以上説明した様に、光源部と干渉部が分難されて別設さ
れた本発明の干渉測定装置においては、被検物に適正な
測定波面が入射する様に調整された後でも、目視等によ
る補正操作が必要とされることな(、自動的に光源部か
ら干渉部へ入射する光束の状態が最適にされて高精度に
被検物の形状等が測定される。
[Effects of the Invention] As explained above, in the interference measurement device of the present invention in which the light source section and the interference section are separated and installed separately, adjustments are made so that an appropriate measurement wavefront is incident on the object to be measured. Even later, the state of the light beam entering the interference part from the light source section is automatically optimized, and the shape of the object to be inspected can be measured with high precision, without requiring any correction operations such as visual inspection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例の構成を示す図である。 l・・・・・光源、2・・・・・全反射ミラ、3・・・
・・集光レンズ、4・・・・・ピンホール扱、5・・・
・・コリメークレンズ、6・・・・・ハーフミラ−7・
・・・・フォトセンサー、8・・・・・偏光ビームスプ
リッタ−19,11・・・・・電波長板10 ・ ・ 
・ ・ ・ 参照゛ミラー  l 2 ・ ・ ・ ・
・集光レンズ、13・・・・・被検物、14・・・・・
W光i、15・・・・・セフ−16・・・・・結像レン
ズ、17・・・・・撮像素子
FIG. 1 is a diagram showing the configuration of one embodiment of the present invention. l...Light source, 2...Total reflection mirror, 3...
...Condensing lens, 4...Pinhole treatment, 5...
・・Collimation lens 6・・・・Half mirror 7・
...Photo sensor, 8...Polarizing beam splitter-19, 11...Electronic wave plate 10...
・ ・ ・ Reference゛Mirror l 2 ・ ・ ・ ・
・Condensing lens, 13... Test object, 14...
W light i, 15...Cef-16...Imaging lens, 17...Image sensor

Claims (1)

【特許請求の範囲】 1、光源を含む光源部と、該光源からの光束を受けて少
なくとも被検物への測定波面を形成する手段を有する干
渉部とが分難されて配設された干渉測定装置において、
被検物へ適当な測定波面が入射される様に光源部と干渉
部との相対位置関係が変化させられるときに該光源部か
ら該干渉部に最適に光束が入射される様にする光束最適
化手段が設けられていることを特徴とする干渉測定装置
。 2、前記光束最適化手段は、干渉部の光路中に設けられ
た光束分割手段と、該光束分割手段からの分割光を受け
る光検出手段と、該光検出手段から信号を受けて、該光
検出手段の検出光がピーク値となる様に前記光源部から
前記干渉部への入射光束の入射状態を制御する制御手段
とを有する請求項1記載の干渉測定装置。 3、前記制御手段は光源からの光束を反射して干渉部の
方向へ入射させる全反射ミラーと、該全反射ミラーを少
なくとも2自由度に関して駆動する駆動機構とを有する
請求項1記載の干渉測定装置。 4、前記光束最適化手段は光源部と干渉部の相対位置関
係を検知する手段を有する請求項1記載の干渉測定装置
。 5、前記光束最適化手段は干渉部の位置、角度を検知す
る手段を有する請求項1記載の干渉測定装置。
[Scope of Claims] 1. An interference device in which a light source section including a light source and an interference section having means for receiving a light beam from the light source and forming at least a measurement wavefront toward a test object are separated and arranged. In the measuring device,
When the relative positional relationship between the light source section and the interference section is changed so that an appropriate measurement wavefront is incident on the test object, the light flux is optimized so that the light beam is optimally incident on the interference section from the light source section. An interference measuring device characterized by being provided with a converting means. 2. The light flux optimization means includes a light flux splitting means provided in the optical path of the interference section, a light detection means for receiving the split light from the light flux splitting means, and a light flux optimizing means receiving a signal from the light detection means and processing the light. 2. The interference measurement apparatus according to claim 1, further comprising a control means for controlling an incident state of the incident light beam from the light source section to the interference section so that the detection light of the detection section reaches a peak value. 3. The interference measurement according to claim 1, wherein the control means includes a total reflection mirror that reflects the light beam from the light source and makes it incident in the direction of the interference section, and a drive mechanism that drives the total reflection mirror in at least two degrees of freedom. Device. 4. The interference measuring device according to claim 1, wherein the light flux optimization means includes means for detecting a relative positional relationship between the light source section and the interference section. 5. The interference measuring device according to claim 1, wherein the light flux optimization means includes means for detecting the position and angle of the interference part.
JP8234789A 1989-03-31 1989-03-31 Interference measuring instrument Pending JPH02259511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8234789A JPH02259511A (en) 1989-03-31 1989-03-31 Interference measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8234789A JPH02259511A (en) 1989-03-31 1989-03-31 Interference measuring instrument

Publications (1)

Publication Number Publication Date
JPH02259511A true JPH02259511A (en) 1990-10-22

Family

ID=13772037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8234789A Pending JPH02259511A (en) 1989-03-31 1989-03-31 Interference measuring instrument

Country Status (1)

Country Link
JP (1) JPH02259511A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242795A (en) * 2005-03-04 2006-09-14 Matsushita Electric Ind Co Ltd Device for measuring three-dimensional shape

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242795A (en) * 2005-03-04 2006-09-14 Matsushita Electric Ind Co Ltd Device for measuring three-dimensional shape

Similar Documents

Publication Publication Date Title
WO2013084557A1 (en) Shape-measuring device
US20070146724A1 (en) Vibration-resistant interferometer apparatus
JP2797250B2 (en) Projection exposure equipment
JPH0663867B2 (en) Interfering device for wavefront condition detection
JPH0455243B2 (en)
JP2003042731A (en) Apparatus and method for measurement of shape
JPH02161332A (en) Device and method for measuring radius of curvature
JPS5979104A (en) Optical device
JPH02259511A (en) Interference measuring instrument
JP3688560B2 (en) Optical measuring device
JPH05312538A (en) Three-dimensional shape measuring instrument
JPH08166209A (en) Polygon mirror evaluating device
JPH02259512A (en) Integrated interference measuring instrument
JP2591143B2 (en) 3D shape measuring device
JPH03130639A (en) Optical-axis aligning method for mtf measuring apparatus
JP2527176B2 (en) Fringe scanning shearing interferometer
JP2004340735A (en) Wavefront aberration measuring apparatus
JPS61202102A (en) Light wave interfering microscope
JPH07113609A (en) Interferometer
JPH02259506A (en) Fringe scanning type interference measuring instrument
JPH11325848A (en) Aspherical surface shape measurement device
JPH09126712A (en) Laser length measuring machine
JP3373552B2 (en) Method for analyzing alignment of reflection objective lens and method for adjusting reflection objective lens
JPH07181006A (en) Laser length measuring equipment
SU1046606A1 (en) Interferometer for measuring non-planeness and non-rectilinearity of surface