JPH01152774A - Manufacture of josephson junction device - Google Patents

Manufacture of josephson junction device

Info

Publication number
JPH01152774A
JPH01152774A JP62311094A JP31109487A JPH01152774A JP H01152774 A JPH01152774 A JP H01152774A JP 62311094 A JP62311094 A JP 62311094A JP 31109487 A JP31109487 A JP 31109487A JP H01152774 A JPH01152774 A JP H01152774A
Authority
JP
Japan
Prior art keywords
film
substrate
lower electrode
sputtering
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62311094A
Other languages
Japanese (ja)
Other versions
JPH055386B2 (en
Inventor
Koji Yamada
宏治 山田
Hiroyuki Mori
博之 森
Yoshinobu Taruya
良信 樽谷
Mikio Hirano
幹夫 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62311094A priority Critical patent/JPH01152774A/en
Publication of JPH01152774A publication Critical patent/JPH01152774A/en
Publication of JPH055386B2 publication Critical patent/JPH055386B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To relax the internal stress of an Nb film, and to obtain a device having excellent reproducibility by forming a recessed trench where corresponding to a scribing line in the surface of a substrate and shaping three layer films. CONSTITUTION:Deep trenches 12 are formed previously to a substrate 11. The trenches are shaped where corresponding to scribing lines, and particularly do not get trouble on element constitution, and three layer films 24-26 are formed continuously onto a cleaned surface through an insulating film 22 by in-line. Consequently, the three layer films 24-26 are cut in the trenches 12 in the scribing lines and are not shaped as continuous films, and the internal stress of an Nb film in the lower electrode 24 can be released. Subsequently, the device is formed through normal patterning working, the process of sputtering by Ar for taking a superconductive contact can also be omitted. Accordingly, the device having junction characteristics having excellent reproducibility is acquired.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ジョセフソン接合素子の形成方法に係り、特
に、下部電極Nb膜の内部応力を緩和するのに好適な構
造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a Josephson junction element, and particularly to a structure suitable for relieving internal stress in a lower electrode Nb film.

〔従来の技術〕[Conventional technology]

従来の下部電極のNb膜は内部応力を緩和するために2
回に分割し形成していた。すなわち、特開昭61−27
1877号公報に記載の様にNb膜からなる下部電極の
一部を、まず、平坦な絶縁性基板上に凸構造の段差を備
けて、その上に下部電極のNb膜、トンネル障壁層のA
QOや膜、上部電極のNb膜を連続形成し、その後に、
反応性イオンエツチングにより段差の真上に接合部を形
成していた。したがって、この方法はパターンを形成す
るためのホト工程が途中に介在することがないので高品
質の接合が得られること、また、下部電極を2回に分け
て形成する方法を用いているために内部応力による接合
特性への影響が小さいという特徴がある。□しかし、N
b膜のパターン加工を2回行なうために、最初に形成し
たNbパターンの段差上において、その表面がホトレジ
スト等によって汚染される。このために、次の三層膜を
形成する工程の前に、超電導コンタクトを確実にとるた
めに、Arによるスパッタクリーニングを必らず行なう
必要があった。ところが再現性に対してはバラツキが大
きく、また、素子構成上においては構造上に問題があっ
た。
The conventional Nb film of the lower electrode is
It was divided into several parts and formed. That is, JP-A-61-27
As described in Japanese Patent No. 1877, a part of the lower electrode made of the Nb film is first provided with a convex step on a flat insulating substrate, and then the Nb film of the lower electrode and the tunnel barrier layer are formed on the flat insulating substrate. A
After sequentially forming the QO, film, and upper electrode Nb film,
A joint was formed directly above the step using reactive ion etching. Therefore, this method provides high quality bonding because there is no intervening photo process for pattern formation, and also because it uses a method of forming the lower electrode in two steps. It has the characteristic that the influence of internal stress on bonding properties is small. □However, N
Since the b film is patterned twice, the surface of the first formed Nb pattern on the step is contaminated by photoresist or the like. For this reason, before the next step of forming the three-layer film, it was necessary to perform sputter cleaning with Ar to ensure superconducting contact. However, there were large variations in reproducibility, and there were structural problems in the element configuration.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術においては、ジョセフソン接合素子の下部
電極のNb膜の形成は、内部応力の緩和を図るために2
度に分けて行なっていた。すなわち、平坦な絶縁膜Si
O上に1回目の下部電極のNb膜を150nmスパッタ
形成した後、次いで、この上にレジストパターンを形成
しCF4ガスを用いた反応性イオンエツチングにより凸
状の段差を持っNbパターンを形成する。次いで、Nb
/A Q Ox / N b三層膜との超電導コンタク
トを取るために、凸状のNb膜表面をArによるスパッ
タクリーニングによりホトレジストの汚染物を除去した
後、その上に2回目の下部電極Nb膜50nm、トンネ
ル障壁層のAlOx膜5nm、上部電極Nb膜1100
nをインラインにより連続スパッタ形成する。次いで、
再び、上部電極上にレジストパターンを形成しCF4ガ
スを用いた反応性イオンエツチングにより三層膜と1回
目に形成した凸状の段差を持つ下部電極の一部も含めて
一部パターン加工を行なう。
In the above-mentioned conventional technology, the formation of the Nb film on the lower electrode of the Josephson junction element is carried out in two steps to alleviate internal stress.
It was done in batches. That is, a flat insulating film Si
After a first Nb film of 150 nm for the lower electrode is formed on the O by sputtering, a resist pattern is formed thereon and an Nb pattern having convex steps is formed by reactive ion etching using CF4 gas. Then, Nb
/A Q Ox / Nb In order to make superconducting contact with the three-layer film, after removing contaminants from the photoresist by sputter cleaning the convex Nb film surface with Ar, a second lower electrode Nb film is deposited on top of it. 50 nm, tunnel barrier layer AlOx film 5 nm, upper electrode Nb film 1100
n is continuously formed by in-line sputtering. Then,
Again, a resist pattern is formed on the upper electrode, and a part of the pattern is processed by reactive ion etching using CF4 gas, including the three-layer film and a part of the lower electrode with the convex step formed in the first step. .

すなわち、ジョセフソン接合を形成する下部電極は、1
回目に凸状段差として形成した膜厚150nmのNb膜
と、2回目のインラインにより形成された膜厚50nm
のNb膜との合計膜厚200nmによって構成される。
That is, the lower electrode forming the Josephson junction is 1
The Nb film with a thickness of 150 nm was formed as a convex step in the second time, and the Nb film with a thickness of 50 nm was formed by in-line in the second time.
The total film thickness including the Nb film is 200 nm.

以上の様に、ジョセフソン接合を構成する三層膜はイン
ラインにより連続スパッタ形成を行なうためにホト工程
が途中に介在しない利点がある。
As described above, the three-layer film constituting the Josephson junction has the advantage that there is no intervening photo process because it is formed by continuous in-line sputtering.

しかし、1回目の下部電極のNb膜で凸状段差をパター
ン加工する際、ホト工程が1度介在する欠点がある。し
たがって、Nb段差上の汚染物を完全に除去をしないと
超電導コンタクトを確実に取ることができない。また、
同時にArによるスパッタクリーニングによって完全に
Nbの酸化物を除去しないと同様な問題が生ずる。さら
に、スパッタダメージによってNbの表面状態が種々異
なるために、次の三層膜形成時において結晶の配向性に
影響を及ぼすことが考えられる。このために。
However, when patterning the convex steps using the Nb film of the lower electrode for the first time, there is a drawback that a photo process is involved once. Therefore, unless the contaminants on the Nb step are completely removed, superconducting contact cannot be established reliably. Also,
At the same time, if the Nb oxide is not completely removed by sputter cleaning using Ar, a similar problem will occur. Furthermore, since the surface state of Nb varies due to sputtering damage, it is thought that the crystal orientation will be affected during the next three-layer film formation. For this.

接合特性のバラツキや再現性に問題があって回路の動作
マージンがきわめて狭く支障をきたしていた。したがっ
て、これらの問題を解消するために下部電極の内部応力
緩和のための新しい構造のジョセフソン接合素子の形成
方法が強く要望されていた。
There were problems with variations in bonding characteristics and reproducibility, and the operating margin of the circuit was extremely narrow, causing problems. Therefore, in order to solve these problems, there is a strong demand for a method for forming a Josephson junction element with a new structure for relieving the internal stress of the lower electrode.

本発明の目的は、下部電極Nb膜の内部応力を充分に緩
和できる様な構造を持つジョセフソン接合素子の形成方
法を提供することにある。
An object of the present invention is to provide a method for forming a Josephson junction element having a structure that can sufficiently alleviate the internal stress of the lower electrode Nb film.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、予じめ、基板に深い溝を形成することによ
り、達成される。この溝は、スクライブラインに対応し
た位置に形成するものであり、特に素子構成上において
は問題とならず、三層膜は絶縁膜を介した後の清浄面に
インラインにより連続形成する。
The above object is achieved by previously forming deep grooves in the substrate. This groove is formed at a position corresponding to the scribe line, and does not pose a problem particularly in terms of device configuration, and the three-layer film is continuously formed in-line on the clean surface after interposing the insulating film.

〔作用〕[Effect]

三層膜はスクライブラインの溝の所で切断されて連続膜
と成らずに下部電極Nb膜の内部応力が解放できる。そ
の後に、通常のパターン加工によって形成すれば、超電
導コンタクトを取るためのArによるスパッタクリーニ
ングの工程も省略出来て、再現性の良い接合特性の素子
が得られる。
The three-layer film is cut at the groove of the scribe line, so that the internal stress of the lower electrode Nb film can be released without forming a continuous film. If the layer is then formed by normal pattern processing, the step of sputter cleaning using Ar for making a superconducting contact can be omitted, and an element with bonding characteristics with good reproducibility can be obtained.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図(a)は、本発明のSi基板にスクライブライン
の位置に対応して形成した溝を示す平面図である。まず
、直径50mmφのSi基板11上にAZ1470レジ
スト(米国ヘキスト社商品名)を膜厚2μmをスピン塗
布した後に、90℃。
FIG. 1(a) is a plan view showing grooves formed in the Si substrate of the present invention corresponding to the positions of scribe lines. First, AZ1470 resist (trade name of Hoechst, Inc., USA) was spin-coated to a thickness of 2 μm on a Si substrate 11 with a diameter of 50 mmφ, and then heated at 90°C.

20分間のプリベークを行った。次いでスクライブライ
ンピッチ5++un、パターン幅200μmから成るホ
トマスクを用いて密着露光法により20秒間のパターン
転写を行なった。次いで、AZデベロッパー:水=1=
1の組成で液温24℃中で60秒間の現像処理を行ない
水洗120秒後にスピン乾燥をしてレジストパターンを
形成した。次いで、CF4ガスを用いて反応性イオンエ
ツチングにより深さ、2μmと成る様にエツチング時間
を設定してパターン加工を行った。レジストをアセトン
により除去後、溝12を形成した。第1図(b)は、前
記第1図(a)のA−A’線で切断した箇所の断面図を
示したものである。Si基板11の表面に形成された溝
12は、急峻なほど効果があることは言うまでもないが
、この上に絶縁膜を介して下部電極Nb膜、トンネル障
壁層のA Q Ox膜、上部電極Nb膜の三層膜をイン
ラインで連続スパッタ形成した際に、連続膜と成らない
様にすることがポイントである。したがって。
Prebaking was performed for 20 minutes. Next, pattern transfer was performed for 20 seconds by contact exposure using a photomask having a scribe line pitch of 5++un and a pattern width of 200 μm. Next, AZ developer: water = 1 =
A resist pattern was formed using composition No. 1 by developing for 60 seconds at a liquid temperature of 24° C., washing with water for 120 seconds, and then spin drying. Next, a pattern was formed by reactive ion etching using CF4 gas, with the etching time set to a depth of 2 μm. After removing the resist with acetone, grooves 12 were formed. FIG. 1(b) shows a sectional view taken along line AA' in FIG. 1(a). It goes without saying that the steeper the groove 12 formed on the surface of the Si substrate 11, the more effective it is. When a three-layer film is successively formed in-line by sputtering, it is important to avoid forming a continuous film. therefore.

溝12のテーパ角度は85度以上とすることが望しい。It is desirable that the taper angle of the groove 12 be 85 degrees or more.

第2図は、本発明の゛基板上に三層膜をスパッタ形成し
た時の断面図であり、第1図(b)の点線丸印内の拡大
部を示す。Si基板21に前述した条件で溝を形成した
後、次いで、層間絶縁膜Si○22を膜厚600nm形
成した。次いで、インラインにより、まず、下部電極2
4のNb膜を膜厚200nmスパッタ形成した後、次い
で、トンネル障壁層25のAQ、○、膜を5nmスパッ
タ形成した。次いで上部電極26のNb膜を膜厚110
0nスパッタ形成し大きなジョセフソン接合をウェーハ
全面に形成した。この結果、図から明らかな様に溝23
の段差上下で三層膜は連続膜と成らず分難しているのが
わかる。その後にCF4ガスを用いて反応性イオンエツ
チングでパターン加工を行えば、下部電極の内部応力の
影響を受けることなく良好な接合パターンが得られる。
FIG. 2 is a cross-sectional view when a three-layer film is sputtered on a substrate according to the present invention, and shows an enlarged portion within the dotted circle in FIG. 1(b). After forming a groove in the Si substrate 21 under the conditions described above, an interlayer insulating film Si◯22 was then formed to a thickness of 600 nm. Next, in-line, first, the lower electrode 2
After forming the Nb film No. 4 to a thickness of 200 nm by sputtering, next, the AQ, O, film of the tunnel barrier layer 25 was formed by sputtering to a thickness of 5 nm. Next, the Nb film of the upper electrode 26 is made to have a thickness of 110 mm.
A large Josephson junction was formed on the entire surface of the wafer by 0n sputtering. As a result, as is clear from the figure, the groove 23
It can be seen that the three-layer film is difficult because it does not form a continuous film at the top and bottom of the step. If pattern processing is then performed by reactive ion etching using CF4 gas, a good bonding pattern can be obtained without being affected by the internal stress of the lower electrode.

また、本発明では下部電極を1回で形成するためにホト
レジスト等による汚染の心配がまったく無いので超電導
コンタクト等の問題を考える必要が無い。さらに、内部
応力緩和のためのスクライブライン内設けた溝は、素子
構成上において設計の余裕度を広げる上でも効果が大き
い。したがって。
Furthermore, in the present invention, since the lower electrode is formed in one step, there is no need to worry about contamination by photoresist or the like, so there is no need to consider problems such as superconducting contacts. Furthermore, the grooves provided in the scribe line for relieving internal stress are highly effective in increasing the margin of design in terms of element configuration. therefore.

本発明により従来の問題点をほぼ解決することが可能と
なった。
The present invention has made it possible to solve most of the conventional problems.

本発明により形成したインライン型 N b / A Q Ox / N b系ジョセフソン
接合素子の断面図を第3図に示す。
FIG. 3 shows a cross-sectional view of an in-line type Nb/AQOx/Nb-based Josephson junction device formed according to the present invention.

基板には、直径50mmφの厚さ400μm。The substrate has a diameter of 50 mmφ and a thickness of 400 μm.

〈100〉のSi基板31を用いた。まず、このSi基
板31上にAZ1470レジスト(米国へキスト社製商
品名)を膜厚2μmをスピン塗布により形成した。次い
で、90℃、20分間のプリベーク後、スクライブライ
ンピッチ2 、5 mm、溝のパターン幅180μmか
ら成るフォトマスクを用いて密着露光により20秒間の
パターン転写を行った。次いで、AZデベロッパー:水
=1:1の組成比で液温24℃中で60秒間の現像処理
を行ない水洗120秒後、スピン乾燥をしてレジストパ
ターンを形成した。次いで、このSi基板31をパター
ン加工をするために、真空装置内に挿入し、減圧した後
、CF4ガスによる反応性イオンエツチングにより、C
F4圧力26Pa、N力100Wの条件でレジストパタ
ーンをマスクにしてスクライブライン中のSiを深さ、
2μmに成る様にエツチング除去した。次いで、真空装
置内から取り出してからアセトンによりリフトオフを行
なってスクライブラインに対応した位置に幅180μm
、深さ、2μmの溝を形成した。なお、図中ではこの部
分の溝は省略しである。次いで、Si#、、板31上を
絶縁するために、再び、真空装置内に挿入し、減圧した
後、層間絶縁膜として5i032を300nm被着した
。真空装置内から取り出した後、層間絶縁膜S i O
32の被着面には触れない様にして、この上にNb/A
flOX/Nb三層膜をインラインで連続形成するため
にスパッタ装置内に挿入し減圧した。次いで、下部電極
33と成る膜厚200nmのNb膜をDCマグネトロン
スパッタ法により被着した。被着条件は、Ar圧力0.
6Pa、堆積速度3nm/秒とした。次いで、同一スパ
ッタ装置内でSi基板31をAQのターゲット真下に移
動してAQを膜厚5nm被着した。AQの堆積速度は0
.2nrn/秒とした。へ〇膜形成後スパッタ装置内に
02ガスを100 P’ a導入し室温(24−26°
C)中で40分間の自然酸化を行ってAQの表面酸化膜
であるAQOX層34層形4した(本実施例ではx=2
)。再び、スパッタ装置内を真空排気した後、Si基板
31をNbのターゲット真下に移動し、DCマグネトロ
ンスパッタ法によりNb膜を1100n被着した。三層
膜をインラインで連続形成した後、Si基板31をスパ
ッタ装置内から取出した。次いで、先ず、下部電極33
を含むレジストパターンを上部電極35上に次の条件で
形成した。AZ1350レジストを膜厚0.8μmをス
ピン塗布により形成した。次いで、90℃。
A <100> Si substrate 31 was used. First, AZ1470 resist (trade name, manufactured by Hequist, Inc., USA) was formed on the Si substrate 31 to a thickness of 2 μm by spin coating. Next, after prebaking at 90° C. for 20 minutes, pattern transfer was performed for 20 seconds by contact exposure using a photomask having a scribe line pitch of 2.5 mm and a groove pattern width of 180 μm. Next, a development process was performed for 60 seconds at a liquid temperature of 24° C. with a composition ratio of AZ developer:water=1:1, and after washing with water for 120 seconds, spin drying was performed to form a resist pattern. Next, in order to pattern the Si substrate 31, the Si substrate 31 is inserted into a vacuum device, the pressure is reduced, and carbon is etched by reactive ion etching using CF4 gas.
Under the conditions of F4 pressure 26 Pa and N force 100 W, Si in the scribe line was etched to a depth using the resist pattern as a mask.
It was removed by etching to a thickness of 2 μm. Next, after taking it out from the vacuum device, lift-off is performed with acetone to form a 180 μm wide strip at a position corresponding to the scribe line.
, a groove with a depth of 2 μm was formed. Note that the groove in this portion is omitted in the figure. Next, in order to insulate the top of the Si# plate 31, it was inserted into the vacuum apparatus again, the pressure was reduced, and then 300 nm of 5i032 was deposited as an interlayer insulating film. After taking it out from the vacuum equipment, the interlayer insulating film S i O
Do not touch the adhered surface of 32, and apply Nb/A on top of this.
In order to continuously form a flOX/Nb three-layer film in-line, it was inserted into a sputtering apparatus and the pressure was reduced. Next, a 200 nm thick Nb film, which will become the lower electrode 33, was deposited by DC magnetron sputtering. The deposition conditions were Ar pressure 0.
The pressure was 6 Pa and the deposition rate was 3 nm/sec. Next, within the same sputtering apparatus, the Si substrate 31 was moved directly below the AQ target, and AQ was deposited to a thickness of 5 nm. The deposition rate of AQ is 0
.. The speed was set at 2nrn/sec. After film formation, 100 P'a of 02 gas was introduced into the sputtering equipment and the temperature was increased to room temperature (24-26°
Natural oxidation was performed for 40 minutes in C) to form a 34-layer AQOX layer, which is a surface oxide film of AQ (in this example, x = 2).
). After evacuating the inside of the sputtering apparatus again, the Si substrate 31 was moved directly below the Nb target, and a 1100 nm thick Nb film was deposited by DC magnetron sputtering. After continuously forming the three-layer film in-line, the Si substrate 31 was taken out from the sputtering apparatus. Next, first, the lower electrode 33
A resist pattern containing the following was formed on the upper electrode 35 under the following conditions. An AZ1350 resist was formed by spin coating to a thickness of 0.8 μm. Then, 90°C.

20分間のプリベーク後、密着露光により8秒間のパタ
ーン転写を行なった。次いで、AZデベロッパー:水=
1=1の組成で液温24℃中で60秒間の現像処理を行
ない、水洗120秒後、スピン乾燥をしてレジストパタ
ーンを転写した。次いで、このSi基板31をエツチン
グ加工をするために、真空装置内に挿入し、減圧した後
、まず、上部電極35のNb膜をCF4ガスによる反応
性イオンエツチングにより、CF4圧力26Pa。
After prebaking for 20 minutes, pattern transfer was performed for 8 seconds by contact exposure. Next, AZ Developer: Water =
With a composition of 1=1, development was performed for 60 seconds at a liquid temperature of 24° C., and after washing with water for 120 seconds, spin drying was performed to transfer the resist pattern. Next, in order to perform an etching process, this Si substrate 31 is inserted into a vacuum apparatus and the pressure is reduced. First, the Nb film of the upper electrode 35 is subjected to reactive ion etching using CF4 gas at a CF4 pressure of 26 Pa.

=力toowの条件でレジストパターン以外のNb膜部
分を除去した。AQ、の表面酸化膜AlOx34が露出
した時点でArによるイオンビームエツチングに切り替
えてAr圧力2X10=Pa、加速電圧600eV、イ
オン電流密度0.5mA/am2の条件下で約5分間の
イオンエツチングを行った後、引続いて、下部電極33
の配線部分のエツチングを前述した上部電極35と同条
件で行なった。真空装置内から取り出した後、アセトン
によりパターン上のレジストを除去した。次いで、接合
面積を規定するレジストパターンを次の条件で上部電極
35上に形成した。
The portion of the Nb film other than the resist pattern was removed under the condition of = too much force. When the surface oxide film AlOx 34 of AQ was exposed, the switch was made to ion beam etching using Ar, and ion etching was performed for about 5 minutes under the conditions of Ar pressure 2×10=Pa, acceleration voltage 600 eV, and ion current density 0.5 mA/am2. After that, the lower electrode 33
The wiring portion was etched under the same conditions as for the upper electrode 35 described above. After taking it out from the vacuum apparatus, the resist on the pattern was removed with acetone. Next, a resist pattern defining the bonding area was formed on the upper electrode 35 under the following conditions.

AZ1470レジストを膜厚、2μmをスピン塗布によ
り形成した。次いで、90℃、20分間のプリベーク後
、密着露光により12秒間のパターン転写を行なった。
An AZ1470 resist was formed by spin coating to a thickness of 2 μm. Next, after prebaking at 90° C. for 20 minutes, pattern transfer was performed for 12 seconds by contact exposure.

接合面積は、8μml:lである。再び、真空装置に挿
入し、前述した上部電極35.下部電極33の配線パタ
ーンと同じ条件でCF4ガスにより上部電極35のNb
膜をレジストパターン以外の部分をCF4ガスによる反
応性イオンエツチングで除去した。この後、真空装置内
より取り出してレジストパターンをリフトオフマスクと
して、再び、絶縁膜蒸着装置へ挿入し減圧した後、下部
電極33が完全に5ilk縁膜36によって被覆できる
だけの膜厚を被着した。
The junction area is 8 μml:l. Insert the upper electrode 35. into the vacuum device again and remove the upper electrode 35. Nb of the upper electrode 35 is removed by CF4 gas under the same conditions as the wiring pattern of the lower electrode 33.
The portion of the film other than the resist pattern was removed by reactive ion etching using CF4 gas. Thereafter, it was taken out of the vacuum apparatus and inserted into the insulating film deposition apparatus again using the resist pattern as a lift-off mask to reduce the pressure, and then the lower electrode 33 was deposited to a thickness sufficient to completely cover the 5ilk film 36.

その後、再び、真空装置内より取り出しアセトンにより
リフトオフを行ない下部電極33.上部電極35で面積
規定された接合部上の一部へSi絶縁膜36が埋戻され
て層間絶縁膜となった。次いで、上部電極35の表面を
Ar中の高周波放電によりスパッタクリーニング処理を
行なった後、上部電極接続用のNb膜を膜厚300nm
被着して配線電極膜を形成した。Nb膜の被着条件は、
前述の下部電極33.上部電極35と同条件でマグネト
ロンスパッタ法により被着した。真空装置内より取り出
した後、前述した条件によりレジストパターンを形成し
た。次いで、再び、スパッタ装置内に挿入し減圧してか
ら、CF、ガスにより反応性イオンエツチングでレジス
トパターン以外のNb膜をエツチング除去し、上部電極
35に接続する配線電極37を形成した。
Thereafter, the lower electrode 33 is removed from the vacuum apparatus again and lifted off with acetone. A Si insulating film 36 was filled back into a part of the junction area defined by the upper electrode 35 to become an interlayer insulating film. Next, the surface of the upper electrode 35 is sputter-cleaned by high-frequency discharge in Ar, and then a Nb film for connecting the upper electrode is formed to a thickness of 300 nm.
A wiring electrode film was formed by depositing. The conditions for depositing the Nb film are:
The aforementioned lower electrode 33. It was deposited by magnetron sputtering under the same conditions as the upper electrode 35. After taking it out from the vacuum apparatus, a resist pattern was formed under the conditions described above. Next, the Nb film was inserted into the sputtering apparatus again and the pressure was reduced, and then the Nb film other than the resist pattern was etched away by reactive ion etching using CF and gas, and a wiring electrode 37 connected to the upper electrode 35 was formed.

なお、本実施例では絶縁膜としてSi○、Siを用いた
が5i02.Al2203.Mg○l G e IMg
F等を用いても同様の効果が得られる。また。
In this example, Si○ and Si were used as the insulating film, but 5i02. Al2203. Mg○l G e IMg
A similar effect can be obtained by using F or the like. Also.

超電導膜としては、Nbを用いたが本発明はこれに限ら
れることなく、N b N 、 M o N 、 T 
a N 。
Although Nb was used as the superconducting film, the present invention is not limited to this, and Nb N , M o N , T
aN.

TiN等を用いても同様の効果が得られる。A similar effect can be obtained by using TiN or the like.

例えば、256個直列に接続した1、8μm口のジョセ
フソン接合の超電導臨界電流(I c)のバラツキは±
5〜6%であり、また、リーク割合RJ / Rn n
は15〜20と従来の5〜8に比べて約半分以下に小さ
く形成出来る様になった。このため、回路の動作マージ
ンも大幅に向上することが実現可能となった。
For example, the variation in the superconducting critical current (I c) of 256 1.8 μm Josephson junctions connected in series is ±
5-6%, and the leakage rate RJ/Rn n
It is now possible to form a smaller size of 15 to 20, which is about half or less compared to the conventional size of 5 to 8. Therefore, it has become possible to significantly improve the operating margin of the circuit.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ジョセフソン接合素子の下部電極に用
いるNb膜の内部応力はスパッタ時において充分に緩和
されパターン加工を行った際にもトンネル障壁層に悪影
響を及ぼすことなく接合特性の劣下も見られず再現性の
良い素子が得られることが可能となった。
According to the present invention, the internal stress of the Nb film used for the lower electrode of the Josephson junction element is sufficiently relaxed during sputtering, and even when patterning is performed, there is no adverse effect on the tunnel barrier layer and the junction characteristics are reduced. It has become possible to obtain a device with good reproducibility without any visible signs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による溝を形成したSi基板の平面図及
び断面図、第2図は本発明の基板上に三層膜を被着した
時の断面図、第3図は本発明法を用いて作製したジョセ
フソン接合素子の断面図である。 11,2、31・・・Si基板、12・・・溝、22.
32・・・絶縁膜、24.33・・・下部電極、25.
34・・・トンネル障壁層、26.35・・・上部電極
、37・・・配線電極。
FIG. 1 is a plan view and a cross-sectional view of a Si substrate with grooves formed according to the present invention, FIG. FIG. 11, 2, 31...Si substrate, 12...groove, 22.
32... Insulating film, 24. 33... Lower electrode, 25.
34... Tunnel barrier layer, 26.35... Upper electrode, 37... Wiring electrode.

Claims (1)

【特許請求の範囲】 1、基板上にNb膜からなる下部電極と、 AlO_x膜からなるトンネル障壁層と、Nb膜からな
る上部電極とにより構成される三層膜を連続形成する工
程において、上記基板の表面のスクライブラインに対応
した位置に幅50〜200μm、深さ0.2〜2.0μ
mの凹状の溝を設け、上記三層膜を形成することを特徴
とするジョセフソン接合素子の形成方法。
[Claims] 1. In the step of successively forming a three-layer film consisting of a lower electrode made of a Nb film, a tunnel barrier layer made of an AlO_x film, and an upper electrode made of a Nb film on a substrate, Width 50-200μm and depth 0.2-2.0μm at the position corresponding to the scribe line on the surface of the substrate
A method for forming a Josephson junction element, characterized in that a concave groove of m is provided and the three-layer film described above is formed.
JP62311094A 1987-12-10 1987-12-10 Manufacture of josephson junction device Granted JPH01152774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62311094A JPH01152774A (en) 1987-12-10 1987-12-10 Manufacture of josephson junction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62311094A JPH01152774A (en) 1987-12-10 1987-12-10 Manufacture of josephson junction device

Publications (2)

Publication Number Publication Date
JPH01152774A true JPH01152774A (en) 1989-06-15
JPH055386B2 JPH055386B2 (en) 1993-01-22

Family

ID=18013060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62311094A Granted JPH01152774A (en) 1987-12-10 1987-12-10 Manufacture of josephson junction device

Country Status (1)

Country Link
JP (1) JPH01152774A (en)

Also Published As

Publication number Publication date
JPH055386B2 (en) 1993-01-22

Similar Documents

Publication Publication Date Title
US4299679A (en) Method of producing Josephson elements of the tunneling junction type
JPS63234533A (en) Formation of josephson junction element
JPH01152774A (en) Manufacture of josephson junction device
JPH02189981A (en) Semiconductor device and manufacture thereof
JPH0217684A (en) Superconducting sensor and manufacture thereof
JPS61216329A (en) Manufacture of semiconductor device
JPH01152775A (en) Forming method of pattern of josephson junction device
JPH01168080A (en) Manufacture of josephson junction element
JPS58209176A (en) Manufacture of josephson junction element
JPH0448788A (en) Formation of pattern of josephson junction element
JPS61263179A (en) Manufacture of josephson junction element
JPS58125880A (en) Josephson junction element
KR960010058B1 (en) Tapered metal electrode forming method
JPH04192383A (en) Forming method for pattern of josephson-junction element
JPS62195190A (en) Formation of planar type josephson junction device
JPH03106080A (en) Manufacture of superconducting device
JPH03233982A (en) Forming method for pattern of josephson junction element
JPS61278181A (en) Formation of josephson element
JPH02257681A (en) Machining method of superconductive thin-film
JPH02189986A (en) Processing method for niobium film or niobium nitride film
JPH0513395B2 (en)
JPH04352479A (en) Method of forming pattern of josephson junction element
JPH02203576A (en) Forming method of josephson junction element
JPH03245528A (en) Pattern formation
JPS58209179A (en) Manufacture of josephson junction element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term