JPS63199917A - Bearing device - Google Patents

Bearing device

Info

Publication number
JPS63199917A
JPS63199917A JP62032923A JP3292387A JPS63199917A JP S63199917 A JPS63199917 A JP S63199917A JP 62032923 A JP62032923 A JP 62032923A JP 3292387 A JP3292387 A JP 3292387A JP S63199917 A JPS63199917 A JP S63199917A
Authority
JP
Japan
Prior art keywords
housing
bearing member
layer
linear expansion
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62032923A
Other languages
Japanese (ja)
Other versions
JPH0830492B2 (en
Inventor
Hirotoshi Takada
浩年 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP62032923A priority Critical patent/JPH0830492B2/en
Publication of JPS63199917A publication Critical patent/JPS63199917A/en
Publication of JPH0830492B2 publication Critical patent/JPH0830492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/07Fixing them on the shaft or housing with interposition of an element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PURPOSE:To simplify the structure, reducing the size and facilitating the installation of the bearing device in the caption, by composing housing side and the shaft body side bearing members with a main body layer and an outer peripheral layer, a main body layer and an inner peripheral layer respectively and setting, predetermined relations among the linear expansion coefficients of these layers, the housing and the shaft body. CONSTITUTION:To a housing 10 is fitted an outer ring 13 comprising a bearing member 11 which is a lamination body composed of a main body layer 11a and an outer peripheral layer 11b, and an installing member 12. Similarly, on a shaft body 20 is installed an inner ring 23 comprising an bearing member 21 which is a lamination body composed of a main body layer 21a and an inner peripheral layer 21b, and an installing member 22. The housing 10 and the installing member 12 are formed of materials whose linear expansion coefficients are approximately equal to each other, while so are the shaft body 20 and the installing member 22. Each of other layers 11a, 11b, 21a, 21b is formed of a material with a predetermined linear expansion coefficient. Smooth operation can, therefore, be performed without being affected by change of temperature during operation, so that the simplification of structure, facilitation of installation, and saving of necessary space are made possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、転がり軸受の軌道輪などの軸受構成部品と
これを取り付ける相手部品とが線膨張係の異なる材料か
らなる軸受装置の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a bearing device in which a bearing component such as a bearing ring of a rolling bearing and a mating component to which it is attached are made of materials with different coefficients of linear expansion.

〔従来の技術〕[Conventional technology]

従来、ハウジングまたは軸体に、これとは線膨張係数の
異なる外輪または内輪を取り付けた軸受装置として、た
とえばこの発明者の発明に係る特開昭61−17531
3号公報に開示された構造のものが知られている。この
軸受装置は、軌道輪の両側面を軸中心に対して外開きの
テーバ面に成形し、軌道輪のテーバ面に一方の側面を係
合させた一対の中間間座の他方の側面には、軸受中心と
ほぼ一致する球心をもつ凸球面を成形して、軌道輪と中
間間座とは相手部品に対してすきまばめにより取り付け
、中間間座の凸球面に対応する凹球面をもつ一対の締付
間座を相手部品に対して締りばめにより取り付けて、軌
道輪を中間間座を介して締付間座により挾持した構成に
なっており、締付間座を相手部品とほぼ等しい線膨張係
数をもつ材料により成形している。
Conventionally, a bearing device in which an outer ring or an inner ring having a different coefficient of linear expansion is attached to a housing or a shaft body is disclosed, for example, in Japanese Patent Application Laid-Open No. 17531/1983, which was invented by this inventor.
A structure disclosed in Publication No. 3 is known. In this bearing device, both sides of the bearing ring are formed into tapered surfaces that open outward with respect to the shaft center, and the other side of a pair of intermediate spacers, one side of which is engaged with the tapered surface of the bearing ring, is , a convex spherical surface with a spherical center that almost coincides with the center of the bearing is formed, and the bearing ring and intermediate spacer are attached to the mating parts by a loose fit, and a concave spherical surface that corresponds to the convex spherical surface of the intermediate spacer is formed. A pair of tightening spacers are attached to the mating part by interference fit, and the bearing ring is sandwiched between the clamping spacers via the intermediate spacer. Molded from materials with equal coefficients of linear expansion.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の軸受装置は、相手部品とほぼ等しい線膨張係数を
もつ締付間座が相手部品に締りばめにより取り付けられ
ているため、運転時の温度が上昇しても締め代が確保さ
れ、クリープ等の不都合が生ずることはなく、また中間
間座と締付間座との保合面が軸受中心に球心をもつ球面
になっており、軌道輪の傾きが生じても自動調心作用が
働くので、運転時の急激な温度変化による熱膨張または
熱収縮に対する追従性がよく、軌道輪を損傷させずに円
滑な運転が保証されるという利点を有している。
In the above bearing device, the clamping spacer, which has a coefficient of linear expansion almost equal to that of the mating part, is attached to the mating part by interference fit, so even if the operating temperature rises, the interference is secured and creep is avoided. In addition, the locking surface between the intermediate spacer and the tightening spacer is a spherical surface with a spherical center at the center of the bearing, so even if the bearing ring is tilted, the self-aligning action is maintained. This has the advantage of being able to easily follow thermal expansion or contraction due to rapid temperature changes during operation, and ensuring smooth operation without damaging the bearing rings.

しかしながら、この軸受装置においては、軌道輪を中間
間座を介して締付間座により挟持した構成になっている
ため、構造が複雑になり軸受の周囲に大きな空間が必要
となるだけでなく、組み付けにかなりの時間を要すると
いう難点があった。
However, in this bearing device, the bearing ring is sandwiched between the tightening spacers via the intermediate spacer, which not only complicates the structure and requires a large space around the bearing. The problem was that it took a considerable amount of time to assemble.

この発明は、上記のような問題を解決して、軌道輪など
の軸受部品自体によって温度変化に対する追従性が得ら
れる軸受装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a bearing device in which bearing parts such as bearing rings can follow temperature changes themselves.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の軸受装置は、ハウジングに取り付けられる軸
受部材を本体層と本体層の外周側に一体に接合された外
周層との積層体として構成し、軸体に取り付けられる軸
受部材を本体層と本体層の内周側に一体に接合された内
周層との積層体として構成している。
In the bearing device of the present invention, the bearing member attached to the housing is configured as a laminate of the main body layer and the outer peripheral layer integrally joined to the outer peripheral side of the main body layer, and the bearing member attached to the shaft body is configured as a laminate of the main body layer and the outer peripheral layer integrally joined to the outer peripheral side of the main body layer. It is configured as a laminate with an inner peripheral layer integrally joined to the inner peripheral side of the layer.

ハウジング側軸受部材の本体層の線膨張係数または軸体
側軸受部材の本体層の線膨張係数が、それぞれハウジン
グの線膨張係数または軸体の線膨張係数よりも小さい場
合は、ハウジング側軸受部材の外周層の線膨張係数を本
体層の線膨張係数よりも小さく設定するか、または本体
層とハウジングとの線膨張係数の中間の値に設定し、軸
体側軸受部材の内周層の線膨張係数を本体層の線膨張係
数よりも小さく設定している。
If the linear expansion coefficient of the main body layer of the housing side bearing member or the linear expansion coefficient of the main body layer of the shaft body side bearing member is smaller than the linear expansion coefficient of the housing or the linear expansion coefficient of the shaft body, the outer periphery of the housing side bearing member The linear expansion coefficient of the layer is set smaller than that of the main body layer, or the linear expansion coefficient of the inner peripheral layer of the shaft side bearing member is set to a value between the linear expansion coefficients of the main body layer and the housing. The coefficient of linear expansion is set smaller than that of the main body layer.

ハウジング側軸受部材の本体層の線膨張係数または軸体
側軸受部材の本体層の線膨張係数が、それぞれハウジン
グの線膨張係数または軸体の線膨張係数よりも大きい場
合は、ハウジング側軸受部材の外周層の線膨張係数をハ
ウジングの線膨張係数よりも小さく設定し、軸体側軸受
部材の内周層の線膨張係数を軸体の線膨張係数よりも小
さく設定するか、または本体層と軸体との線膨張係数の
中間の値に設定している。
If the linear expansion coefficient of the main body layer of the housing side bearing member or the linear expansion coefficient of the main body layer of the shaft body side bearing member is larger than the linear expansion coefficient of the housing or the linear expansion coefficient of the shaft body, the outer periphery of the housing side bearing member The linear expansion coefficient of the layer is set to be smaller than that of the housing, and the linear expansion coefficient of the inner peripheral layer of the shaft body side bearing member is set to be smaller than that of the shaft body, or the main body layer and the shaft body are The coefficient of linear expansion is set to an intermediate value.

上記のハウジング側軸受部材と軸体側軸受部材とは、任
意の組合わせにするか、または各別に単体でそれぞれハ
ウジングと軸体とに締め代をもって嵌合している。
The housing-side bearing member and the shaft-side bearing member may be combined in any combination, or each may be fitted individually to the housing and the shaft with interference.

〔実施例〕〔Example〕

以下、この発明の実施例について図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は、この発明を円筒ころ軸受の軌道輪に適用した
実施例を示す上半部縦断側面図である。
FIG. 1 is a vertical cross-sectional side view of the upper half of an embodiment in which the present invention is applied to a bearing ring of a cylindrical roller bearing.

上図において、符号10はハウジング、20は軸体をそ
れぞれ示し、ハウジング10には軸受部材11と取付部
材12とからなる外輪13が締め代をもった嵌め合いで
取り付けられ、軸体20には軸受部材21と取付部材2
2とからなる内輪23が締め代をもった嵌め合いで取り
付けられ、ハウジング側軸受部材11と軸体側軸受部材
21との間には、複数個の円筒ころ30が転勤自在に配
設されている。
In the above figure, reference numeral 10 indicates a housing, and reference numeral 20 indicates a shaft body. An outer ring 13 consisting of a bearing member 11 and a mounting member 12 is attached to the housing 10 with a tight fit, and the shaft body 20 is Bearing member 21 and mounting member 2
A plurality of cylindrical rollers 30 are disposed between the housing-side bearing member 11 and the shaft-side bearing member 21 so as to be freely removable. .

ハウジング側軸受部材11は、軸方向両側端部に案内つ
ば14をもち、内周面に軌道面が形成された本体層11
aと本体層1.12の外周側に接合された外周層11b
とからなる積層体として構成され、取付部材12もハウ
ジング側軸受部材11と接合して一体的な取扱いができ
る構成になっている。
The housing-side bearing member 11 has guide collars 14 at both ends in the axial direction, and a main body layer 11 in which a raceway surface is formed on the inner peripheral surface.
a and the outer peripheral layer 11b joined to the outer peripheral side of the main body layer 1.12.
The mounting member 12 is also connected to the housing-side bearing member 11 so that they can be handled as one unit.

また軸体側軸受部材21は、外周面に軌道面が形成され
た本体層21aと本体層21aの内周側に接合された内
周層21bとからなる積層体として構成され、取付部材
22も軸体側軸受部材21と接合して一体的な取扱いが
できる構造になっている。
Further, the shaft side bearing member 21 is configured as a laminate including a main body layer 21a having a raceway surface formed on the outer peripheral surface and an inner peripheral layer 21b joined to the inner peripheral side of the main body layer 21a. It has a structure that allows it to be joined to the body side bearing member 21 and handled as an integral part.

上記のハウジング側軸受部材11の本体層11aと外周
層11bとは、ハウジング10とは線膨張係数の異なる
材料により成形され、軸体側軸受部材21の本体層21
aと内周層21bとは、軸体20とは線膨張係数の異な
る材料により成形されているが、ハウジング側取付部材
12はハウジング10とほぼ等しい線膨張係数をもつ材
料により成形され、軸体側取付部材22は軸体20とほ
ぼ等しい線膨張係数をもつ材料により成形されている。
The main body layer 11a and the outer peripheral layer 11b of the housing-side bearing member 11 are molded from a material having a different linear expansion coefficient from that of the housing 10, and the main body layer 11a and the outer peripheral layer 11b of the shaft-side bearing member 21 are
a and the inner circumferential layer 21b are molded from a material with a linear expansion coefficient different from that of the shaft body 20, but the housing side mounting member 12 is molded from a material with a linear expansion coefficient approximately equal to that of the housing 10, and the shaft body side The mounting member 22 is made of a material having approximately the same coefficient of linear expansion as the shaft body 20.

ハウジング10とハウジング側軸受部材11の本体層1
1aおよび外周層11bとの線膨張係数については、相
互間に下記の条件が成立するように設定する。
Main body layer 1 of housing 10 and housing side bearing member 11
The linear expansion coefficients of 1a and outer peripheral layer 11b are set so that the following conditions are satisfied between them.

ハウジング側軸受部材11の本体層11aの線膨張係数
α。がハウジング1oの線膨張係数αhよりも小さい場
合は、外周層11bはその線膨張係数α8が本体層11
aの線膨張係数α。よりも小さい値をもつ材料により成
形するが、または本体層11aの線膨張係数α。とハウ
ジング1oの線膨張係数α、との中間の値をもつ材料に
より成形する。
Linear expansion coefficient α of the main body layer 11a of the housing-side bearing member 11. is smaller than the linear expansion coefficient αh of the housing 1o, the linear expansion coefficient α8 of the outer peripheral layer 11b is smaller than that of the main body layer 11.
Linear expansion coefficient α of a. The linear expansion coefficient α of the main body layer 11a is made of a material having a smaller value than the linear expansion coefficient α of the main body layer 11a. and the linear expansion coefficient α of the housing 1o.

これらの関係を数式で表示すると次のようになる。These relationships can be expressed numerically as follows.

αh〉α。〉α、(1) α1〉α、〉α。      (2) 上記′とは反対に、ハウジング側軸受部材11の本体層
11aの線膨張係数α。がハウジング1゜の線膨張係数
αゎよりも大きい場合は、外周層11bはその線膨張係
数α、がハウジングlOO線膨張係数α1よりも小さい
値をもつ材料により成形する。
αh〉α. 〉α, (1) α1〉α, 〉α. (2) Contrary to '' above, the linear expansion coefficient α of the main body layer 11a of the housing-side bearing member 11. is larger than the linear expansion coefficient α of the housing 1°, the outer peripheral layer 11b is formed of a material whose linear expansion coefficient α is smaller than the linear expansion coefficient α1 of the housing lOO.

この関係を数式で表示すると次のようになる。This relationship can be expressed numerically as follows.

α。〉α、〉α1(3) また、軸体20と軸体側軸受部材21の本体層21aお
よび内周層21bとの線膨張係数についても同様に、相
互間に下記の条件が成立するように設定する。
α. 〉α,〉α1(3) Similarly, the linear expansion coefficients of the shaft body 20 and the main body layer 21a and the inner peripheral layer 21b of the shaft side bearing member 21 are set so that the following conditions are satisfied between them. do.

軸体側軸受部材21の本体層21aの線膨張係数αゴが
軸体20の線膨張係数α3よりも小さい場合は、内周層
21bはその線膨張係数α5が本体層21aの線膨張係
数α、よりも小さい値をもつ材料により成形する。
When the linear expansion coefficient α of the main body layer 21a of the shaft body side bearing member 21 is smaller than the linear expansion coefficient α3 of the shaft body 20, the linear expansion coefficient α5 of the inner peripheral layer 21b is equal to the linear expansion coefficient α of the main body layer 21a, Molded using a material with a value smaller than .

この関係を数式で表示すると次のようになる。This relationship can be expressed numerically as follows.

α5〉αえ〉αb(4) 上記とは反対に、軸体側軸受部材210本体層21aの
線膨張係数α、が軸体20の線膨張係数α8よりも大き
い場合は、内周層21bはその線膨張係数α、が軸体2
0の線膨張係数α5よりも小さい値をもつ材料により成
形するか、または本体層21aの線膨張係数αiと軸体
20の線膨張係数α3との中間の値をもつ材料により成
形する。
α5〉α〉αb(4) Contrary to the above, if the linear expansion coefficient α of the main body layer 21a of the shaft body side bearing member 210 is larger than the linear expansion coefficient α8 of the shaft body 20, the inner peripheral layer 21b The linear expansion coefficient α is the shaft body 2
It is molded using a material having a linear expansion coefficient α5 smaller than 0, or a material having a linear expansion coefficient αi of the main body layer 21a and a linear expansion coefficient α3 of the shaft body 20.

これらの関係を数式で表示すると次のようになる。These relationships can be expressed numerically as follows.

α1〉α3〉α、(5) αi〉α、〉α、(6) 上記の相互関係に適応する材料として、たとえばハウジ
ング10と軸体20との素材が鉄鋼材料であって、ハウ
ジング側軸受部材11と軸体側軸受部材21との各本体
jlilla、21aがそれぞれハウジング10と軸体
20との線膨張係数よりも小さい素材、たとえばセラミ
ックで成形されている場合において、ハウジング側軸受
部材11の外周層11bと軸体側軸受部材21の内周層
21bとが、それぞれの本体層11a、21aよりも線
膨張係数が小さいときの素材としては(式(11および
(4))、たとえば次表の金属材料を使用することがで
きる。
α1〉α3〉α, (5) αi〉α,〉α, (6) As a material adapted to the above mutual relationship, for example, the material of the housing 10 and the shaft body 20 is a steel material, and the housing side bearing member 11 and the shaft-side bearing member 21 are each made of a material having a smaller coefficient of linear expansion than the housing 10 and the shaft-side bearing member 20, for example, ceramic, the outer peripheral layer of the housing-side bearing member 11. 11b and the inner peripheral layer 21b of the shaft-side bearing member 21 have smaller linear expansion coefficients than the respective main body layers 11a and 21a, the materials (formulas (11 and (4)) include, for example, the metal materials shown in the following table. can be used.

上記の場合において、ハウジング側軸受部材11の外周
層11bが、本体層11aの線膨張係数とハウジング1
0の線膨張係数との中間の値をもつときの素材としては
(式(2))、たとえば次の金属材料を使用することが
できる。
In the above case, the outer peripheral layer 11b of the housing-side bearing member 11 has a coefficient of linear expansion that is equal to the linear expansion coefficient of the main body layer 11a.
As a material having a value intermediate between the coefficient of linear expansion of 0 (formula (2)), for example, the following metal materials can be used.

また、ハウジング10と軸体20との素材が鉄鋼材料で
あって、ハウジング側軸受部材11と軸体側軸受部材2
1との各本体層11a、21aが、それぞれハウジング
10と軸体20との線膨張係数よりも大きい素材、たと
えばアルミニウムで成形されている場合において、ハウ
ジング側軸受部材11の外周層11bと軸体側軸受部材
21の内周層21bとが、それぞれハウジング10と軸
体20よりも線膨張係数が小さいときの素材としては(
式(3)および(5))、たとえば次表の金属材料を使
用することができる。
Further, the housing 10 and the shaft body 20 are made of steel, and the housing side bearing member 11 and the shaft body side bearing member 2 are made of steel.
1, the outer circumferential layer 11b of the housing-side bearing member 11 and the shaft-side When the inner peripheral layer 21b of the bearing member 21 has a smaller coefficient of linear expansion than the housing 10 and the shaft body 20, the material is (
Formulas (3) and (5)), for example the metal materials in the following table can be used.

上記の場合において、軸体側軸受部材21の内周層21
bが、本体層21aの線膨張係数と軸体20の線膨張係
数との中間の値をもつときの素材としては(式(61)
、たとえば次表の金属材料を使用することができる。
In the above case, the inner peripheral layer 21 of the shaft side bearing member 21
When b has an intermediate value between the linear expansion coefficient of the main body layer 21a and the linear expansion coefficient of the shaft body 20, the material is (Equation (61)
, for example, the metal materials listed in the table below can be used.

上記のハウジング側軸受部材10の本体N11aと外周
層11bとの接合およびハウジング側軸受部材11と取
付部材12との接合、軸体側軸受部材21の本体層21
aと内周層21bとの接合および軸体側軸受部材21と
取付部材22との接合については、接着剤、ろう材によ
る接着、焼ばめによる接着その他の公知の各種手段を用
いることができる。
The connection between the main body N11a and the outer peripheral layer 11b of the housing-side bearing member 10, the connection between the housing-side bearing member 11 and the mounting member 12, and the main body layer 21 of the shaft-side bearing member 21.
For joining a and the inner circumferential layer 21b and joining the shaft-side bearing member 21 and the mounting member 22, various known means such as adhesive, brazing material, shrink fit, etc. can be used.

上記のように、ハウジング側軸受部材11の本体層11
aとハウジング10との間の線膨張係数の相互関係、軸
体側軸受部材21の本体層21aと軸体20との間の線
膨張係数の相互関係によって、外輪13と内輪23とは
それぞれ3種類のものが構成されるが、これらの各種の
外輪13と内輪23とは、軸受の使用条件に応じて任意
に組み合わせて使用することができる。
As described above, the main body layer 11 of the housing side bearing member 11
There are three types of outer ring 13 and inner ring 23, respectively, depending on the correlation of linear expansion coefficients between a and the housing 10 and the correlation of linear expansion coefficients between the main body layer 21a of the shaft side bearing member 21 and the shaft 20. However, these various types of outer ring 13 and inner ring 23 can be used in any combination depending on the usage conditions of the bearing.

上記構成の外輪13と内輪23とが組み付けらえた転が
り軸受は、軸受運転時に組み付は時よりも温度が上昇し
た場合、外輪13を構成する軸受部材11の本体層11
aと外周層11bとの線膨張係数とハウジング10また
は取付部材12の線膨張係数との差、内輪23を構成す
る軸受部材21の本体層21aと内周層21bとの線膨
張係数と軸体20または取付部材22の線膨張係数との
差によって各軸受部材11.21の本体層11a。
In the rolling bearing in which the outer ring 13 and the inner ring 23 having the above structure are assembled, the main body layer 11 of the bearing member 11 constituting the outer ring 13 may
The difference between the coefficient of linear expansion between a and the outer peripheral layer 11b and the coefficient of linear expansion of the housing 10 or the mounting member 12, the coefficient of linear expansion between the main body layer 21a and the inner peripheral layer 21b of the bearing member 21 constituting the inner ring 23, and the shaft body 20 or the main body layer 11a of each bearing member 11.21 due to the difference in coefficient of linear expansion of the mounting member 22.

21aに熱応力が発生しても、この熱応力を最低限度に
抑制することができ、また外輪13と内輪23との取付
は時の嵌め合いによって各軸受部材11.21に発生し
ているたが応力についてもこれを最低限度に抑制するこ
とができる。
Even if thermal stress occurs in the bearing member 21a, this thermal stress can be suppressed to the minimum level, and the attachment of the outer ring 13 and the inner ring 23 is possible because the thermal stress generated in each bearing member 11. However, stress can also be suppressed to the minimum level.

(1)ハウジング側軸受部材11の本体層11aの線膨
張係数α。と軸体側軸受部材21の本体層21aの線膨
張係数α、とか、それぞれハウジング10の線膨張係数
αゎと軸体20の線膨張係数α1よりも小さい場合にお
いて、ハウジング側軸受部材11の外周層11bの線膨
張係数α8と軸体側軸受部材21の内周1!21bの線
膨張係数α5とが、それぞれの本体層11a、21aの
線膨張係数α。、α1よりも小さい値に設定されている
ときは(式(11及び(4))、軸受運転時の温度が上
昇しても、各軸受部材11.21の外周層11b。
(1) Linear expansion coefficient α of the main body layer 11a of the housing-side bearing member 11. and the linear expansion coefficient α of the main body layer 21a of the shaft-side bearing member 21 are smaller than the linear expansion coefficient αゎ of the housing 10 and the linear expansion coefficient α1 of the shaft body 20, respectively, the outer peripheral layer of the housing-side bearing member 11. The linear expansion coefficient α8 of the shaft-side bearing member 21 and the linear expansion coefficient α5 of the inner circumference 1!21b of the shaft-side bearing member 21 are the linear expansion coefficient α of the respective main body layers 11a and 21a. , α1 (Equations (11 and (4)), even if the temperature during bearing operation increases, the outer peripheral layer 11b of each bearing member 11.21.

内周層21bの熱変形量は、それぞれの本体層11a、
21aの熱変形量よりも小さく、本体層11a、21a
の熱変形量はそれぞれハウジング1O1軸体20の熱変
形量よりも小さいために、ハウジング側にあってはそれ
によって生ずる半径方向のすきまをハウジング10と外
輪13との締め代によって吸収して本体層11aの応力
を最小にする結果、本体層11aに過大な応力が発生す
ることがなくなり、軸体側にあっては軸体20または取
付部材22に本体層21aよりも大きな熱変形量が生ず
ること、および軸体20と内輪23との締め代によって
生ずるたが応力による変形に起因する本体層21aの応
力の増大を内周層21bが吸収し、本体層21aに過大
な応力が発生することがなくなる。
The amount of thermal deformation of the inner circumferential layer 21b is determined by the amount of thermal deformation of each of the main body layers 11a,
The amount of thermal deformation of the main body layers 11a, 21a is smaller than that of the main body layers 11a, 21a.
Since the amounts of thermal deformation of the housing 10 and the shaft body 20 are smaller than those of the housing 10 and the shaft body 20, on the housing side, the resulting radial clearance is absorbed by the interference between the housing 10 and the outer ring 13, and the main body layer As a result of minimizing the stress in the main body layer 11a, excessive stress will not be generated in the main body layer 11a, and on the shaft body side, a larger amount of thermal deformation will occur in the shaft body 20 or the mounting member 22 than in the main body layer 21a, The inner circumferential layer 21b absorbs the increase in stress in the main body layer 21a due to deformation due to the hoop stress caused by the interference between the shaft body 20 and the inner ring 23, and excessive stress is no longer generated in the main body layer 21a. .

また、上記の場合において、ハウジング側軸受部材11
の外周層11bの線膨張係数α1が本体層11aの線膨
張係数α。とハウジング10の線膨張係数α、との中間
の値に設定されているときは(式(2))、前述の式(
1)におけると同様の作用効果が期待される。
Furthermore, in the above case, the housing side bearing member 11
The linear expansion coefficient α1 of the outer peripheral layer 11b is the linear expansion coefficient α of the main body layer 11a. When the linear expansion coefficient α of the housing 10 is set to an intermediate value (formula (2)), the above-mentioned formula (
The same effects as in 1) are expected.

しかして、式(1)と式(2)との何れの場合がより有
効であるかは、ハウジング10.軸受部材11の本体層
11a、外周層11bおよび取付部材12のそれぞれの
線膨張係数の値の相互関係、それぞれの構成部品の寸法
および使用時の温度によって決まる。
Therefore, which case of equation (1) or equation (2) is more effective depends on the housing 10. It is determined by the mutual relationship between the linear expansion coefficients of the main body layer 11a, the outer peripheral layer 11b, and the mounting member 12 of the bearing member 11, the dimensions of each component, and the temperature during use.

(2)ハウジング側軸受部材11の本体J’@llaの
線膨張係数α。と軸体側軸受部材210本体層の線膨張
係数α、とか、それぞれハウジング10の線膨張係数α
6と軸体20の線膨張係数α5よりも大きい場合におい
て、ハウジング側軸受部材11の外周層11bの線膨張
係数ご、と軸体側軸受部材21の内周層21b(7)線
膨張係数α、とか、それぞれハウジング10の線膨張係
数α、と軸体20の線膨張係数αよよりも小さい値に設
定されているときは(式(3)及び(51)、軸受運転
時の温度が上昇しても、各軸受部材11.21の外周N
11b、内周層21bの熱変形量はそれぞれハウジング
10.軸体20の熱変形量よりも小さく、ハウジングI
Q、軸体20の熱変形量はそれぞれ軸受部材11.21
の本体層11a、21aの熱変形量よりも小さいために
、ハウジング側にあっては、ハウジング10または取付
部材12に本体層11aよりも大きな熱変形量が生ずる
こと、およびハウジング10と外輪13との締め代によ
って生ずるだが応力による変形に起因する本体N11a
の応力の増大を外周層11bが吸収し、軸体側にあって
は、上記の線膨張係数の差によって生じる半径方向のす
きまを、軸体20と内輪23との締め代によって吸収し
て本体層21aの応力を最小にする結果、各本体層11
a、21aに過大な応力が発生することがなくなる。
(2) Linear expansion coefficient α of the main body J'@lla of the housing-side bearing member 11. and the linear expansion coefficient α of the main body layer of the shaft side bearing member 210, and the linear expansion coefficient α of the housing 10, respectively.
6 and the linear expansion coefficient α5 of the shaft body 20, the linear expansion coefficient α of the outer circumferential layer 11b of the housing side bearing member 11, and the linear expansion coefficient α of the inner circumferential layer 21b of the shaft body side bearing member 21 (7), When the linear expansion coefficient α of the housing 10 and the linear expansion coefficient α of the shaft body 20 are set to values smaller than those of the housing 10 and the shaft body 20, respectively (Equations (3) and (51), the temperature during bearing operation increases. Even if the outer circumference N of each bearing member 11.21
11b and the amount of thermal deformation of the inner circumferential layer 21b of the housing 10. The amount of thermal deformation of the shaft body 20 is smaller than that of the housing I.
Q. The amount of thermal deformation of the shaft body 20 is the bearing member 11 and 21, respectively.
Since the amount of thermal deformation is smaller than that of the main body layers 11a and 21a, on the housing side, a larger amount of thermal deformation occurs in the housing 10 or the mounting member 12 than that of the main body layer 11a, and the difference between the housing 10 and the outer ring 13. The main body N11a is caused by stress-induced deformation caused by the interference of
The outer circumferential layer 11b absorbs the increase in the stress of As a result of minimizing stress in 21a, each body layer 11
Excessive stress will not be generated in a and 21a.

また、上記の場合において、軸体側軸受部材21の内周
層21bの線膨張係数α、が本体!21aの線膨張係数
α1と軸体20の線膨張係数α8との中間の値に設定さ
れているときは(式(6))、前述の式(5)における
と同様の作用効果が期待される。
In the above case, the linear expansion coefficient α of the inner peripheral layer 21b of the shaft-side bearing member 21 is the main body! When the linear expansion coefficient α1 of the shaft body 21a and the linear expansion coefficient α8 of the shaft body 20 are set to an intermediate value (formula (6)), the same effect as in the above-mentioned formula (5) is expected. .

しかして、弐(5)と式(6)との何れの場合がより有
効であるかは、軸体20.軸受部材21の本体層21a
9内周層21bおよび取付部材22のそれぞれの線膨張
係数の値の相互関係、それぞれの構成部品の寸法および
使用時の温度によって決まる。
Therefore, which case of formula (5) or formula (6) is more effective depends on the shaft body 20. Main body layer 21a of bearing member 21
9. It is determined by the mutual relationship between the linear expansion coefficients of the inner circumferential layer 21b and the mounting member 22, the dimensions of the respective components, and the temperature during use.

前記実施例においては、外輪と内輪とをそれぞれ軸受部
材と取付部材とにより構成した場合について説明したが
、取付部材は必要に応じて省略し、軸受部材のみによっ
て外輪と内輪とを構成することもできる。
In the embodiments described above, the case where the outer ring and the inner ring are each made up of a bearing member and a mounting member has been described, but the mounting member may be omitted if necessary, and the outer ring and the inner ring may be made of only the bearing member. can.

また、この発明のハウジング側軸受部材と軸体側軸受部
材との組み合せについては、前記実施例で説明した組み
合わせに限定されるものではな(、ハウジング側と軸体
側とについてそれぞれ3種の軸受部材を任意に組み合わ
せて使用することができ、さらにはハウジング側または
軸体側の何れか一方にのみ単独の軸受部材として使用す
ることもできる。
Further, the combination of the housing side bearing member and the shaft body side bearing member of the present invention is not limited to the combination described in the above embodiment (three types of bearing members are used for the housing side and the shaft body side, respectively). They can be used in any combination, and can also be used as a single bearing member on either the housing side or the shaft body side.

さらに、この発明は前記実施例で説明した円筒ころ軸受
に限らず、その他の転がり軸受の軌道輪につい−でも適
用することができるだけでなく、滑り軸受についてもハ
ウジング側と軸体側との何れか一方または双方の軸受部
材として適用することができる。
Furthermore, the present invention can be applied not only to the cylindrical roller bearing explained in the above embodiment, but also to the bearing rings of other rolling bearings, as well as to the bearing rings of sliding bearings. Alternatively, it can be applied as both bearing members.

〔発明の効果〕 以上説明したように、この発明の軸受装置は、ハウジン
グ側軸受部材を本体層と外周層との積層体として構成し
、軸体側軸受部材を本体層と内周層との積層体として構
成して、ハウジングと軸受部材の本体層及び外周層との
線膨張係数、軸体と軸受部材の本体層および内周層との
線膨張係数を、それぞれ所定の関係を満足するように規
制することにより、軸受運転時に温度変化が生じても各
軸受部材の本体層が熱応力とたが応力とによる影響を受
けることなく、円滑な運転ができるようにしている。
[Effects of the Invention] As explained above, in the bearing device of the present invention, the housing-side bearing member is configured as a laminate of the main body layer and the outer peripheral layer, and the shaft-side bearing member is configured as a laminate of the main body layer and the inner peripheral layer. The linear expansion coefficient between the housing and the main body layer and the outer peripheral layer of the bearing member, and the linear expansion coefficient between the shaft body and the main body layer and the inner peripheral layer of the bearing member satisfy predetermined relationships. By regulating the temperature, even if a temperature change occurs during bearing operation, the main body layer of each bearing member is not affected by thermal stress or mutual stress, allowing smooth operation.

したがって、この発明によれば、ハウジングおよび軸体
とこれらに組み付けられる軸受部材との線膨張係数が異
なる軸受装置において、軸受運転時に温度変化が生じた
場合でも軸受部材自体によって良好な追従性が得られる
ため、従来のこの種の軸受装置に比べて構造が簡単にな
り、軸受周囲の空間が狭小な小形のものとなるだけでな
く、軸受組み付けも容易に短時間でできる軸受装置が得
られる。
Therefore, according to the present invention, in a bearing device in which the linear expansion coefficients of the housing and shaft body and the bearing member assembled thereto are different, even if a temperature change occurs during bearing operation, the bearing member itself can provide good followability. As a result, compared to conventional bearing devices of this type, the structure is simpler and the space around the bearing is smaller, making it possible to provide a bearing device that can be easily assembled in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す上半部縦断側面図であ
る。 図中、10はハウジング、11はハウジング側軸受部材
、lla、llbはそれぞれハウジング側軸受部材の本
体層、外周層、20は軸体、21は軸体側軸受部材、2
1a、21bはそれぞれ軸体側軸受部材の本体層、内周
層である。
FIG. 1 is a vertical cross-sectional side view of the upper half of an embodiment of the present invention. In the figure, 10 is a housing, 11 is a housing-side bearing member, lla and llb are the main body layer and outer peripheral layer of the housing-side bearing member, 20 is a shaft body, 21 is a shaft-side bearing member, 2
1a and 21b are a main body layer and an inner peripheral layer of the shaft-side bearing member, respectively.

Claims (1)

【特許請求の範囲】[Claims] ハウジングとこれに取り付けられる軸受部材との線膨張
係数が相違し、軸体とこれに取り付けられる軸受部材と
の線膨張係数が相違する軸受装置において、ハウジング
側軸受部材が本体層と本体層の外周側に一体に接合した
外周層との積層体として構成され、軸体側軸受部材が本
体層と本体層の内周側に一体に接合した内周層との積層
体として構成され、ハウジング側軸受部材の本体層と軸
体側軸受部材の本体層との線膨張係数がそれぞれハウジ
ングと軸体との線膨張係数よりも小さい場合は、ハウジ
ング側軸受部材の外周層と軸体側軸受部材の内周層との
線膨張係数をそれぞれの軸受部材の本体層の線膨張係数
よりも小さく設定するか、またはハウジング側軸受部材
の外周層の線膨張係数を本体層とハウジングとの線膨張
係数の中間の値に設定し、ハウジング側軸受部材の本体
層と軸体側軸受部材の本体層との線膨張係数がそれぞれ
ハウジングと軸体との線膨張係数よりも大きい場合は、
ハウジング側軸受部材の外周層と軸体側軸受部材の内周
層との線膨張係数をそれぞれハウジングと軸体との線膨
張係数よりも小さく設定するか、または軸体側軸受部材
の内周層の線膨張係数を本体層と軸体との線膨張係数の
中間の値に設定し、前記ハウジング側軸受部材と軸体側
軸受部材とは、任意に組み合わせるか、または各別の単
体としてそれぞれハウジングと軸体とに締め代をもつ嵌
め合いで取り付けられていることを特徴とする軸受装置
In a bearing device in which the linear expansion coefficients of the housing and the bearing member attached thereto are different, and the linear expansion coefficients of the shaft body and the bearing member attached thereto are different, the housing-side bearing member is attached to the main body layer and the outer periphery of the main body layer. The housing-side bearing member is configured as a laminate with an outer peripheral layer integrally joined to the side, and the shaft-side bearing member is constructed as a laminate with the main body layer and an inner peripheral layer integrally joined to the inner peripheral side of the main body layer. If the coefficients of linear expansion of the main body layer of the housing and the main body layer of the shaft-side bearing member are smaller than those of the housing and the shaft, the outer circumferential layer of the housing-side bearing member and the inner circumferential layer of the shaft-side bearing member Set the linear expansion coefficient of the outer peripheral layer of the housing-side bearing member to a value between the linear expansion coefficients of the main body layer and the housing. If the linear expansion coefficients of the main body layer of the housing-side bearing member and the main body layer of the shaft-side bearing member are each larger than those of the housing and the shaft body,
The linear expansion coefficients of the outer circumferential layer of the housing-side bearing member and the inner circumferential layer of the shaft-side bearing member are set to be smaller than those of the housing and the shaft, respectively, or the line of the inner circumferential layer of the shaft-side bearing member The coefficient of expansion is set to an intermediate value between the coefficients of linear expansion of the main body layer and the shaft body, and the housing side bearing member and the shaft body side bearing member can be combined arbitrarily or as separate units. A bearing device characterized in that it is attached with a fit having an interference between the two.
JP62032923A 1987-02-16 1987-02-16 Bearing device Expired - Fee Related JPH0830492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62032923A JPH0830492B2 (en) 1987-02-16 1987-02-16 Bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62032923A JPH0830492B2 (en) 1987-02-16 1987-02-16 Bearing device

Publications (2)

Publication Number Publication Date
JPS63199917A true JPS63199917A (en) 1988-08-18
JPH0830492B2 JPH0830492B2 (en) 1996-03-27

Family

ID=12372426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62032923A Expired - Fee Related JPH0830492B2 (en) 1987-02-16 1987-02-16 Bearing device

Country Status (1)

Country Link
JP (1) JPH0830492B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323222U (en) * 1989-07-18 1991-03-11
JPH03121226U (en) * 1990-03-24 1991-12-12
JP2007211639A (en) * 2006-02-08 2007-08-23 Hitachi Industrial Equipment Systems Co Ltd Oil free screw compressor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6169548B2 (en) 2014-09-26 2017-07-26 富士フイルム株式会社 Polymerizable composition, ink composition for ink jet recording, ink jet recording method, and recorded matter
US11754115B1 (en) * 2022-04-18 2023-09-12 Pratt & Whitney Canada Corp. Multi-material bushing for rotatably mounting a rotating structure to a stationary structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323222U (en) * 1989-07-18 1991-03-11
JPH03121226U (en) * 1990-03-24 1991-12-12
JP2007211639A (en) * 2006-02-08 2007-08-23 Hitachi Industrial Equipment Systems Co Ltd Oil free screw compressor

Also Published As

Publication number Publication date
JPH0830492B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
US7066653B2 (en) Bearing assembly and method
JP5920443B2 (en) Rolling bearing with seal ring
KR910017096A (en) Radial Spacers and Retainers for Roller One-Way Clutch
JPH03317A (en) Rolling bearing
JP2009008202A (en) Fixing structure of roller bearing
US3266269A (en) Sealing element
JPS63199917A (en) Bearing device
JP4811168B2 (en) Rolling bearing device
JPH01146013U (en)
JPH0681846A (en) Split type bearing
JPH06109025A (en) Split type bearing
JPS6392821A (en) Device for sealing bearing or bearing casing
JPH0247293Y2 (en)
JP6130690B2 (en) Reduction gear
JP3623309B2 (en) Defpinion tapered roller bearing device
US4265456A (en) Sealing assembly
JPH09269009A (en) Creep preventing roller bearing
JPS61157823A (en) Roller bearing, particularly, ball bearing
JPH0481043B2 (en)
JP2020133682A (en) Rolling bearing
JP6288409B2 (en) Sealing device
JPH0571548A (en) Installation device for annular body
JPH02253010A (en) Ring member attaching device
WO2024127741A1 (en) Rolling bearing
JP4876843B2 (en) Rolling bearing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees