JPH02255553A - Composition of dielectric ceramics - Google Patents

Composition of dielectric ceramics

Info

Publication number
JPH02255553A
JPH02255553A JP1077582A JP7758289A JPH02255553A JP H02255553 A JPH02255553 A JP H02255553A JP 1077582 A JP1077582 A JP 1077582A JP 7758289 A JP7758289 A JP 7758289A JP H02255553 A JPH02255553 A JP H02255553A
Authority
JP
Japan
Prior art keywords
calcined
powder
composition
dielectric
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1077582A
Other languages
Japanese (ja)
Inventor
Hiroshi Kagata
博司 加賀田
Yoichiro Yokoya
横谷 洋一郎
Junichi Kato
純一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1077582A priority Critical patent/JPH02255553A/en
Publication of JPH02255553A publication Critical patent/JPH02255553A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To allow calcination at a relatively low temp. and to improve the change of an insulation resistance and dielectric constant with temp. by mixing PbO, CaCO3, SrCO3, BaCO3, MgO, Nb2O5, WO3, TiO2, and CuO and calcining the mixture. CONSTITUTION:The PbO, CaCO3, SrCO3, BaCO3, MgO, Nb2O5, WO3, TiO2, and CuO having chemically high purity are mixed and are ground by a wet process and thereafter, the mixture is dried and calcined to obtain the calcined powder. An org. binder is added to the powder obtd. by grinding the calcined powder by a wet process then drying the powder and after the powder is molded under pressurization, the molding is calcined. The compsn. of the dielectric ceramics which can be calcined at <=1000 deg.C, >=8000 dielectric constant, has >=800kg/cm<2> deflective strength by a 3-point bending method and in which X, Y in formula (Me is >=1 kinds of the elements selected from Ca, Sr and Ba) are in a range enclosed by A, B, C, D, E of the table and (a) and aZ are 0.03<=a<1.0, 0.002<=aZ<=0.04 is thus obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、1000℃以下の比較的低温で焼成可能な高
誘電率系の誘電体磁器組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a high dielectric constant dielectric ceramic composition that can be fired at a relatively low temperature of 1000° C. or lower.

従来の技術 電子機器の小型化に伴う、素子の小型、大容量化への要
求か・ら、近年セラミックコンデンサの市場において積
層型のものが主流になりつつある。
BACKGROUND OF THE INVENTION Due to the demand for smaller devices and larger capacitances as electronic devices become smaller, multilayer capacitors have become mainstream in the ceramic capacitor market in recent years.

積層セラミックコンデンサは、通常内部電極と誘電体磁
器を同時焼成することにより得る。従来より高誘電率系
セラミックコンデンサ用の誘電体材料として、チタン酸
バリウム系の、磁器組成物が広く用いられている。しか
゛し、チタン酸バリウム系の磁器は焼成温度は1800
℃程度と高いため、積層コンデンサを製造する場合、内
部電極としてPdあるいはPt等の高価な金属を用いる
必要があった。
Multilayer ceramic capacitors are usually obtained by co-firing internal electrodes and dielectric ceramics. BACKGROUND ART Barium titanate-based ceramic compositions have been widely used as dielectric materials for high-permittivity ceramic capacitors. However, the firing temperature for barium titanate porcelain is 1800℃.
Since the temperature is as high as approximately .degree. C., it is necessary to use an expensive metal such as Pd or Pt for the internal electrodes when manufacturing a multilayer capacitor.

そこで、1000℃以下の温度で焼成でき、内部電極と
してAgs  あるいはCu等を主成分とする安価な材
料を用いることが可能な鉛系のペロブスカイト誘電体磁
器組成物が数多く提案されている。
Therefore, many lead-based perovskite dielectric ceramic compositions have been proposed that can be fired at a temperature of 1000° C. or lower and can use inexpensive materials mainly composed of Ags or Cu for the internal electrodes.

発明が解決しようとする課題 しかし、一般に上記の磁器の機械的強度は、チタン酸バ
リウム系の磁器と比較して小さく、焼成後の種々の処理
の際、磁器に欠けや割れが発生する原因となっていた。
Problems to be Solved by the Invention However, the mechanical strength of the above-mentioned porcelain is generally lower than that of barium titanate-based porcelain, which may cause chips and cracks to occur in the porcelain during various treatments after firing. It had become.

例えば、抗切強度を測定した場合、チタン酸バリウム系
の磁器が1000kg/cm2以上あるのに対して、上
記の磁器は700kg/cm2程度しかない。
For example, when measuring the cutting strength, barium titanate porcelain has a strength of 1000 kg/cm2 or more, whereas the above porcelain has a strength of only about 700 kg/cm2.

本発明は、上記の課題を解決する誘電体磁器組成物を提
供することを目的としている。
An object of the present invention is to provide a dielectric ceramic composition that solves the above problems.

課題を解決するための手段 本発明は、組成式 %式% T at−a) z) Oav  (ただし、MeはC
a1 SrあるいはBaのうちより選ばれる一種以上の
元素)において、XおよびYが下記のA181 C1D
およびEで囲まれた範囲にあり、 X       Y A   O,00,15 B   O,00,01 G   O,10,01 D   O,340,45 E   O,340,73 かつ、aおよびaZが下式の範囲にある誘電体磁器組成
物にする。
Means for Solving the Problems The present invention is based on the compositional formula % formula % T at-a) z) Oav (where Me is C
a1 one or more elements selected from Sr or Ba), where X and Y are the following A181 C1D
and E, and X Y A O,00,15 B O,00,01 G O,10,01 D O,340,45 E O,340,73 and a and aZ are the following formulas The dielectric ceramic composition should be made within the range of .

0.03  ≦ a<1.0 0.002  ≦ aZ  ≦ 0.04さらに、上記
組成物100モル部に対して、pbをPboに換算して
、9モル部以下含む誘電体磁器組成物である。
0.03 ≦ a<1.0 0.002 ≦ aZ ≦ 0.04 Furthermore, the dielectric ceramic composition contains 9 mol parts or less of Pb in terms of Pbo with respect to 100 mol parts of the above composition. .

作用 第1の本発明の誘電体磁器組成物によると、組成を限定
した範囲内では、1000℃以下の温度で焼成でき、誘
電率が8000以上であり、三点曲げ法による抗切強度
が800kg/cm2以上となる。
According to the dielectric ceramic composition of the first aspect of the present invention, within a limited range of composition, it can be fired at a temperature of 1000°C or less, has a dielectric constant of 8000 or more, and has a cutting strength of 800 kg by the three-point bending method. /cm2 or more.

第2の本発明の誘電体磁器組成物によると、添加物の作
用により焼結温度をさらに低下させることができる。
According to the dielectric ceramic composition of the second aspect of the present invention, the sintering temperature can be further lowered by the action of the additive.

実施例 以下に、本発明の実施例について図面を参照しながら説
明する。
Examples Examples of the present invention will be described below with reference to the drawings.

実施例1 本実施例は特許請求の範囲第1項記載の発明に対応し、
主組成を選択し、その組成の範囲を限定することにより
、課題を解決したものである。
Example 1 This example corresponds to the invention described in claim 1,
The problem was solved by selecting the main composition and limiting the range of the composition.

出発原料として化学的に高純度なPbO5CaCO5,
5rCOs、BaCO5、MgO,Nb*Os、WOa
、T i Os、およびCuOを用いた。これらを、純
度補正を行なった上で所定量を秤量し、ボールミルによ
り、15時間混合した。溶媒は純水、ボールは直径4m
mのジルコニア球を用いた。混合物を乾燥したのち、ア
ルミナ製のるつぼに入れ、同質の蓋をし、750℃から
900℃で仮焼した。仮焼物をアルミナ乳鉢で粗砕し、
ボールミルにより15時間粉砕した。溶媒およびボール
は、混合と同じものを用いた。十分に乾燥して得た粉末
に、ポリビニルアルコール6wt%水溶液を粉体量に対
して10wt%加えて混合し、32メツシユのふるいを
通して造粒した。造粒物を1000kg/cm2の圧力
で、円板状に加圧成形した。成型物中の有機成分を空気
中650℃で2時間熱処理を行なうことにより飛散させ
た。焼成は、試料をマグネシア製磁器容器の中に入れ、
同質の蓋をし、所定の温度まで400℃/hrで昇温し
、2時間保持した後、400℃/hrで降温した。種々
の温度で焼成した焼結体の密度をアルキメデス法により
測定し、最大密度を与える温度を最適焼成温度とし、以
下の電気特性の測定を行なった。
Chemically pure PbO5CaCO5 as starting material,
5rCOs, BaCO5, MgO, Nb*Os, WOa
, T i Os, and CuO were used. After correcting the purity, a predetermined amount of these was weighed and mixed in a ball mill for 15 hours. The solvent is pure water and the ball is 4m in diameter.
A zirconia sphere of m was used. After drying the mixture, it was placed in an alumina crucible, covered with a homogeneous lid, and calcined at 750°C to 900°C. Roughly crush the calcined material in an alumina mortar,
The mixture was ground in a ball mill for 15 hours. The same solvent and ball as used for mixing were used. A 6 wt % aqueous solution of polyvinyl alcohol was added to the powder obtained by sufficient drying in an amount of 10 wt % based on the powder amount, and the mixture was mixed and passed through a 32 mesh sieve to granulate it. The granules were pressure-molded into a disk shape at a pressure of 1000 kg/cm2. The organic components in the molded product were dispersed by heat treatment in air at 650° C. for 2 hours. For firing, place the sample in a magnesia porcelain container.
A homogeneous lid was placed, and the temperature was raised to a predetermined temperature at a rate of 400°C/hr, held for 2 hours, and then lowered at a rate of 400°C/hr. The density of the sintered bodies fired at various temperatures was measured by the Archimedes method, and the temperature giving the maximum density was determined as the optimum firing temperature, and the following electrical properties were measured.

焼結体の両面にCrを下地にしてAuを真空蒸着し、電
極を形成した。誘電率およびtanδを1 kHZN 
 I V/mmの電界下で測定した。抵抗率を、1kV
/mmの電圧を印加して1分後の値から求めた。また、
焼結体より長さ15mm1 幅3mm1厚さ0.7mm
の直方体を切り出し、三点曲げ法により抗切強度を測定
した。結果は10個の試料の平均を示した。
Au was vacuum-deposited on both sides of the sintered body using Cr as a base to form electrodes. dielectric constant and tanδ to 1 kHz
Measurements were made under an electric field of IV/mm. resistivity to 1kV
It was determined from the value 1 minute after applying a voltage of /mm. Also,
Length 15mm1 Width 3mm1 Thickness 0.7mm from the sintered body
A rectangular parallelepiped was cut out, and the cutting strength was measured using the three-point bending method. Results represent the average of 10 samples.

表1に結果を示す。組成の欄のxlylzl  および
aは、組成式 %式%( W+−−) −) Os、 (ただし、MeはCa、S
rあるいはBaのうちより選ばれる一種以上の元素)中
のX1y、  z、  およびaにそれぞれ相当する。
Table 1 shows the results. xlylzl and a in the composition column are the composition formula % formula % (W+--) -) Os, (where Me is Ca, S
(one or more elements selected from r or Ba) corresponds to X1y, z, and a, respectively.

(以下余白) 表1より、請求の範囲内の組成では、1000℃以下の
温度で焼成でき、室温での誘電率が8000以上であり
、三点曲げ法による抗切強度が800kg/cm”以上
となる。
(Left below) From Table 1, it can be seen that the composition within the claimed range can be fired at a temperature of 1000°C or less, has a dielectric constant of 8000 or more at room temperature, and has a cutting strength of 800 kg/cm” or more by the three-point bending method. becomes.

実施例2 本実施例は特許請求の範囲第2項記載の発明に対応し%
  P bt−P bOに換算して特定量添加すること
により課題を解決したものである。
Example 2 This example corresponds to the invention described in claim 2.
The problem was solved by adding a specific amount in terms of P bt-P bO.

実施例1と同様の方法により、組成式 %式% (Cu+/aW+/a) i、s+s) Osで示され
る組成物100モル部に対して、PbをPbOに換算し
てbモル部となるように配合し、焼結体の特性を評価し
た。
By the same method as in Example 1, Pb is converted to PbO and becomes b mole parts with respect to 100 mole parts of the composition represented by the compositional formula % (Cu+/aW+/a) i, s+s) Os. The properties of the sintered body were evaluated.

表2に結果を示す。Table 2 shows the results.

(以下余白) 第2表 No、に#印を付したものは請求の範囲外の比較例No
、19は請求項1の範囲内 表2より、添加したPbOの量すの増加とともに焼成温
度は低下した。しかし、bが9モル%より多くなると、
機械的強度が800kg/cm”以下となったので、請
求の範囲から除外した。
(The following is a margin) Table 2 No. marked with a # is a comparative example number outside the scope of claims.
, No. 19 is within the scope of claim 1. From Table 2, the firing temperature decreased as the amount of added PbO increased. However, when b is more than 9 mol%,
Since the mechanical strength was less than 800 kg/cm'', it was excluded from the scope of claims.

なお、本発明の効果に対して著しい影響を与えない元素
、例えば、AIN  SIN  Crx  Mn、Fe
、Co5N+1Zn、  Zr1Ta1Sbs  およ
びランタニド元素等の含有は、Iwt%程度までなら構
わない。
Note that elements that do not significantly affect the effects of the present invention, such as AIN SIN Crx Mn, Fe
, Co5N+1Zn, Zr1Ta1Sbs, lanthanide elements, etc. may be contained up to approximately Iwt%.

発明の効果 本発明の誘電体磁器組成物は、1000°C以下の温度
で焼成でき、室温での誘電率が8000以上であり、三
点曲げ法による抗切強度が800kg/cm”以上とな
る。また、絶縁抵抗値も高く、データとして示さなかっ
たが、誘電率の温度変化も良好で、請求の範囲内ではJ
ISのYmF特性を満たしている。
Effects of the Invention The dielectric ceramic composition of the present invention can be fired at a temperature of 1000°C or less, has a dielectric constant of 8000 or more at room temperature, and has a cutting strength of 800 kg/cm” or more by the three-point bending method. In addition, the insulation resistance value was high, and although it was not shown as data, the temperature change in dielectric constant was also good, and within the claimed range, J
It satisfies the YmF characteristics of IS.

ゆえに、内部電極として安価な材料を使用した積層セラ
ミックコンデンサ用の誘電体材料として使用できる。
Therefore, it can be used as a dielectric material for multilayer ceramic capacitors that use inexpensive materials as internal electrodes.

【図面の簡単な説明】[Brief explanation of drawings]

図は組成式、 P b+−xMex  ((Mg+、−3Nb2〕a)
  l−++−zT’ Iy  (Cu5W+−−)−
) Os、(ただし、 M eはCa1SrあるいはB
aのうちより選ばれる一種以上の元素)中のXおよびY
における請求の範囲を斜線で示した組成図である。
The figure shows the composition formula, P b+ -xMex ((Mg+, -3Nb2]a)
l-++-zT' Iy (Cu5W+--)-
) Os, (where Me is Ca1Sr or B
X and Y in one or more elements selected from a)
FIG.

Claims (2)

【特許請求の範囲】[Claims] (1)組成式 Pb_1_−_xMe_x{(Mg_1_/_3Nb_
2_/_3)_1_−_y_−_zTi_y(Cu_a
W_1_−_a)_z}O_3、(ただし、MeはCa
、SrあるいはBaのうちより選ばれる一種以上の元素
)において、XおよびYが下記のA、B、C、D、およ
びEで囲まれた範囲にあり、 ▲数式、化学式、表等があります▼ かつ、aおよびaZが下式の範囲、 0.03≦a<1.0 0.002≦aZ≦0.04 にあることを特徴とする誘電体磁器組成物。
(1) Composition formula Pb_1_-_xMe_x{(Mg_1_/_3Nb_
2_/_3)_1_-_y_-_zTi_y(Cu_a
W_1_-_a)_z}O_3, (Me is Ca
, Sr, or Ba), X and Y are in the range surrounded by A, B, C, D, and E below, and there are ▲mathematical formulas, chemical formulas, tables, etc.▼ A dielectric ceramic composition characterized in that a and aZ are in the following ranges: 0.03≦a<1.0 0.002≦aZ≦0.04.
(2)誘電体磁器組成物100モル部に対して、少なく
ともPbをPbOに換算して、9モル部以下含むことを
特徴とする請求項1記載の誘電体磁器組成物。
(2) The dielectric ceramic composition according to claim 1, wherein the dielectric ceramic composition contains at least 9 mole parts or less of Pb in terms of PbO, based on 100 mole parts of the dielectric ceramic composition.
JP1077582A 1989-03-28 1989-03-28 Composition of dielectric ceramics Pending JPH02255553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1077582A JPH02255553A (en) 1989-03-28 1989-03-28 Composition of dielectric ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1077582A JPH02255553A (en) 1989-03-28 1989-03-28 Composition of dielectric ceramics

Publications (1)

Publication Number Publication Date
JPH02255553A true JPH02255553A (en) 1990-10-16

Family

ID=13637979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1077582A Pending JPH02255553A (en) 1989-03-28 1989-03-28 Composition of dielectric ceramics

Country Status (1)

Country Link
JP (1) JPH02255553A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001444A (en) * 2007-06-20 2009-01-08 Canon Inc Piezoelectric material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001444A (en) * 2007-06-20 2009-01-08 Canon Inc Piezoelectric material

Similar Documents

Publication Publication Date Title
JPS62138360A (en) Dielectric ceramic composition
JPH0354165A (en) Ptc ceramic composition and production thereof
JPH02255553A (en) Composition of dielectric ceramics
JPS6128619B2 (en)
JPH01100051A (en) Dielectric porcelain composition
JPH02255554A (en) Composition of dielectric ceramics
JPH0571538B2 (en)
JPH02192612A (en) Dielectric porcelain composition
JPS6128620B2 (en)
JPH07114824A (en) Dielectric ceramic composition
JPH02192611A (en) Dielectric porcelain composition
JPH02252649A (en) Dielectric porcelain composition
JPH02192610A (en) Dielectric porcelain composition
KR940004381B1 (en) Composition of ceramic dielectric substance
JPH06325620A (en) Dielectric ceramic composition
JPH06275126A (en) Dielectric ceramic composition
JPS61174162A (en) Dielectric ceramic composition
JP2001302333A (en) Dielectric ceramic composition
JPH0238540B2 (en)
JP2003055047A (en) Dielectric ceramic material
KR19990081475A (en) Dielectric ceramic composition
JPH0517222A (en) Porcelain composition for temperature compensation
JPS61191558A (en) High permittivity dielectric ceramic composition
JPS63162571A (en) High permittivity ceramic composition
JPH04351804A (en) Dielectric porcelain composite, and ceramic capacitor and thick film capacitor using said composite