JPH02257681A - Machining method of superconductive thin-film - Google Patents

Machining method of superconductive thin-film

Info

Publication number
JPH02257681A
JPH02257681A JP1078975A JP7897589A JPH02257681A JP H02257681 A JPH02257681 A JP H02257681A JP 1078975 A JP1078975 A JP 1078975A JP 7897589 A JP7897589 A JP 7897589A JP H02257681 A JPH02257681 A JP H02257681A
Authority
JP
Japan
Prior art keywords
film
oxide
thin film
thin
metallic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1078975A
Other languages
Japanese (ja)
Inventor
Saburo Tanaka
三郎 田中
Shusuke Nakanishi
秀典 中西
Kenjiro Higaki
檜垣 賢次郎
Hideo Itozaki
糸崎 秀夫
Shuji Yatsu
矢津 修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1078975A priority Critical patent/JPH02257681A/en
Publication of JPH02257681A publication Critical patent/JPH02257681A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To machine an oxide superconductive thin-film, the characteristics of an oxide superconductor of which are not deteriorated, by forming a metallic layer having low reactivity onto the surface of the oxide superconductive thin- film and then a resist film onto the metallic layer. CONSTITUTION:A metallic layer having low reactivity with an oxide superconductor constituting an oxide superconductive thin-film is formed onto the surface of the thin-film using a photolithographic technique, and a resist film onto the metallic layer. Consequently, since the oxide superconductive thin-film is not brought into contact directly with a resist, a developer, etc., and also receives no ion bombardment, characteristics thereof are not deteriorated. A metal having low resistivity with the oxide superconductor such as Ag, Al, In, etc., can be used as a metallic layer material. Accordingly, the oxide superconductive thin-film can be machined to various superconducting devices without lowering the superconductive characteristics of the thin-film.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸化物超電導薄膜の加工方法に関する。より
詳細には、フォトリソグラフィ技術を用いて酸化物超電
導薄膜を加工する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for processing oxide superconducting thin films. More specifically, the present invention relates to a method of processing an oxide superconducting thin film using photolithography technology.

従来の技術 各種酸化物超電導体が発見されて以来、超電導電子デバ
イスおよび回路配線に応用することが試みられている。
BACKGROUND OF THE INVENTION Since the discovery of various oxide superconductors, attempts have been made to apply them to superconducting electronic devices and circuit wiring.

すでに、ジョセフソン素子、5QUID、超電導トラン
ジスタ、超電導回路配線等を酸化物超電導体で作製した
報告がなされている。
Reports have already been made on fabricating Josephson elements, 5QUIDs, superconducting transistors, superconducting circuit wiring, etc. using oxide superconductors.

これらのデバイスを酸化物超電導体で作製する場合、そ
の加工にはフォトリソグラフィ技術が用いられている。
When manufacturing these devices using oxide superconductors, photolithography technology is used for processing.

すなわち、酸化物超電導薄膜表面にレジスト膜を、形成
し、加工する形状に合わせたマスクを形成し、エツチン
グを行ってデバイ゛スを作製していた。
That is, a resist film is formed on the surface of an oxide superconducting thin film, a mask is formed to match the shape to be processed, and etching is performed to fabricate a device.

発明が解決しようとする“課題 上記従来の加工方法では、レジスト膜を酸化物超電導薄
膜表面に直接形成していたので、界面で反応が起こり、
酸化物超電導体の特性が劣化するという問題があった。
Problems to be Solved by the Invention In the conventional processing method described above, the resist film was formed directly on the surface of the oxide superconducting thin film, so a reaction occurred at the interface.
There was a problem that the characteristics of the oxide superconductor deteriorated.

また、フォトリンゲラフィブロセスにおいて、酸化物超
電導体が、アルカリ性の現像液、レジスト剥離液および
洗浄用の水に触れ、さらに特性が劣化することがあった
Furthermore, in the photoringer fibrosis process, the oxide superconductor comes into contact with an alkaline developer, resist stripping solution, and cleaning water, and its properties sometimes deteriorate.

一方、ドライエツチング法によりエツチングを行う場合
には、酸化物超電導体にイオン(KMによるダメージが
生じ、超電導特性が劣化することもあった。
On the other hand, when etching is performed using a dry etching method, the oxide superconductor is damaged by ions (KM), resulting in deterioration of superconducting properties.

そこで本発明の目的は、上記従来技術の問題点を解決し
た酸化物超電導体の特性を劣化させない酸化物超電導薄
膜の加工方法を提供することにある。なお、本明細書で
、酸化物超電導薄膜とは、膜厚が100μm以下の薄膜
および厚膜を意味する。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for processing an oxide superconducting thin film that solves the problems of the prior art described above and does not deteriorate the characteristics of the oxide superconductor. In addition, in this specification, the oxide superconducting thin film means a thin film and a thick film having a film thickness of 100 μm or less.

課題を解決するだめの手段 本発明に従うと、酸化物超電導薄膜をフォトリソグラフ
ィにより加工する方法おいて、酸化物超電導薄膜の表面
に該薄膜を構成する酸化物超電導体との反応性が低い金
属層を形成し、該金属層上にレジスト膜を形成すること
を特徴とする超電導薄膜の加工方法が提供される。
Means for Solving the Problems According to the present invention, in a method of processing an oxide superconducting thin film by photolithography, a metal layer having low reactivity with the oxide superconductor constituting the thin film is formed on the surface of the oxide superconducting thin film. A method for processing a superconducting thin film is provided, which comprises forming a resist film on the metal layer.

作用 本発明の方法は、酸化物超電導薄膜の表面に反応性が低
い金属層を形成し、その上にレジスト膜を形成するとこ
ろにその主要な特徴がある。すなわち、本発明の方法に
従うと、酸化物超電導薄膜は、直接レジスト、現像液等
に触れることがなく、また、イオン衝撃も受けないため
、特性が劣化しない。
Function The main feature of the method of the present invention is that a metal layer with low reactivity is formed on the surface of an oxide superconducting thin film, and a resist film is formed thereon. That is, according to the method of the present invention, the oxide superconducting thin film does not come into direct contact with the resist, developer, etc., and is not subjected to ion bombardment, so its properties do not deteriorate.

前記金属層材料としてはAgが反応性が低いことおよび
接触抵抗が低いこと、密着性がよいことで優れているが
、Als I n % Zn 、SCu 、、NI S
Au 1P t ST+、Pd等、酸化物超電導体との
反応性が低い金属ならば使用可能である。また、この金
属層は蒸着法等により形成することができる。
As the metal layer material, Ag is excellent because of its low reactivity, low contact resistance, and good adhesion, but Als I n % Zn, SCu, NI S
Any metal that has low reactivity with the oxide superconductor can be used, such as Au 1P t ST+ and Pd. Further, this metal layer can be formed by a vapor deposition method or the like.

本発明の方法では金属層形成後に加熱して密着性を向上
させることが好ましい。この加熱温度は、300〜40
0℃の範囲が好ましい。加熱温度が300℃未満では密
着性向上に効果がなく、400℃を超える温度に加熱す
ると反応層を生じて酸化物超電導体の特性が劣化する。
In the method of the present invention, it is preferable to heat the metal layer after forming it to improve adhesion. This heating temperature is 300 to 40
A range of 0°C is preferred. If the heating temperature is less than 300°C, there will be no effect on improving adhesion, and if it is heated to a temperature exceeding 400°C, a reaction layer will be formed and the properties of the oxide superconductor will deteriorate.

また、加熱を酸素雰囲気中で行うと、さらに効果がある
Furthermore, heating in an oxygen atmosphere is more effective.

本発明の方法では、上記金属層上にさらに他の金属で第
2の金属層を形成することも好ましい。
In the method of the present invention, it is also preferable to further form a second metal layer of another metal on the metal layer.

この第2の金属層は、酸化物超電導薄膜表面に形成した
第1の金属層を電極としても用いる場合に、加熱工程で
表面が酸化されないよう保護する目的で設けるものであ
る。第2の金属層は、Au、 ptなどで形成すること
が好ましい。従って、第2の金属層を形成する場合、上
記の加熱工程は、第2の金属層形成後に実行する。
This second metal layer is provided for the purpose of protecting the surface from being oxidized during the heating process when the first metal layer formed on the surface of the oxide superconducting thin film is also used as an electrode. The second metal layer is preferably formed of Au, PT, or the like. Therefore, when forming the second metal layer, the above heating step is performed after forming the second metal layer.

上記第1および第2の金属層の厚さは、それぞれ0.0
1〜1μm、0.05〜1μmが好ましい。第1の金属
層の厚さが、0.01μm未満では、酸化物超電導体を
保護する効果がなく、1μmを超えていてもその効果に
変わりがなく、フォトリンゲラフィブロセス後に不要部
分の金属層の剥離に長時間を要するためである。また、
第2の金属層についても同様に厚さが、0.05μm未
満では第1の金属層を保護する効果がなく、1μmを超
えていると不要部分の剥離に長時間を要するため、上記
の範囲の厚さが好ましい。
The thickness of the first and second metal layers is each 0.0
1 to 1 μm, preferably 0.05 to 1 μm. If the thickness of the first metal layer is less than 0.01 μm, it has no effect of protecting the oxide superconductor, and even if it exceeds 1 μm, the effect remains the same. This is because it takes a long time to peel off. Also,
Similarly, for the second metal layer, if the thickness is less than 0.05 μm, it will not have the effect of protecting the first metal layer, and if it exceeds 1 μm, it will take a long time to peel off the unnecessary parts, so it is within the above range. A thickness of .

また、上記の金属層は、フォトリソグラフィ後のエツチ
ング工程で、イオンビームエツチング、ECRエツチン
グ、RFプラズマエツチング等を用いる場合に、荷電粒
子から酸化物超電導体を保護する。すなわち、上記の各
エツチング法では、従来、荷電粒子によるイオン衝撃の
ため、酸化物超電導体の特性が劣化したが、本発明の方
法ではこれも防げるものである。
The metal layer also protects the oxide superconductor from charged particles during post-photolithographic etching steps such as ion beam etching, ECR etching, RF plasma etching, etc. That is, conventionally, in each of the above etching methods, the characteristics of the oxide superconductor deteriorated due to ion bombardment by charged particles, but this can also be prevented with the method of the present invention.

以下、本発明を実施例により、さらに詳しく説明するが
、以下の開示は本発明の単なる実施例に過ぎず、本発明
の技術的範囲をなんら制限するものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the following disclosure is merely an example of the present invention and does not limit the technical scope of the present invention in any way.

実施例 各種酸化物超電導薄膜に、フォ) IJソグラフィで第
1図に示したパターンを形成した。それぞれ、本発明の
方法と従来の方法とでパターンの形成を行い、パターン
形成前後で超電導特性を比較した。
EXAMPLES Patterns shown in FIG. 1 were formed on various oxide superconducting thin films by IJ lithography. Patterns were formed using the method of the present invention and the conventional method, respectively, and the superconducting properties were compared before and after pattern formation.

実施例l MgO単結晶基板上にスパッタリング法により作製した
YIBa2Cu30x薄膜を使用した。本発明の方法で
は、以下の条件で真空蒸着法により薄膜表面にAgおよ
びAuを重ねて蒸着した。
Example 1 A YIBa2Cu30x thin film produced by sputtering on an MgO single crystal substrate was used. In the method of the present invention, Ag and Au were deposited in layers on the surface of the thin film by vacuum evaporation under the following conditions.

(蒸着条件) 基板加熱なし 真空度     1〜3 X 10−’Torr蒸着速
度    2〜3八/へec Ag (下層)膜厚 0,15μm Au (上層)膜厚 0.10μm このサンプルを酸素フロー中の大気圧炉で300℃×1
0分間の加熱を行った。
(Deposition conditions) Vacuum degree without substrate heating: 1 to 3 300℃ x 1 in an atmospheric pressure furnace
Heating was performed for 0 minutes.

次に、以下の条件でフォトリンゲラフィブロセスを実施
してパターニングを行った。
Next, patterning was performed by performing photoringer fibrosis under the following conditions.

(フォトリソグラフィプロセス) レジスト塗布スピンナー速度4000rpm x20秒
レジスト    ポジレジスト 95℃×30分 8秒 マスク NMD−3(東京応化)1分30秒 流水で3分間 プリベーク 露光 現像 水洗 N2 ブロー 次に、カウフマン式イオンガンによるArイオンビーム
エツチングによりエツチングを行った。
(Photolithography process) Resist coating spinner speed 4000 rpm x 20 seconds Resist Positive resist 95°C x 30 minutes 8 seconds Mask NMD-3 (Tokyo Ohka) 1 minute 30 seconds Pre-bake with running water for 3 minutes Exposure Developing Washing with N2 Blow Next, Kaufman ion gun Etching was performed by Ar ion beam etching.

加速電圧   : 500 V 電流     : 30mA 基板温度   :5〜10℃ 真空度    : 4 XLO−’Torrエツチング
時間:10分 エツチングの後、I/シスト膜をアセトンに5分間浸漬
することにより剥離した。
Accelerating voltage: 500 V Current: 30 mA Substrate temperature: 5 to 10° C. Degree of vacuum: 4 XLO-'Torr etching time: 10 minutes After etching, the I/cyst film was peeled off by immersing it in acetone for 5 minutes.

第1表に結果を示す。測定はDC帯磁率の測定により測
定した。
Table 1 shows the results. The measurement was performed by measuring DC magnetic susceptibility.

第1表 (体積率はフォトリソグラフィ前を100%とした)超
電導の転移温度が、比較例では80.OKに低下してい
るが、本発明の方法では90. OKであり、はとんど
低下していない。これは、本発明の方法ではイオンビー
ムエツチング時のイオン衝撃がほとんどないからと考え
られる。また、本発明の方法では、薄膜表面に反応層が
生じないので、体積率もフォトリソグラフィ前後でまっ
たく変っていな実施例2 1、Igo単結晶基板上にスパッタリング法により作製
したBi。5r2Ca2Cu30)1薄膜を用いて、実
施例1と同じ条件で、金属層の形成およびパターニング
を行い、同様の方法で測定を行った。第2表に結果を示
す。
Table 1 (The volume fraction is 100% before photolithography) The transition temperature of superconductivity is 80. However, with the method of the present invention, it is 90. It is OK and has not decreased at all. This is thought to be because the method of the present invention causes almost no ion bombardment during ion beam etching. Further, in the method of the present invention, since no reaction layer is formed on the surface of the thin film, the volume fraction does not change at all before and after photolithography.Example 2 1: Bi fabricated by sputtering on an Igo single crystal substrate. Using the 5r2Ca2Cu30)1 thin film, a metal layer was formed and patterned under the same conditions as in Example 1, and measurements were performed in the same manner. Table 2 shows the results.

とTc 、体積率ともに、はとんど低下しない。Both Tc and volume fraction hardly decrease.

実施例3 )4gO単結晶基板上にスパッタリング法により作製し
たTI。Ba2Ca、Cu30M薄膜を用いて、実施例
1と同じ条件で金属層の形成およびパターニングを行い
、同様の方法で測定を行った。第3表に結果を示す。
Example 3) TI produced by sputtering on a 4gO single crystal substrate. Using Ba2Ca and Cu30M thin films, metal layers were formed and patterned under the same conditions as in Example 1, and measurements were performed in the same manner. Table 3 shows the results.

第3表 第2表 (体積率はフォトリソグラフィ前を100%とした)実
施例1の結果と同様に、本発明の方法によるとTc 、
体積率ともに、はとんど低下しない。
Table 3 Table 2 (The volume fraction is 100% before photolithography) Similar to the results of Example 1, according to the method of the present invention, Tc,
Both volume fractions hardly decrease.

(体積率はフォトリソグラフィ前を100%とした)実
施例1の結果と同様1ご、本発明の方法による以上の結
果、本発明の方法で、酸化物超電導薄膜を加工しても、
酸化物超電導体の特性が劣化しないことが証明された。
(The volume fraction was 100% before photolithography) Same as the result of Example 11. The above results obtained by the method of the present invention show that even if an oxide superconducting thin film is processed by the method of the present invention,
It was proven that the properties of oxide superconductors do not deteriorate.

発明の効果 本発明の方法を用いることにより、酸化物超電導薄膜を
超電導特性を劣化させることなく各種超電導デバイスに
加工することが可能となる。本発明により、高性能な超
電導デバイスを作製することができ、超電導技術はさら
に発展する。
Effects of the Invention By using the method of the present invention, it becomes possible to process oxide superconducting thin films into various superconducting devices without deteriorating their superconducting properties. According to the present invention, a high-performance superconducting device can be manufactured, and superconducting technology will further develop.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例で超電導薄膜を加工したパターンを示
す。
FIG. 1 shows a pattern obtained by processing a superconducting thin film in an example.

Claims (1)

【特許請求の範囲】[Claims] 酸化物超電導薄膜をフォトリソグラフィにより加工する
方法おいて、酸化物超電導薄膜の表面に該薄膜を構成す
る酸化物超電導体との反応性が低い金属層を形成し、該
金属層上にレジスト膜を形成することを特徴とする超電
導薄膜の加工方法。
In a method of processing an oxide superconducting thin film by photolithography, a metal layer having low reactivity with the oxide superconductor constituting the thin film is formed on the surface of the oxide superconducting thin film, and a resist film is formed on the metal layer. A method for processing a superconducting thin film, characterized by forming a superconducting thin film.
JP1078975A 1989-03-30 1989-03-30 Machining method of superconductive thin-film Pending JPH02257681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1078975A JPH02257681A (en) 1989-03-30 1989-03-30 Machining method of superconductive thin-film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1078975A JPH02257681A (en) 1989-03-30 1989-03-30 Machining method of superconductive thin-film

Publications (1)

Publication Number Publication Date
JPH02257681A true JPH02257681A (en) 1990-10-18

Family

ID=13676902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1078975A Pending JPH02257681A (en) 1989-03-30 1989-03-30 Machining method of superconductive thin-film

Country Status (1)

Country Link
JP (1) JPH02257681A (en)

Similar Documents

Publication Publication Date Title
JPS6161280B2 (en)
JPH02257681A (en) Machining method of superconductive thin-film
JPH0217684A (en) Superconducting sensor and manufacture thereof
JPH03106080A (en) Manufacture of superconducting device
US3450534A (en) Tin-lead-tin layer arrangement to improve adherence of photoresist and substrate
JP2691175B2 (en) Patterned oxide superconducting film formation method
JPS61208879A (en) Manufacture of josephson integrated circuit
JPS60208872A (en) Manufacture of superconductive contact
JPS6147679A (en) Production of josephson junction element
JPH01200682A (en) Manufacture of ferromagnetic magnetoresistance effect device
JPH0661535A (en) Manufacture of josephson circuit
JPH01152774A (en) Manufacture of josephson junction device
JPH03124077A (en) Manufacture of superconducting element
JPS6258676B2 (en)
JPH0265007A (en) Electronic circuit member and manufacture thereof
JPH01239885A (en) Superconductive device and manufacture thereof
JPS6143488A (en) Manufacture of superconductive contact
JPH03794B2 (en)
JPS60208874A (en) Manufacture of josephson junction element
JPH0448788A (en) Formation of pattern of josephson junction element
JPH0530310B2 (en)
JPS6167975A (en) Manufacture of josephson junction element
JPH06132576A (en) Manufacture of superconducting element
JPH04287382A (en) Mask material for forming oxide thin film, forming method for pattern of oxide thin film using same, and manufacture of superconducting element
JPS61278181A (en) Formation of josephson element