JPH02253010A - Ring member attaching device - Google Patents

Ring member attaching device

Info

Publication number
JPH02253010A
JPH02253010A JP7447989A JP7447989A JPH02253010A JP H02253010 A JPH02253010 A JP H02253010A JP 7447989 A JP7447989 A JP 7447989A JP 7447989 A JP7447989 A JP 7447989A JP H02253010 A JPH02253010 A JP H02253010A
Authority
JP
Japan
Prior art keywords
annular body
spacer
linear expansion
inner ring
mating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7447989A
Other languages
Japanese (ja)
Other versions
JP2615990B2 (en
Inventor
Hirotoshi Takada
浩年 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP7447989A priority Critical patent/JP2615990B2/en
Publication of JPH02253010A publication Critical patent/JPH02253010A/en
Application granted granted Critical
Publication of JP2615990B2 publication Critical patent/JP2615990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mounting Of Bearings Or Others (AREA)

Abstract

PURPOSE:To prevent a ring member from being damaged, by forming a spacer from a material having a linear radial expansion coefficient which is effective in a range from a part making contact with the associated member to a part making contact with the ring member and which varies continuously and radially in a direction common to variations in the linear radial expansion coefficients of the associated member and the ring member. CONSTITUTION:A space 40 is formed of a material having a linear radial expansion coefficient which is effective in a range from its inner peripheral part fitted on a shaft 10 (associated member) to its outer peripheral part fitted in an inner race 20 (ring member) and which varies continuously and radially in a direction common to radial variations in the linear radial expansion coefficients of the shaft 10 and the inner race 20. The radial expansion coefficient of the spacer 40 continuously and steppedly varies. Accordingly, if the value of the linear expansion coefficient, the degree of variations in the radial direction and the like are selected in such a way that the sum of variations in interference between fitting surfaces 42, 43, due to a fact that the temperature of the bearing during use thereof is higher than that upon installation thereof, may be made to be approximately zero, the interference between the spacer 40 and the inner race 20 may be maintained at a substantially constant value, thereby it is possible to effectively transmit a load to the shaft 10 through the intermediary of the spacer 40.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、たとえば軸受の内輪、外輪などの環状体と
、この環状体を取り付ける相手部材との線膨張係数が相
違する場合における環状体の取付装置に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to the improvement of annular bodies, such as the inner ring and outer ring of a bearing, when the linear expansion coefficients of the annular body and the mating member to which this annular body is attached are different. Relating to a mounting device.

〔従来の技術〕[Conventional technology]

従来、たとえば転がり軸受とこれを取りイ」げる相手部
材との線膨張係数が相違する場合の取付構造に関する報
文が、LUBRICATION ENGINEERTG
 198]年7月号の407〜415頁に掲載されてい
る。
Previously, there had been a report on the mounting structure when the linear expansion coefficients of a rolling bearing and the mating member to which it is attached differ, for example, in the LUBRICATION ENGINEERTG.
198], July issue, pages 407-415.

この転がり軸受は、第3図に示すように、軸1に取りイ
1けられた内輪2と、図示を省略した軸箱に取り付けら
れた外輪3との間に、保持器6付きの円筒ころ5が配設
されており、軸1は鋼材により、内輪2ばセラミック材
により作られている。
As shown in FIG. 3, this rolling bearing consists of a cylindrical roller with a retainer 6 installed between an inner ring 2 mounted on a shaft 1 and an outer ring 3 attached to an axle box (not shown). 5 is arranged, the shaft 1 is made of steel material, and the inner ring 2 is made of ceramic material.

内輪2の軸方向の両側端面は中心軸線に対して外開きに
拡径するテーパ面であって、軸1にずきまばめにより嵌
合されている。この内輪2の両側端面は、軸1にしまり
ばめにより嵌合された鋼材からなる一対の間座4によっ
て挟着されており、輔1や間座4が熱膨張したときに、
内輪2と間座4とが挟着面」二で相対的に摺動すること
によって過大な負荷が作用しないようにしである。
Both end surfaces in the axial direction of the inner ring 2 are tapered surfaces that expand outward in diameter with respect to the central axis, and are fitted onto the shaft 1 with a loose fit. Both end surfaces of the inner ring 2 are sandwiched between a pair of spacers 4 made of steel that are fitted onto the shaft 1 by interference fit, and when the spacer 1 and the spacer 4 thermally expand,
The inner ring 2 and the spacer 4 slide relative to each other on the clamping surfaces 2 to prevent excessive loads from being applied.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の転がり軸受においては、軸受に負荷される荷重は
内輪2の両側端面のくさび作用により拡大されて間座4
に伝達されるため、内輪2の両側端面における接触面圧
が著しく増大して摩耗、破損したり、負荷荷重が限界に
達して破壊するなどの不都合が生じることがあり、負荷
荷重の上限値が小さい値に制約されるという問題がある
In the above-mentioned rolling bearing, the load applied to the bearing is magnified by the wedge action of both end faces of the inner ring 2, and
As a result, the contact pressure on both end faces of the inner ring 2 increases significantly, causing problems such as wear and damage, or failure when the load reaches its limit, and the upper limit of the applied load. There is a problem that it is restricted to a small value.

また、内輪2と間座4とを軸1に組み付けるに当たって
、すきまばめにより嵌合されている内輪2と、しまりば
めにより嵌合されている間座4との間で相対滑りが生じ
るため、正確な心出しが困難であって組付は作業に熟練
を要し、作業性の点でも支障がある。
Furthermore, when assembling the inner ring 2 and spacer 4 onto the shaft 1, relative slippage occurs between the inner ring 2, which is fitted with a clearance fit, and the spacer 4, which is fitted with an interference fit. However, accurate centering is difficult and assembly requires skill, which poses a problem in terms of workability.

この発明は上記の問題を解決して、相手部材とは異なる
線膨張係数を有する環状体の運転使用中に、環状体の摩
耗、破損等が生じ難く、また相手部材に対して環状体の
正確な組イ」けが容易にできる取付装置を堤供すること
を目的とする。
This invention solves the above problems, and makes it difficult for the annular body to be worn out or damaged during operation and use of the annular body, which has a linear expansion coefficient different from that of the mating member. The purpose is to provide a mounting device that can easily cause injury.

〔課題を解決するための手段] 上記の目的を達成するため、この発明においては、相手
部材の外周または内周に嵌合された環状体がその相手部
材とは異なる線膨張係数を有し、環状体の相手部材との
嵌合面とは反対側の周面に嵌合するとともに、相手部材
の外周または内周に固く係合する一対の間座により環状
体の軸方向の両側端面を支持してなる数例装置であって
、前記間座は、相手部材に接する部分から環状体に接す
る部分に至る半径方向の線膨張係数が、相手部材と環状
体とによる半径方向の線膨張係数の変化と共通ずる方向
をもって半径方向に連続的または段階的に変化する材料
によって構成しである。
[Means for Solving the Problems] In order to achieve the above object, in the present invention, the annular body fitted on the outer periphery or the inner periphery of the mating member has a linear expansion coefficient different from that of the mating member, Both end surfaces of the annular body in the axial direction are supported by a pair of spacers that fit into the circumferential surface of the annular body on the opposite side of the mating surface with the mating member and firmly engage with the outer or inner circumference of the mating member. The spacer has a coefficient of linear expansion in the radial direction from a portion in contact with the mating member to a portion in contact with the annular body that is equal to the coefficient of linear expansion in the radial direction of the mating member and the annular body. It is constructed of a material that changes continuously or stepwise in the radial direction with a common zigzag direction.

間座の線膨張係数が連続的に変化する材料としては、た
とえばセラミック材と金属材とからなる複合材料を使用
し、間座の線膨張係数が段階的に変化する材料としては
、たとえば線膨張係数の異なる複数個の素材を半径方向
に積層したものを使用する。
For example, a composite material consisting of a ceramic material and a metal material is used as a material whose coefficient of linear expansion changes continuously, and a material whose linear expansion coefficient changes stepwise is, for example, a composite material made of a ceramic material and a metal material. It uses multiple materials with different coefficients laminated in the radial direction.

間座の線膨張係数は、相手部材に接する部分を相手部材
とほぼ等しい線膨張係数に設定し、環状体に接する部分
を環状体とほぼ等しい膨張係数に設定するのが好ましい
It is preferable that the coefficient of linear expansion of the spacer is set such that the portion in contact with the mating member has a linear expansion coefficient substantially equal to that of the mating member, and the portion in contact with the annular body is set to have a coefficient of expansion substantially equal to that of the annular body.

環状体の相手部材に対する嵌合面は、遅くとも環状体の
運転使用時において固い嵌合状態となり、かつ、環状体
に負荷される荷重およびこの嵌合ならびに温度変化によ
る最大応力が、環状体の構成材料の許容最大広ノJより
も小さくなるよ・うな寸法に設定するのが好都合である
The fitting surface of the annular body with respect to the mating member is in a firmly fitted state at the latest during operation of the annular body, and the load applied to the annular body and the maximum stress due to this fitting and temperature change are determined by the configuration of the annular body. It is convenient to set the dimensions to be smaller than the maximum permissible width J of the material.

また、環状体の軸方向の少なくとも一方の端面をテーパ
面に形成し、この環状体と間座との間に、環状体と同一
テーパ角度の対向端面を有する中間間座を挟着させても
よい。この中間間座の相手部材との嵌合面とは反対側の
周面ば、間座に固く係合するか、あるいは一体的に固着
するようにしてもよい。
Alternatively, at least one end surface in the axial direction of the annular body may be formed into a tapered surface, and an intermediate spacer having an opposite end surface having the same taper angle as the annular body may be sandwiched between the annular body and the spacer. good. The circumferential surface of the intermediate spacer on the side opposite to the surface that engages with the mating member may be tightly engaged with the spacer or may be fixed integrally with the spacer.

環状体の軸方向端面にテーパ面を形成する場合ば、その
テーパ角度を環状体の肉厚中心におりる軸方向長さおよ
び直径に対して所定の関係か成立するように設定するの
が好ましい。
When forming a tapered surface on the axial end face of the annular body, it is preferable to set the taper angle so that a predetermined relationship is established with respect to the axial length and diameter of the annular body at the center of its thickness. .

この発明を転がり軸受の軌道軸の取付けに適用する場合
は、間座のi+b方向端部を転がり軸受の転動体に対す
る案内つばに兼用するごとができ、また転動体の保持器
に対する案内輪に兼用することができる。
When this invention is applied to the installation of a raceway shaft of a rolling bearing, the i+b direction end of the spacer can also be used as a guide collar for the rolling elements of the rolling bearing, and also as a guide ring for the cage of the rolling elements. can do.

〔作用] この発明の取付装置によって相手部材に取り付けられた
環状体は、環状体に負荷された荷重を、環状体に嵌合さ
れた間座を介して相手部材に伝達する。
[Operation] The annular body attached to the mating member by the attachment device of the present invention transmits the load applied to the annular body to the mating member via the spacer fitted to the annular body.

環状体の取付時と運転使用時との間で温度変化が生して
も、間座の線膨張係数が相手部材と環状体との線膨張係
数に応じて半径方向に変化する方向性をもっているので
、相手部材に対する間座の停台状態ないしは環状体の嵌
合状態の変化量は間座によって吸収され、環状体に対す
る間座のしめじろはほぼ一定に保たれる。このため、環
状体に負荷された荷重は間座を介して有効に相手部材に
伝達される。
Even if the temperature changes between when the annular body is installed and during operation, the linear expansion coefficient of the spacer has a directionality that changes in the radial direction according to the linear expansion coefficient of the mating member and the annular body. Therefore, the amount of change in the stopping state of the spacer with respect to the mating member or the fitting state of the annular body is absorbed by the spacer, and the tightening margin of the spacer with respect to the annular body is kept almost constant. Therefore, the load applied to the annular body is effectively transmitted to the mating member via the spacer.

とくに、間座の相手部材に接する部分の線膨張係数を相
手部材のそれとほぼ等しく、間座の環状体に接する部分
の線膨張係数を環状体のそれとほぼ等しい値に設定した
場合は、温度変化の前後を通して環状体に対する間座の
嵌合状態の変動がなくなり、一定のしめしろを確実に保
持することができる。
In particular, if the coefficient of linear expansion of the part of the spacer in contact with the mating member is set to be approximately equal to that of the mating member, and the coefficient of linear expansion of the part of the spacer in contact with the annular body is set to a value approximately equal to that of the annular body, temperature changes There is no fluctuation in the fitting state of the spacer to the annular body throughout the front and rear directions, and a constant interference can be reliably maintained.

環状体の相手部材に対する嵌合面が、遅くとも環状体の
運転使用時において固い嵌合状態となり、かつ環状体に
負荷される荷重およびこの嵌合ならびに温度変化による
最大応力が環状体の構成材料の許容最大応力よりも小さ
くなるように嵌合面の寸法を設定した場合には、環状体
に負荷された荷重は、環状体と間座とによって分担して
相手部材に伝達され、しかも環状体は負荷された荷重に
よって破壊することがない。
The mating surface of the annular body with the mating member is in a hard fitted state at the latest during operation of the annular body, and the load applied to the annular body and the maximum stress due to this fitting and temperature change are within the range of the material of the annular body. If the dimensions of the mating surface are set to be smaller than the maximum allowable stress, the load applied to the annular body will be shared by the annular body and the spacer and transmitted to the mating member, and the annular body will It will not break due to the applied load.

また、環状体の軸方向端面にテーパ面を形成し、これと
同一テーパ角度の対向端面を有する中間間座を間座との
間に介在させた場合は、負荷された荷重は、間座と中間
間座とに分担させること、あるいはさらに環状体と間座
と中間間座とに分担させることができる。
In addition, if a tapered surface is formed on the axial end surface of the annular body and an intermediate spacer having an opposite end surface with the same taper angle is interposed between the spacer and the spacer, the applied load will be applied to the spacer and the spacer. It is possible to share the role between the intermediate spacer, or between the annular body, the spacer, and the intermediate spacer.

また、環状体の軸方向端面に形成するテーパ面の角度を
、環状体の肉厚中心における軸方向長さおよび直径に対
して所定の関係が成立するように設定した場合は、温度
変化によって環状体が受ける熱応力の影響を防止するこ
とができる。
In addition, if the angle of the tapered surface formed on the axial end face of the annular body is set to have a predetermined relationship with the axial length and diameter at the center of the thickness of the annular body, the annular shape may change due to temperature changes. It is possible to prevent the effects of thermal stress on the body.

〔実施例] 以下、この発明の実施例を図面に基づいて説明する。〔Example] Embodiments of the present invention will be described below based on the drawings.

第1図は、この発明を円筒ごろ軸受の内輪(環状体)と
輔(相手部材)との組イ」けに適用した実施例である。
FIG. 1 shows an embodiment in which the present invention is applied to the assembly of an inner ring (annular body) and a support (a mating member) of a cylindrical roller bearing.

同図の円筒ころ軸受は、内輪20外輸30および内輪2
0と外輪30との間で保持器51に保持案内される円筒
ころ50により構成されている。
The cylindrical roller bearing shown in the figure has an inner ring 20, a foreign import 30, and an inner ring 2.
It is comprised of cylindrical rollers 50 held and guided by a cage 51 between the outer ring 30 and the outer ring 30.

内輪20の内周側嵌合面21は、軸10に対してずきま
ばめにより嵌合し、内輪20の軸方向両側端面22に形
成された垂直面を一対の間座40により挟着支持した状
態で取り付けである。
The inner peripheral side fitting surface 21 of the inner ring 20 is fitted to the shaft 10 with a loose fit, and the vertical surfaces formed on both axial end surfaces 22 of the inner ring 20 are sandwiched and supported by a pair of spacers 40. It is installed in this state.

各間座40は、軸10の外周面に嵌合する円環部40a
と、円環部40aから軸方向に突出して内@20の端部
の外周側嵌合面23に嵌合する円筒部40bとにより構
成され、円環部40aの内周面42は軸10に対してし
まりばめによる嵌合、または接着、溶接、ねじ締結等に
より固く係合し、円筒部40bの内周面43は内輪20
に対して嵌合している。
Each spacer 40 has an annular portion 40a that fits on the outer peripheral surface of the shaft 10.
and a cylindrical portion 40b that projects in the axial direction from the annular portion 40a and fits into the outer circumferential side fitting surface 23 of the end of the inner @ 20, and the inner circumferential surface 42 of the annular portion 40a is connected to the shaft 10. The inner circumferential surface 43 of the cylindrical portion 40b is tightly engaged with the inner ring 20 by tight fitting, or by adhesion, welding, screw fastening, etc.
It is fitted against the

内輪20の両側端面22と間座40の対向端面とは、接
触させる場合だけに限らず、適当な軸方向すきまを介し
て対向させてもよい。
The opposite end surfaces 22 of the inner ring 20 and the opposing end surfaces of the spacer 40 are not limited to being in contact with each other, but may be opposed with an appropriate axial clearance therebetween.

上記の円筒ころ軸受の内輪20の構成材料は、たとえば
窒化珪素のようなセラミック材、軸10の構成材料は綱
材である。したがって、内輪20の線膨張係数α、は、
輔10の線膨張係数α5よりも小さい。外輪30の構成
材料は軸受鋼である。
The constituent material of the inner ring 20 of the above-mentioned cylindrical roller bearing is a ceramic material such as silicon nitride, and the constituent material of the shaft 10 is a steel material. Therefore, the linear expansion coefficient α of the inner ring 20 is
It is smaller than the linear expansion coefficient α5 of the case 10. The constituent material of the outer ring 30 is bearing steel.

また、間座40は、軸10に嵌合された内周側部分から
内輪20に嵌合された外周側部分6.二至る半径方向の
線膨張係数が、軸10の線膨張係数α5と内輪20の線
膨張係数α、とによる半径方向の変化と共通する方向で
半径方向に変化する材料により構成されている。
Further, the spacer 40 has an inner circumferential portion fitted to the shaft 10 and an outer circumferential portion fitted to the inner ring 20 . It is made of a material whose linear expansion coefficient in the radial direction changes in the same direction as the change in the radial direction due to the linear expansion coefficient α5 of the shaft 10 and the linear expansion coefficient α of the inner ring 20.

間座40の半径方向の線膨張係数は、連続的に変化する
ものであってもよく、段階的変化するものであってもよ
い。線膨張係数が連続的に変化する材料としては、たと
えばセラミック材と金属材との配合比が半径方向に異な
る複合材料(傾斜機能材料)を用いることができ、線膨
張係数が段階的に変化する材料としては、たとえば線膨
張係数の異なる少なくとも2個の素材を嵌合、接着等に
より半径方向に重ね合わせた積層材料を用いることがで
きる。
The linear expansion coefficient in the radial direction of the spacer 40 may change continuously or in steps. As a material whose coefficient of linear expansion changes continuously, for example, a composite material (functionally graded material) in which the blending ratio of ceramic material and metal material varies in the radial direction can be used, and the coefficient of linear expansion changes stepwise. As the material, for example, a laminated material in which at least two materials having different linear expansion coefficients are stacked in the radial direction by fitting, adhering, etc. can be used.

上記の各材料を用いて間座/10を構成する場合におい
て、間座40の円環部40aの内周面42を含む内周側
部分の線膨張係数を軸10の線膨張係数α5にほぼ等し
く設定し、間座40の円筒部40bの内周面43を含む
外周側部分の線膨張係数を内輪20の線膨張係数α、に
ほぼ等しく設定し、内周側部分から外周側部分に至る中
間部分の線膨張係数が、連続的または段階的に変化して
順次減少するように設定するのが好ましい。
When constructing the spacer/10 using each of the above-mentioned materials, the linear expansion coefficient of the inner circumferential portion including the inner circumferential surface 42 of the annular portion 40a of the spacer 40 is approximately equal to the linear expansion coefficient α5 of the shaft 10. The linear expansion coefficient of the outer circumferential portion including the inner circumferential surface 43 of the cylindrical portion 40b of the spacer 40 is set approximately equal to the linear expansion coefficient α of the inner ring 20, and extends from the inner circumferential portion to the outer circumferential portion. It is preferable to set the linear expansion coefficient of the intermediate portion to change continuously or stepwise and to decrease sequentially.

次に、上記構成の円筒ころ軸受の使用時の温度T、が取
付時の温度T8よりも高くなる場合における軸10.内
輪20および間座40の間の荷重伝達機構について説明
する。
Next, the shaft 10 when the temperature T during use of the cylindrical roller bearing configured as described above becomes higher than the temperature T8 during installation. The load transmission mechanism between the inner ring 20 and the spacer 40 will be explained.

いま、軸受の取付時において、内輪20と軸10とがず
きまばめ、間座40は軸10と内輪200に対してそれ
ぞれしまりばめであるとし、軸10は鋼材(線膨張係数
αs)、内輪20はセラミック材(線膨張係数αj)で
あり、間座40は複合材または積層材であって、軸10
に接する内周側部分の線膨張係数α、が軸10の線膨張
係数α5にほぼ等しく、内輪20に接する外周側部分の
線膨張係数α、。が内輪20の線膨張係数α、にほぼ等
しいものとする。
Now, when installing the bearing, it is assumed that the inner ring 20 and the shaft 10 are loosely fitted, the spacer 40 is tightly fitted to the shaft 10 and the inner ring 200, and the shaft 10 is made of steel (linear expansion coefficient αs), The inner ring 20 is made of a ceramic material (linear expansion coefficient αj), the spacer 40 is made of a composite material or a laminated material, and the shaft 10
The linear expansion coefficient α of the inner circumferential side portion in contact with is approximately equal to the linear expansion coefficient α5 of the shaft 10, and the linear expansion coefficient α of the outer circumferential side portion in contact with the inner ring 20. is approximately equal to the linear expansion coefficient α of the inner ring 20.

軸受の取付時における内輪20と軸10とのはめ合いす
きまをΔd1間座40と軸10とのしめしろをΔδ2間
座40と内輪20とのしめしろを△Dとすると、軸受の
使用時においてば、内輪20の軸lOに対するはめ合い
ずきまは、Δd−(α5−αj)(Tb−T、)dにな
り、間座40の軸10に対するしめじろは、Δδ+(α
5−αh、)  (Tb  Ta) dに変化し、間座
40の内輪20に対するしめしろは、 ΔD+(α4−αko)(T、−Ta)Dに変化すると
いう計算結果が得られる。
When the bearing is installed, the fitting clearance between the inner ring 20 and the shaft 10 is Δd1, the interference between the spacer 40 and the shaft 10 is Δδ2, the interference between the spacer 40 and the inner ring 20 is △D, then when the bearing is used, For example, the fitting clearance of the inner ring 20 with respect to the shaft lO is Δd−(α5−αj)(Tb−T,)d, and the fitting clearance of the spacer 40 with respect to the shaft 10 is Δδ+(α
5-αh, ) (Tb Ta) d, and the interference of the spacer 40 with respect to the inner ring 20 is calculated as ΔD+(α4-αko)(T,-Ta)D.

これらのはめ合いすきまとしめしろとの変化量は、相互
に関連して影響を受けるが、内輪20の軸10に対する
ばめ合いずきまの変化量(α、α、)(Tb−Ta) 
dが取付時のずきまΔdよりも小さくなるように設定さ
れているものとずれば、内輪20の軸10に対するはめ
合いずきまが変化しても、これによって間座40の軸1
0と内@20とに対するしめしろが影響を受けることは
少ないと考えてよい。
The amount of change in the fitting clearance and interference is influenced by the relationship between them, but the amount of change in the fitting clearance of the inner ring 20 with respect to the shaft 10 (α, α, ) (Tb-Ta)
If d is set to be smaller than the clearance Δd during installation, even if the fitting clearance of the inner ring 20 with respect to the shaft 10 changes, this will cause the spacer 40 to
It can be considered that the interference for 0 and inner@20 is hardly affected.

そうすれば、間座40の軸10に対するしめしろの変化
量(α5−αb+)(Tb  T−)dは、α5−αア
、であるので、零に近い値であり、間座40の内輪20
に対するしめしろの変化量(α、αk。)  (Tb 
 T−) Dについても同様に、α、−α、。であるの
で、零に近い値であるから、間座40の軸10および内
輪20に対する取付時のしめしろΔdおよびΔDは、使
用時に温度が上昇しても、温度変化の前後を通じてほぼ
一定に保たれることになる。
Then, the amount of change in the interference of the spacer 40 with respect to the shaft 10 (α5−αb+)(Tb T−)d is α5−αa, so it is a value close to zero, and the inner ring of the spacer 40 20
(α, αk.) (Tb
T-) Similarly for D, α, -α,. Therefore, since these values are close to zero, the interferences Δd and ΔD when the spacer 40 is attached to the shaft 10 and the inner ring 20 can be maintained almost constant before and after the temperature change even if the temperature rises during use. It will be dripping.

実際には前記したしめしろ(又はすきま)の変化量が相
互に影響し合うが、間座40の線膨張係数を前記のよう
に方向性を有して構成しであるので、温度がTaからT
、に変化することによる嵌合面42および43の嵌合代
の変化の合計を零に近くするように間座の線膨張係数α
、の大きさ、および半径方向の変化の程度等を選定すれ
ば、しめしろΔDをほぼ一定に保つことが可能である。
In reality, the amount of change in the interference (or gap) described above influences each other, but since the linear expansion coefficient of the spacer 40 is configured to have directionality as described above, the temperature varies from Ta to T
, the linear expansion coefficient α of the spacer is adjusted so that the total change in the fitting distance of the fitting surfaces 42 and 43 due to the change in , becomes close to zero.
, and the degree of change in the radial direction, it is possible to keep the interference ΔD substantially constant.

したがって、軸受に負荷された荷重は、内輪20の外周
側嵌合面23を介して間座40によって軸10に有効に
伝達することができる。
Therefore, the load applied to the bearing can be effectively transmitted to the shaft 10 by the spacer 40 via the outer peripheral fitting surface 23 of the inner ring 20.

上記実施例においては、軸受の取付時と使用時とを通じ
て、内輪20が軸10に対してずきまばめになっている
が、取付時と使用時との温度差および内輪20と軸10
との線膨張係数の差に応じて、遅くとも使用時において
軸10に対してしめじろをもつ固い嵌合状態となるよう
に構成してもよい。この場合は、内輪20の内周側嵌合
面21における最大引張応力σ1.8X、ずなわち軸1
0とのしめしろによる最大引張応力と、軸受に負荷され
た荷重による最大引張応力と、内輪20の外周側嵌合面
23でのしめしろによる圧縮応力との合計が、内輪20
の構成材料の許容引張応力σ1よりも小さくなり、かつ
内輪20の外周側嵌合面23における最大圧縮応力σC
m++x、すなわち間座40とのしめじろによる最大圧
縮応力と、軸10に負荷された荷重による最大圧縮応力
と、内輪20の内周側嵌合面21でのしめじろによる引
張応力との合計が、内輪20の構成材料の許容圧縮応力
σ。よりも小さくなるように、内輪20の各嵌合面21
,23の寸法を設定するのが好ましい。
In the above embodiment, the inner ring 20 is tightly fitted to the shaft 10 both when the bearing is installed and when it is in use.
Depending on the difference in coefficient of linear expansion between the shaft 10 and the shaft 10, the shaft 10 may be configured to be tightly fitted with a tightening margin at the latest during use. In this case, the maximum tensile stress σ1.8X on the inner peripheral side fitting surface 21 of the inner ring 20, that is, the shaft 1
The sum of the maximum tensile stress due to the interference with 0, the maximum tensile stress due to the load applied to the bearing, and the compressive stress due to the interference on the outer circumferential side fitting surface 23 of the inner ring 20 is
is smaller than the allowable tensile stress σ1 of the constituent material, and the maximum compressive stress σC on the outer peripheral side fitting surface 23 of the inner ring 20
m++x, that is, the sum of the maximum compressive stress due to the interference with the spacer 40, the maximum compressive stress due to the load applied to the shaft 10, and the tensile stress due to the interference on the inner peripheral side fitting surface 21 of the inner ring 20 is , allowable compressive stress σ of the constituent material of the inner ring 20. Each fitting surface 21 of the inner ring 20 is made smaller than the
, 23 are preferably set.

このような構成にすると、軸受の使用時の温度T、が取
付時の温度Taよりも上昇したときに、間座40の内輪
20に対するしめしろが、間座40の軸10に対するし
めしろと、内輪20の軸10に対するしめしろとによる
影をを受けることになるが、間座40の線膨張係数が前
述のように半径方向に変化する方向性をもっているので
、間座40の軸10に対するしめしろの変化量(α5α
kl)  (Tb −Ta ) dと、内輪20の軸1
0に対するしめしるに伴って生ずる間座40の軸10に
対するしめしろの変化量との合計が、間座40の内部歪
によって吸収されて零に近い値になる。
With such a configuration, when the temperature T during use of the bearing rises higher than the temperature Ta during installation, the interference of the spacer 40 with respect to the inner ring 20 becomes equal to the interference of the spacer 40 with respect to the shaft 10. Although it will be affected by the interference of the inner ring 20 with respect to the shaft 10, since the coefficient of linear expansion of the spacer 40 has a directionality that changes in the radial direction as described above, the interference of the spacer 40 with respect to the shaft 10 will be affected. Amount of change in white (α5α
kl) (Tb - Ta) d and the shaft 1 of the inner ring 20
The sum of the amount of change in the interference of the spacer 40 with respect to the shaft 10 that occurs as the interference is made relative to 0 is absorbed by the internal strain of the spacer 40 and becomes a value close to zero.

このため、軸受の取付時に設定した間座40の内輪20
に対するしめしろΔDは、軸10に対するしめしろΔδ
が変化しても、温度変化の前後を通じてほぼ一定に保た
れることになる。
For this reason, the inner ring 20 of the spacer 40 set when installing the bearing
The interference ΔD with respect to the axis 10 is the interference Δδ with respect to the axis 10
Even if the temperature changes, it will remain almost constant throughout the period before and after the temperature change.

これにより、軸受に負荷された荷重は、間座40を介し
て軸10に伝達される部分と、内輪20の内周側嵌合面
21を通して直接軸10に伝達される部分とに分かれ、
間座40のめを介して荷重を伝達する前記実施例の場合
に比べて、内輪20の間座40を介しての分担荷重が減
少するから、その分だけ軸受の許容最大負荷荷重を増大
するか、あるいは内輪20の許容引張応力σ7と許容圧
縮応力σ。との値に応じて各嵌合面2]、23による伝
達荷重を最適値にすることによって合計伝達可能荷重を
最大にすることができる。
As a result, the load applied to the bearing is divided into a portion that is transmitted to the shaft 10 via the spacer 40 and a portion that is transmitted directly to the shaft 10 through the inner fitting surface 21 of the inner ring 20.
Compared to the case of the above embodiment in which the load is transmitted through the spacer 40, the load shared by the inner ring 20 through the spacer 40 is reduced, so the maximum permissible load of the bearing is increased by that amount. Or, the allowable tensile stress σ7 and allowable compressive stress σ of the inner ring 20. The total transmittable load can be maximized by setting the load transmitted by each fitting surface 2 and 23 to an optimum value according to the value of .

また、内輪20に軸受荷重が分担負荷されても、内輪2
0の最大引張応力と最大圧縮応力とが、その構成+J料
の各許容最大応力よりも小さくなるように、各嵌合面2
1.23の寸法が設定されているため、内輪20は破壊
することがない。
Moreover, even if the bearing load is shared on the inner ring 20, the inner ring 20
Each mating surface 2 is adjusted such that the maximum tensile stress and maximum compressive stress of 0 are smaller than each allowable maximum stress of its configuration + J material.
Since the dimension is set to 1.23, the inner ring 20 will not be destroyed.

なお、この円周ころ軸受においては、間座40の円筒部
40bの軸方向端部41の端面が円筒ころ50の端面に
近接対向して円筒ころ5oの案内つばとしての機能を兼
ね、さらにその軸方向端部41の外径面が保持器51の
内径面に近接対向して保持器51の案内輪としての機能
を兼ねている。
In this circumferential roller bearing, the end surface of the axial end portion 41 of the cylindrical portion 40b of the spacer 40 closely opposes the end surface of the cylindrical roller 50, and also functions as a guide collar for the cylindrical roller 5o. The outer diameter surface of the axial end portion 41 closely opposes the inner diameter surface of the retainer 51 and also serves as a guide ring for the retainer 51.

これらの機能はいずれか一方のみを兼ねるようにしても
よい。
Only one of these functions may be used.

上記実施例では、間座40の内周側部分の線膨張係数α
、を軸10の線膨張係数α5にほぼ等しく、外周側部分
の線膨張係数α、。を内輪20の線膨張係数α4にほぼ
等しく設定した場合について説明したが、必ずしもこの
ように設定する必要はなく、内周側部分から外周側部分
に至る各部分の線膨張係数の値と、半径方向の線膨張係
数の変化の割合については、軸受の取付時と使用時との
温度差、内輪20と軸10との線膨張係数の差および寸
法諸元ならびに内輪20と間座40との軸10G二対す
る取付条件等に応じて最適の値と所定の方向性とをもつ
ように適宜選定することができる。
In the above embodiment, the linear expansion coefficient α of the inner peripheral side portion of the spacer 40 is
, is approximately equal to the linear expansion coefficient α5 of the shaft 10, and the linear expansion coefficient α of the outer circumference side portion. Although we have described a case in which the linear expansion coefficient α4 of the inner ring 20 is set approximately equal to The rate of change in the coefficient of linear expansion in the direction depends on the temperature difference between when the bearing is installed and when it is in use, the difference in the coefficient of linear expansion between the inner ring 20 and the shaft 10, the dimensional specifications, and the axis between the inner ring 20 and the spacer 40. It can be appropriately selected to have the optimum value and predetermined directionality depending on the installation conditions for 10G2, etc.

第2図は、この発明を玉軸受の内輪(環状体)と軸(相
手部材)との組イ4けに適用した実施例である。同図の
玉軸受は、内輪20.外輪30および内輪20と外輪3
0との間で保持器54に保持案内される玉53により構
成され、内輪20の内周側嵌合面21が軸10にすきま
ばめにより嵌合され、内輪20の軸方向両側端部の外周
側嵌合面23には、軸10に固く係合する一対の間座4
0がしまりばめにより嵌合されている。これらの軸10
、内輪20および間座40の構成材料については、第1
図の円筒ころ軸受の場合と同様である。
FIG. 2 shows an embodiment in which the present invention is applied to a four-piece assembly of an inner ring (annular body) and a shaft (a mating member) of a ball bearing. The ball bearing shown in the figure has an inner ring 20. Outer ring 30, inner ring 20 and outer ring 3
The inner peripheral side fitting surface 21 of the inner ring 20 is fitted to the shaft 10 with a clearance fit, and A pair of spacers 4 that tightly engage the shaft 10 are provided on the outer peripheral side fitting surface 23.
0 is fitted by interference fit. These axes 10
, regarding the constituent materials of the inner ring 20 and the spacer 40,
This is similar to the case of the cylindrical roller bearing shown in the figure.

この実施例では、内輪20の軸方向の両側端面22が中
心軸線に対して外開き方向に拡径し、軸直角断面に対し
てθ1.θ2の(頃斜角度をもつテーパ面に形成され、
この両側端面22と同一傾斜角度の対向対面をもつ一対
の中間間座45を、輔10に固く係合して内輪20と間
座40との間に配置し、中間間座45を介して内輪20
を挟着しである。この中間間座45は、軸10と同等の
線膨張係数を有する材料により作られている。
In this embodiment, both end surfaces 22 of the inner ring 20 in the axial direction expand in diameter in the outward opening direction with respect to the central axis, and have a diameter of θ1 with respect to a cross section perpendicular to the axis. θ2 (formed on a tapered surface with an oblique angle,
A pair of intermediate spacers 45 having opposing surfaces having the same inclination angle as the end surfaces 22 are disposed between the inner ring 20 and the spacer 40 while being firmly engaged with the support 10. 20
It is sandwiched. This intermediate spacer 45 is made of a material having the same coefficient of linear expansion as the shaft 10.

上記構成の玉軸受においては、軸受に負荷された荷重は
、内輪20の外周側嵌合面23を介して、間座40によ
って分担負荷されるだけでなく、内輪20の両側端面2
2を介して中間間座45が分担した荷重を軸10に伝達
することができるから、間座40のみで荷重を伝達する
場合に比べて内輪20の分担荷重が減少する。
In the ball bearing configured as described above, the load applied to the bearing is not only shared by the spacer 40 via the outer peripheral side fitting surface 23 of the inner ring 20, but also by the spacer 40, which is
Since the load shared by the intermediate spacer 45 can be transmitted to the shaft 10 via the spacer 2, the load shared by the inner ring 20 is reduced compared to the case where the load is transmitted only by the spacer 40.

なお、この実施例においても、内輪20の内周側嵌合面
21が軸10に対して遅くとも軸受の使用時においてし
めしろをもつ固い嵌合状態になり、かつ内輪20の最大
引張応力と最大圧縮応力とが、その構成材料の各許容最
大応力よりも小さくなるように、各嵌合面21.23の
寸法を設定してもよい。このように構成した場合は、軸
受に負荷された荷重は、内輪20の内周側嵌合面21を
介しても軸10に伝達することができるから、間座40
と中間間座45とを介して荷重を伝達する場合に比べて
、さらに内輪20の分担荷重が減少する。
In this embodiment as well, the inner peripheral side fitting surface 21 of the inner ring 20 is in a tight fitting state with an interference with the shaft 10 at the latest when the bearing is in use, and the maximum tensile stress of the inner ring 20 and the maximum Each mating surface 21.23 may be dimensioned such that the compressive stress is less than the respective maximum allowable stress of its constituent materials. With this configuration, the load applied to the bearing can also be transmitted to the shaft 10 via the inner fitting surface 21 of the inner ring 20, so the spacer 40
The load shared by the inner ring 20 is further reduced compared to the case where the load is transmitted through the intermediate spacer 45 and the inner ring 20.

なお、この実施例においては、内輪20の両側端面22
の傾斜角度θ1.θ2を下記のように設定した場合は、
軸受の取付時と使用時との温度変化に伴う内輪20と中
間間座45との接触面および内輪20と軸10との嵌合
面に発生する熱応力による影否を防止することができる
In addition, in this embodiment, both end surfaces 22 of the inner ring 20
The inclination angle θ1. If θ2 is set as below,
It is possible to prevent the influence of thermal stress generated on the contact surface between the inner ring 20 and the intermediate spacer 45 and the fitting surface between the inner ring 20 and the shaft 10 due to temperature changes between when the bearing is installed and when the bearing is used.

内輪20の肉厚中心における軸方向の長さをWll、直
径をり、とすると、温度変化ΔTによる両側端面22の
軸方向の長さ変化へXl+ ΔX2と、半径方向の長さ
変化へV1.  Δy2とは、それぞれ次の式で求めら
れる。
If the axial length of the inner ring 20 at the center of its wall thickness is Wll, and the diameter is L, then the axial length change of both end faces 22 due to temperature change ΔT is Xl+ΔX2, and the radial length change is V1. Δy2 is determined by the following formula.

内輪20の軸方向および半径方向に、温度変化による相
対的な長さ変化が生じないときの条件は、次の式で与え
られる。
The conditions under which there is no relative length change due to temperature change in the axial and radial directions of the inner ring 20 are given by the following equation.

そこで、α5≠α1.ΔT≠0として」二式(1)%式
% 上式のθ8.θ2は、図示のように内輪20の両側端面
が、外開き方向に拡径するテーパ面である場合を正とし
、これと反対に内開き方向に縮径するテーパ面である場
合を負とする。
Therefore, α5≠α1. Assuming ΔT≠0, θ8 of the above equation. θ2 is positive when both end surfaces of the inner ring 20 are tapered surfaces that expand in diameter in the direction of opening outward, as shown in the figure, and negative when, on the contrary, they are tapered surfaces that decrease in diameter in the direction of opening inward. .

この実施例の中間間座45を設ける場合は、内輪20の
一方の軸方向端面だけを挟着するようにしてもよい。
When the intermediate spacer 45 of this embodiment is provided, only one axial end surface of the inner ring 20 may be sandwiched therebetween.

また、中間間座45の取付げについては、図示した場合
のほか、中間間座45を軸10に固く係合したのち、中
間間座45の外周面に間座40をしまりばめ等により固
く係合するか、あるいは中間間座45と間座40とを接
合して一体に固着したものを用いてもよい。
In addition to the case shown in the figure, the installation of the intermediate spacer 45 can be done by firmly engaging the intermediate spacer 45 with the shaft 10, and then tightly fitting the spacer 40 onto the outer peripheral surface of the intermediate spacer 45. Alternatively, the intermediate spacer 45 and the spacer 40 may be joined and fixed together.

前記各実施例では、セラミック材からなる内輪を鋼材か
らなる軸に取りイ」げた場合について説明したが、この
発明はこのような場合に限らず、たとえば鋼材からなる
内輪をステンレス鋼、黄銅、アルミニウム合金等の材料
からなる軸に取り付ける場合についても同様に適用する
ことができる。
In each of the above embodiments, a case has been described in which an inner ring made of a ceramic material is attached to a shaft made of a steel material, but the present invention is not limited to such a case. The same can be applied to the case of mounting on a shaft made of a material such as an alloy.

また、この発明は、内輪と軸との線膨張係数が異なる軸
受だけでなく、外輪と軸箱との線膨張係数が異なる軸受
についても適用することができる。
Further, the present invention can be applied not only to a bearing in which the inner ring and the shaft have different linear expansion coefficients, but also to a bearing in which the outer ring and the axle box have different linear expansion coefficients.

また、この発明は、軸受の使用時における温度が取(−
1時の温度よりも高温になる場合に限らず、軸受の取付
時よりも使用時の方が低温になる場合についても適用す
ることができる。
In addition, the present invention also provides that the temperature during use of the bearing is
The present invention can be applied not only to cases where the temperature is higher than 1 o'clock, but also to cases where the temperature is lower during use than when the bearing is installed.

さらに、この発明は、転がり軸受だけでなく、滑り軸受
その他の装置の構成部材である環状体を、線膨張係数の
異なる相手部材に取りイマ1りる場合にも適用すること
ができる。
Furthermore, the present invention can be applied not only to rolling bearings, but also to cases where an annular body that is a component of a sliding bearing or other device is used as a mating member having a different coefficient of linear expansion.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、環状体の線膨
張係数が相手部材のそれとは異なる場合に、環状体に負
荷される荷重を、環状体に嵌合された間座を介して相手
部材に伝達するごとがてき、取付時と使用時との温度差
に起因して間座の相手部材に対する係合状態ないしは環
状体の相手部材に対する嵌合状態が変化しても、これら
の変化量は線膨張係数が半径方向に変化する間座の内部
歪によって吸収し、温度変化の前後を通じて環状体に対
する間座のしめしろをほぼ一定に保つことができる。こ
のため間座による荷重伝達が当初の設計通りに有効に行
われ、伝達可能荷重の上限値を増加することも容易にで
きる。
As explained above, according to the present invention, when the linear expansion coefficient of the annular body is different from that of the mating member, the load applied to the annular body is transferred to the mating member through the spacer fitted to the annular body. Even if the engagement state of the spacer with the mating member or the fitting state of the annular body with the mating member changes due to the temperature difference between the time of installation and the time of use, the amount of these changes is absorbed by the internal strain of the spacer whose coefficient of linear expansion changes in the radial direction, and the interference of the spacer with respect to the annular body can be kept almost constant before and after the temperature change. Therefore, load transmission by the spacer is effectively performed as originally designed, and the upper limit of the transferable load can be easily increased.

また、この発明によれば、負荷された荷重を間座だはで
なく、環状体と相手部材との嵌合面、あるいはこれに加
えて環状体のテーバ状の軸方向端面を挟着する中間間座
によっても伝達可能な構成とした場合には、環状体の負
荷能力はさらに増大するだけでなく、環状体の軸方向端
面に形成するテーバ面の角度を所定の角度に設定するこ
とにより、温度変化による熱応力の集中を防止すること
も可能になる。
Further, according to the present invention, the applied load is not transferred to the spacer, but to the fitting surface between the annular body and the mating member, or in addition to this, the intermediate member that clamps the tapered axial end face of the annular body. If the load capacity of the annular body is configured to be able to be transmitted also by a spacer, not only the load capacity of the annular body is further increased, but also by setting the angle of the Taper surface formed on the axial end face of the annular body to a predetermined angle, It also becomes possible to prevent concentration of thermal stress due to temperature changes.

さらに、この発明によれば、環状体の相手部材に対する
はめ合いすきまを小さくすることができるため、取付時
における心出しが容易になるだけでなく、運転使用時に
おいても、相手部材に対する同心性を高精度に保持する
ことができるため、取り付けられた装置の高性能が維持
され、信頬性の高い取付装置が得られる。
Furthermore, according to the present invention, it is possible to reduce the fitting clearance between the annular body and the mating member, which not only facilitates centering during installation, but also maintains concentricity with the mating member during operation. Since it can be held with high precision, the high performance of the attached device is maintained and a highly reliable attachment device can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明を円筒ころ軸受に適用した実施例を
示ず上半部縦断側面図、第2図は、この発明を玉軸受に
適用した実施例を示す−に半部縦断側面図、第3図は、
従来の円筒ごろ軸受の取(=j状態を示ず上半部縦断側
面図である。 図中、10は軸(相手部材)、20は内輪(環状体)、
21は内輪の内周側嵌合面、22は内輪の軸方向端面、
23は内輪の外周側嵌合面、40は間座、42は間座の
軸に対する嵌合面、/I 3 te1間座の内輪に対す
る嵌合面、45は中間間座である。
Fig. 1 is a vertical sectional side view of the upper half of an embodiment in which the present invention is applied to a cylindrical roller bearing, and Fig. 2 is a vertical sectional side view of the upper half of an embodiment in which the invention is applied to a ball bearing. , Figure 3 is
This is a vertical cross-sectional side view of the upper half of a conventional cylindrical roller bearing (not showing the state). In the figure, 10 is the shaft (mating member), 20 is the inner ring (annular body),
21 is the inner peripheral side fitting surface of the inner ring, 22 is the axial end surface of the inner ring,
23 is a fitting surface on the outer peripheral side of the inner ring, 40 is a spacer, 42 is a fitting surface of the spacer with respect to the shaft, /I 3 te1 is a fitting surface of the spacer with respect to the inner ring, and 45 is an intermediate spacer.

Claims (6)

【特許請求の範囲】[Claims] (1)相手部材の外周または内周に嵌合された環状体が
その相手部材とは異なる線膨張係数を有し、環状体の相
手部材との嵌合面とは反対側の周面に嵌合するとともに
、相手部材の外周または内周に固く係合する一対の間座
により環状体の軸方向の両側端面を支持してなる取付装
置であって、前記間座は、相手部材に接する部分から環
状体に接する部分に至る半径方向の線膨張係数が、相手
部材と環状体とによる半径方向の線膨張係数の変化と共
通する方向をもって半径方向に連続的または段階的に変
化する材料によって構成されていることを特徴とする環
状体の取付装置。
(1) The annular body fitted to the outer or inner circumference of the mating member has a linear expansion coefficient different from that of the mating member, and the annular body is fitted to the peripheral surface of the annular body on the opposite side of the mating surface with the mating member. A mounting device in which both end surfaces of an annular body in the axial direction are supported by a pair of spacers that firmly engage the outer periphery or the inner periphery of a mating member. Constructed of a material whose coefficient of linear expansion in the radial direction from the part in contact with the annular body changes continuously or stepwise in the radial direction in the same direction as the change in the coefficient of linear expansion in the radial direction between the mating member and the annular body. An annular body mounting device characterized by:
(2)間座の相手部材に接する部分が相手部材とほぼ等
しい線膨張係数を有し、間座の環状体に接する部分が環
状体とほぼ等しい線膨張係数を有している請求項(1)
記載の環状体の取付装置。
(2) Claim (1) wherein the portion of the spacer in contact with the mating member has a coefficient of linear expansion approximately equal to that of the mating member, and the portion of the spacer in contact with the annular body has a coefficient of linear expansion approximately equal to that of the annular body. )
Attachment device for the annular body described.
(3)環状体の相手部材に対する嵌合面は、遅くとも環
状体の運転使用時において固い嵌合状態になり、かつ環
状体に負荷される荷重およびこの嵌合ならびに温度変化
による最大応力が、環状体の構成材料の許容最大応力よ
りも小さくなるように設定された寸法を有している請求
項(1)または(2)記載の環状体の取付装置。
(3) The fitting surface of the annular body with respect to the mating member is in a firm fitting state at the latest during operation of the annular body, and the load applied to the annular body and the maximum stress due to this fitting and temperature change are The annular body attachment device according to claim 1 or 2, wherein the annular body attachment device has dimensions set to be smaller than the maximum allowable stress of the body's constituent material.
(4)環状体の軸方向の少なくとも一方の端面がテーパ
面であり、このテーパ面と同一角度の対向端面を有する
中間間座が環状体と間座との間に挟持されている請求項
(1)ないし(3)のいずれかに記載の環状体の取付装
置。
(4) At least one end surface in the axial direction of the annular body is a tapered surface, and an intermediate spacer having an opposite end surface at the same angle as the tapered surface is sandwiched between the annular body and the spacer. 1) The annular body attachment device according to any one of (3).
(5)環状体の軸方向の両側端面の軸直角断面に対する
角度θ_1、θ_2が、中心軸線に対して外開きの場合
を正、内開きの場合を負として、環状体の肉厚中心にお
ける軸方向長さW_Pと直径D_Pとの間に、 tanθ_1+tanθ_2=2W_P/D_Pで表さ
れる関係に設定されている請求項(4)記載の環状体の
取付装置。
(5) The angles θ_1 and θ_2 with respect to the axis-perpendicular cross section of both end faces in the axial direction of the annular body are positive when they open outward with respect to the central axis, and negative when they open inward, and the axis at the center of the thickness of the annular body. The annular body mounting device according to claim 4, wherein the relationship between the direction length W_P and the diameter D_P is set as tanθ_1+tanθ_2=2W_P/D_P.
(6)環状体が転がり軸受の軌道輪であって、軌道輪に
嵌合された間座の軸方向端部が、転動体に対する案内つ
ばと保持器に対する案内輪としての機能の少なくとも一
つを有している請求項(1)ないし(5)のいずれかに
記載の環状体の取付装置。
(6) The annular body is a bearing ring of a rolling bearing, and the axial end of the spacer fitted to the bearing ring has at least one of the functions of a guide collar for the rolling elements and a guide ring for the cage. The annular body attachment device according to any one of claims (1) to (5), comprising:
JP7447989A 1989-03-27 1989-03-27 Ring attachment device Expired - Fee Related JP2615990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7447989A JP2615990B2 (en) 1989-03-27 1989-03-27 Ring attachment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7447989A JP2615990B2 (en) 1989-03-27 1989-03-27 Ring attachment device

Publications (2)

Publication Number Publication Date
JPH02253010A true JPH02253010A (en) 1990-10-11
JP2615990B2 JP2615990B2 (en) 1997-06-04

Family

ID=13548449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7447989A Expired - Fee Related JP2615990B2 (en) 1989-03-27 1989-03-27 Ring attachment device

Country Status (1)

Country Link
JP (1) JP2615990B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5197808A (en) * 1991-03-08 1993-03-30 Nsk Ltd. Device for mounting annular body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5197808A (en) * 1991-03-08 1993-03-30 Nsk Ltd. Device for mounting annular body

Also Published As

Publication number Publication date
JP2615990B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
US6322254B1 (en) Bearing assembly for a threaded drive
US4792244A (en) Ceramic bearing construction
EP0421619B1 (en) Ceramic bearing
US5197808A (en) Device for mounting annular body
JP2022048250A (en) Slewing bearing
JP2586503B2 (en) Bearing mounting device
JPH0519652U (en) Needle-shaped roller bearings with split cage
EP1373746B1 (en) Gear shaft bearing assembly
JPH02253010A (en) Ring member attaching device
JPS628433Y2 (en)
JPS639720A (en) Gap correcting device for rolling bearing
JP2650400B2 (en) Ring attachment device
JP2643415B2 (en) bearing
JP2754572B2 (en) Mounting device for shaft and ring
JPH0571548A (en) Installation device for annular body
JP2970029B2 (en) Ring attachment device
JPS63199917A (en) Bearing device
JPH0520897Y2 (en)
CN114502852A (en) Rolling bearing
JPH04282024A (en) Annular body fitting device
JPH0137220Y2 (en)
JP3623309B2 (en) Defpinion tapered roller bearing device
JP3116515B2 (en) Ring mounting device
JPH0481043B2 (en)
EP4414574A1 (en) Roller bearing for supporting wheel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees