JPH0520897Y2 - - Google Patents

Info

Publication number
JPH0520897Y2
JPH0520897Y2 JP2772287U JP2772287U JPH0520897Y2 JP H0520897 Y2 JPH0520897 Y2 JP H0520897Y2 JP 2772287 U JP2772287 U JP 2772287U JP 2772287 U JP2772287 U JP 2772287U JP H0520897 Y2 JPH0520897 Y2 JP H0520897Y2
Authority
JP
Japan
Prior art keywords
inner ring
shaft
spacer
bearing
linear expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2772287U
Other languages
Japanese (ja)
Other versions
JPS63135023U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2772287U priority Critical patent/JPH0520897Y2/ja
Publication of JPS63135023U publication Critical patent/JPS63135023U/ja
Application granted granted Critical
Publication of JPH0520897Y2 publication Critical patent/JPH0520897Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、ころがり軸受装置に関し、特に内
輪とは異なる線膨張係数をもつ軸に取付けられて
高温で使用される場合に、軸受荷重の増大や線膨
張係数の差異による熱応力等で軸受が損傷するこ
とを有効に防止するものである。
[Detailed description of the invention] [Industrial application field] This invention relates to a rolling bearing device, and particularly when it is mounted on a shaft with a linear expansion coefficient different from that of the inner ring and used at high temperatures, This effectively prevents damage to the bearing due to thermal stress caused by differences in linear expansion coefficients and linear expansion coefficients.

〔従来の技術〕[Conventional technology]

線膨張係数の異なる軸に対する従来の軸受の取
付け構造としては、第5図のようなころがり軸受
が、LUBRICATION ENGINEERINGの1981年
7月号の407〜415頁の記事中に示されている。こ
の軸受では内輪1がセラミツク製であり、間座2
が鋼製である。この間座2は、それぞれ内輪1に
対してはテーパ面で接し、軸3とは“しまりば
め”となつている。一方、内輪1は軸3に対して
“すきまばめ”とし、軸3や間座2が熱膨張して
も、軸受に過大な負荷が掛からないようにしてい
る。4は外輪、5は転動体としてのころ、6はこ
ろ5の保持器である。
As a conventional bearing mounting structure for shafts having different coefficients of linear expansion, a rolling bearing as shown in FIG. 5 is shown in an article on pages 407 to 415 of the July 1981 issue of LUBRICATION ENGINEERING. In this bearing, the inner ring 1 is made of ceramic, and the spacer 2
is made of steel. The spacer 2 is in contact with the inner ring 1 at a tapered surface, and is in "tight fit" with the shaft 3. On the other hand, the inner ring 1 is provided with a "loose fit" to the shaft 3, so that even if the shaft 3 and the spacer 2 expand thermally, an excessive load will not be applied to the bearing. 4 is an outer ring, 5 is a roller as a rolling element, and 6 is a retainer for the roller 5.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかしながら、このような従来のころがり軸受
装置にあつては、軸受荷重が作用するとテーパ面
の接触面圧が増大し、軸受装置の摩耗、振動、回
転時の振れ等が増大する。更に軸受荷重が大きく
なると、テーパ面では荷重を支えきれなくなり最
悪の場合は軸受が破壊されるという問題点があつ
た。また、軸受の運転時に急激な温度変化を生じ
ると、内輪と軸との線膨張係数の差によつて、は
めあい隙間が減少する際にアンバランスとなり、
内輪が軸に対して傾いてしまうことが起こりがち
であつた。
However, in such a conventional rolling bearing device, when a bearing load acts, the contact surface pressure of the tapered surface increases, which increases wear, vibration, runout during rotation, etc. of the bearing device. Furthermore, when the bearing load increases, the tapered surface becomes unable to support the load, and in the worst case, the bearing may be destroyed. Additionally, if a sudden temperature change occurs during bearing operation, the difference in linear expansion coefficient between the inner ring and the shaft will cause imbalance as the fitting clearance decreases.
There was a tendency for the inner ring to tilt with respect to the shaft.

この考案は、このような従来の問題点を除去し
たころがり軸受装置を提供することを目的として
いる。
The object of this invention is to provide a rolling bearing device that eliminates such conventional problems.

〔問題点を解決するための手段〕[Means for solving problems]

この考案は、軸受の内輪の線膨張係数が内輪を
取付ける軸の線膨張係数とは異なるころがり軸受
装置において、前記内輪は軸とのはめあいがすき
まばめで、その両端面が軸受中心に対して外開き
の傾斜面に形成されると共に、該傾斜面を介し前
記内輪を挟持し、かつ軸とは同等の線膨張係数を
有して固く係合する一対の内間座と、該内間座の
外側にあつて軸と固く係合し、かつ内側に曲げた
端部を有してその端部を前記内輪の外周面に係合
せしめた外間座とを備えたことを特徴とする。
This idea is based on a rolling bearing device in which the coefficient of linear expansion of the inner ring of the bearing is different from that of the shaft on which the inner ring is mounted, and the inner ring has a loose fit with the shaft, and both end surfaces thereof are outward from the center of the bearing. a pair of inner spacers formed on an opening inclined surface, sandwiching the inner ring through the inclined surfaces, and firmly engaging with the shaft with the same coefficient of linear expansion; The present invention is characterized in that it includes an outer spacer which is located on the outside, tightly engages with the shaft, and has an end bent inward, and the end is engaged with the outer circumferential surface of the inner ring.

〔作用〕[Effect]

内間座と、これに挟持される内輪との係合面を
傾斜面とすることで、内輪と軸との線膨張係数の
差異に基づき温度上昇時に出現する軸方向並びに
半径方向伸び量の差を吸収させる。
By making the engagement surface between the inner spacer and the inner ring sandwiched therebetween an inclined surface, the difference in the amount of elongation in the axial and radial directions that appears when the temperature rises is reduced due to the difference in linear expansion coefficient between the inner ring and the shaft. be absorbed.

更に、内間座に挟持される内輪の円筒状外周面
を外間座に支持させることで、内輪にかかる荷重
を分散させる。同時にまた、軸ときつちりはめ合
わせた外間座で内輪の軸に対する傾きを規制する
ことで、内輪と軸とが常に同心に保たれる。
Furthermore, by supporting the cylindrical outer peripheral surface of the inner ring held by the inner spacer on the outer spacer, the load applied to the inner ring is dispersed. At the same time, the inner ring and the shaft are always kept concentric by regulating the inclination of the inner ring with respect to the shaft with an outer spacer tightly fitted to the shaft.

〔実施例〕〔Example〕

以下、本考案の実施例を図面に基づき説明す
る。なお、各図中同一符号は同一または相当部分
を表している。
Hereinafter, embodiments of the present invention will be described based on the drawings. Note that the same reference numerals in each figure represent the same or corresponding parts.

第1図はこの考案をラジアル円筒ころ軸受に適
用した第1の実施例で、軌道輪は外輪4と内輪1
1とからなり、一方の軌道輪である内輪11は取
付けの相手部材である軸3に対して、すきまばめ
で嵌合している。内輪11はセラミツク製であ
り、軸受鋼製の軸3より小さな線膨張係数を有す
る。また内輪11の両端面11a,11bは軸受
中心Oに対して外開きの傾斜面に形成され、傾斜
角度はそれぞれθa,θb(以下、θa=θb=θとした
場合を述べる)である。
Figure 1 shows a first embodiment in which this invention is applied to a radial cylindrical roller bearing, in which the bearing rings include an outer ring 4 and an inner ring 1.
1, and an inner ring 11, which is one bearing ring, is fitted with a clearance fit to a shaft 3, which is a mating member to which it is attached. The inner ring 11 is made of ceramic and has a smaller coefficient of linear expansion than the shaft 3 made of bearing steel. In addition, both end surfaces 11a and 11b of the inner ring 11 are formed as inclined surfaces that open outward with respect to the bearing center O, and the inclination angles are θ a and θ b respectively (hereinafter, the case where θ a = θ b = θ will be described). It is.

この内輪11の軸方向外側には、一対の金属製
環状体からなる内間座12がある。
On the axially outer side of this inner ring 11, there is an inner spacer 12 made of a pair of metal annular bodies.

これら内間座12は軸3と同一の線膨張係数を
有し、軸3にしまりばめ乃至とまりばめで固く嵌
合する。また各内間座12の端部には、内輪傾斜
面11a及び11bと係合する傾斜角θの傾斜面
を有し、この傾斜面を介して内輪11を挟持して
いる。
These inner spacers 12 have the same coefficient of linear expansion as the shaft 3, and are tightly fitted to the shaft 3 with an interference fit or a stop fit. Further, each inner spacer 12 has an inclined surface at an end thereof having an inclination angle θ that engages with the inner ring inclined surfaces 11a and 11b, and the inner ring 11 is held between the inclined surfaces.

これらの傾斜角θは、内輪11の中心直径Dp
その中心直径Dpにおける内輪幅Wp、及び内輪1
1の線膨張係数αj、内間座12の線膨張係数αs
の間に次式の関係が成立するように選定されてい
る。
These inclination angles θ are the center diameter D p of the inner ring 11,
Inner ring width W p at its center diameter D p and inner ring 1
The linear expansion coefficient α j of the inner spacer 12 and the linear expansion coefficient α s of the inner spacer 12 are selected so that the following relationship holds true.

αj<αsの場合 θ≧tan-1(Wp/Dp) ……(1) αj>αsの場合 θ≦tan-1(Wp/Dp) ……(2) すなわち、この実施例のように内輪11の線膨
張係数αjが内間座12の線膨張係数αsより小さい
と、例えば温度上昇により各内間座12から内輪
11に対して傾斜面11a,11bを介して大き
く圧縮力が作用する。その場合は(1)式により傾斜
角θを内輪の強度上可能な限り大きくとることに
より、傾斜面での単位面積当たりの面圧を下げ、
可能な限り傾斜面の荷重負担能力を増やすもので
ある。これにより、軸受使用時の温度変化に伴う
内輪11と内間座12との間に軸方向、半径方向
の伸び量の差が発生した場合の抵抗力を増すこと
が可能となる。
When α js , θ≧tan -1 (W p /D p ) ...(1) When α j > α s , θ≦tan -1 (W p /D p ) ...(2) That is, If the linear expansion coefficient α j of the inner ring 11 is smaller than the linear expansion coefficient α s of the inner spacer 12 as in this embodiment, for example, due to temperature rise, the inclined surfaces 11 a and 11 b will be formed from each inner spacer 12 to the inner ring 11. A large compressive force acts through it. In that case, by setting the inclination angle θ as large as possible based on the strength of the inner ring according to equation (1), the surface pressure per unit area on the inclined surface can be lowered.
The purpose is to increase the load-bearing capacity of the slope as much as possible. This makes it possible to increase the resistance force when a difference in elongation in the axial and radial directions occurs between the inner ring 11 and the inner spacer 12 due to temperature changes during use of the bearing.

また、内間座12の外径は内輪11の外径より
いくらか小さくして、内輪11の円筒状の外周面
を内間座12の外周面からはみ出させて、これに
次に述べる外間座13の押圧力を加えるようにし
てある。
Further, the outer diameter of the inner spacer 12 is made somewhat smaller than the outer diameter of the inner ring 11, so that the cylindrical outer circumferential surface of the inner ring 11 protrudes from the outer circumferential surface of the inner spacer 12. It is designed to apply a pressing force of .

外間座13は、内間座12の軸方向外側にあつ
て相手部材である軸3にしまりばめ乃至とまりば
めで固く嵌合する。かつまた、外周端部を内輪1
1に向かつて内側に曲げて円筒部13aが形成し
てあり、その円筒部13aの端部内面13bは案
内面として内輪11の円筒状の外周面の端部に面
接触させてある。
The outer spacer 13 is located on the axially outer side of the inner spacer 12, and is tightly fitted to the shaft 3, which is a mating member, with an interference fit or a stop fit. In addition, the outer peripheral end is connected to the inner ring 1.
A cylindrical portion 13a is formed by bending inward toward the inner ring 11, and an end inner surface 13b of the cylindrical portion 13a is brought into surface contact with the end of the cylindrical outer peripheral surface of the inner ring 11 as a guide surface.

次に作用を述べる。 Next, we will discuss the effect.

軸3にこの考案のころがり軸受装置を第1図の
ように装着し、軸3の回転中に温度を上昇させ
た。軸受構成部材の熱膨張による軸方向と半径方
向への伸び量はセラミツク製の内輪11に比し軸
受鋼製の内間座12のほうが大きいから、内輪1
1には両者の係合する傾斜面11a,11bを介
して熱応力が作用する。しかしその傾斜面の傾斜
角θを(1)式に基づき選定した結果、上記の熱応力
を許容範囲内に収め得ることが実験により確かめ
られた。
The rolling bearing device of this invention was attached to the shaft 3 as shown in FIG. 1, and the temperature was raised while the shaft 3 was rotating. The amount of elongation in the axial and radial directions due to thermal expansion of the bearing components is larger for the inner spacer 12 made of bearing steel than for the inner ring 11 made of ceramic.
1 is subjected to thermal stress through the inclined surfaces 11a and 11b that engage with each other. However, by selecting the inclination angle θ of the inclined surface based on equation (1), it was confirmed through experiments that the above thermal stress could be kept within the allowable range.

また更に、内輪11に加わる応力の一部は、傾
斜面11a,11bにおける上方への分力とな
り、その結果、外間座13の円筒部13aの端部
内面13bにより受け止められて、傾斜面11
a,11bの負担がその分軽減された。
Furthermore, a part of the stress applied to the inner ring 11 becomes an upward component force on the inclined surfaces 11a and 11b, and as a result, it is received by the end inner surface 13b of the cylindrical portion 13a of the outer spacer 13, and the inclined surface 11
The burden on a and 11b has been reduced accordingly.

第2図には、本考案の第2の実施例を示す。 FIG. 2 shows a second embodiment of the invention.

この実施例は、上記第1の実施例と同じく、ラ
ジアル円筒ころ軸受に適用したものである。しか
し外間座23の円筒部23aは、その端部内面2
3bが内輪11の外周面に当接するのみでなく、
端部外面23cを保持器6の案内面として形成す
ると共に、円筒部23aの末端の垂直端面23d
を転動体5の案内面として兼用した点が第1の実
施例とは異なつている。これにより、軸受の組付
け精度が一層向上するという利点がある。
This embodiment, like the first embodiment, is applied to a radial cylindrical roller bearing. However, the cylindrical portion 23a of the outer spacer 23 has an inner surface 2 at its end.
3b not only comes into contact with the outer peripheral surface of the inner ring 11, but also
The end outer surface 23c is formed as a guide surface for the retainer 6, and the vertical end surface 23d at the end of the cylindrical portion 23a
This embodiment differs from the first embodiment in that it also serves as a guide surface for the rolling elements 5. This has the advantage of further improving bearing assembly accuracy.

第3図は、本考案の第3の実施例を示し、ラジ
アル円錐ころ軸受に適用したものである。転動体
5が円錐ころであることから、その他の構成部材
である外輪4、保持器6、内輪11、内間座1
2、外間座13等もその形状や相対的な大きさ
が、第1図に示す第1の実施例のものとは異なる
が、その作用、効果については本質的に異なると
ころはない。
FIG. 3 shows a third embodiment of the present invention, which is applied to a radial tapered roller bearing. Since the rolling elements 5 are tapered rollers, other constituent members such as the outer ring 4, cage 6, inner ring 11, and inner spacer 1
2. Although the shape and relative size of the outer spacer 13 and the like differ from those of the first embodiment shown in FIG. 1, there is no essential difference in their functions and effects.

第4図は、本考案の第4の実施例を示し、ラジ
アル深みぞ玉軸受に適用したものである。この場
合も、転動体5が球状であることから外輪4と内
輪11の形状、特に転動体5が接する軌道面が凹
部になつている点、が第1図に示す第1の実施例
のものとは異なるが、その作用、効果については
本質的に異なるところはない。
FIG. 4 shows a fourth embodiment of the present invention, which is applied to a radial deep groove ball bearing. In this case as well, since the rolling elements 5 are spherical, the shapes of the outer ring 4 and the inner ring 11, especially the raceway surfaces in contact with the rolling elements 5 are recessed, are those of the first embodiment shown in FIG. However, there is no essential difference in their actions and effects.

なお、上記の各実施例では内輪をセラミツク製
とした場合を示したが、鋼製その他のものに対し
ても適用可能なことは勿論である。
In each of the above embodiments, the inner ring is made of ceramic, but it is of course applicable to steel or other materials.

更にまた、内輪と内間座とが係合する傾斜面に
おける傾斜角の大きさは左右等しくした(θa
θb)場合を述べたが、異なる大きさとすることも
可能である。
Furthermore, the magnitude of the inclination angle on the inclined surface where the inner ring and the inner spacer engage are equal on the left and right sides (θ a =
Although the case of θ b ) has been described, it is also possible to set it to a different size.

〔考案の効果〕[Effect of idea]

以上説明したように、この考案は、軸受におけ
る内輪の両端面を軸受中心に対して外開きの傾斜
面にし、これを軸と固く係合させた内間座で支持
すると共に更に当該内輪の外周面を外間座で支持
するものとしたため、運転時の温度変化に応じて
内輪にかかる熱応力を内外の間座により分担して
支えることが可能となり、その結果、傾斜面の接
触面圧を軽減せしめて、軸受装置の摩耗、振動、
回転時の振れ等を著しく減少できるという効果が
得られる。更に軸受荷重が大きくなつても、傾斜
面では荷重を支えきれなくなるということもな
い。また、内輪を相手部材である軸に取付ける際
の心合わせが、従来に比し飛躍的に容易かつ正確
になり、しかも荷重が作用した後も心ずれ等のア
ンバランスな取付け状態変化が生じないから、軸
受は高精度を維持したまま運転を続けられるとい
う効果がある。
As explained above, this invention makes both end surfaces of the inner ring in a bearing an inclined surface that opens outward with respect to the center of the bearing, supports this with an inner spacer that is firmly engaged with the shaft, and further peripheries the inner ring. Since the surface is supported by the outer spacer, the thermal stress applied to the inner ring due to temperature changes during operation can be shared and supported by the outer and outer spacers, and as a result, the contact pressure on the inclined surface is reduced. At the very least, bearing equipment wear, vibration,
The effect of significantly reducing vibrations during rotation, etc. can be obtained. Furthermore, even if the bearing load becomes large, the inclined surface will not be unable to support the load. In addition, alignment when attaching the inner ring to the mating shaft is dramatically easier and more accurate than before, and even after a load is applied, unbalanced changes in the attachment condition such as misalignment do not occur. This has the effect that the bearing can continue to operate while maintaining high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は、それぞれ本考案の実施
例を示す要部断面図で、第1図はラジアル円筒こ
ろ軸受に適用した第1の実施例、第2図は同じく
ラジアル円筒ころ軸受に適用した第2の実施例、
第3図はラジアル円錐ころ軸受に適用した第3の
実施例、第4図はラジアル深みぞ玉軸受に適用し
た第4の実施例である。第5図は従来の転がり軸
受装置の要部断面図である。 1,11……内輪、3……軸、4……外輪、5
……転動体、6……保持器、11a,11b……
内輪の傾斜面、12……内間座、13……外間
座、O……軸受中心。
Figures 1 to 4 are sectional views of essential parts showing embodiments of the present invention, respectively. Figure 1 shows the first embodiment applied to a radial cylindrical roller bearing, and Figure 2 shows the same applied to a radial cylindrical roller bearing. The second example applied,
FIG. 3 shows a third embodiment applied to a radial tapered roller bearing, and FIG. 4 shows a fourth embodiment applied to a radial deep groove ball bearing. FIG. 5 is a sectional view of a main part of a conventional rolling bearing device. 1, 11...Inner ring, 3...Shaft, 4...Outer ring, 5
...Rolling element, 6...Cage, 11a, 11b...
Inclined surface of inner ring, 12... Inner spacer, 13... Outer spacer, O... Bearing center.

Claims (1)

【実用新案登録請求の範囲】 (1) 軸受の内輪の線膨張係数が内輪を取付ける軸
の線膨張係数とは異なるころがり軸受装置にお
いて、前記内輪は軸とのはめあいがすきまばめ
で、その両端面が軸受中心に対して外開きの傾
斜面に形成されると共に、該傾斜面を介し前記
内輪を挟持し、かつ軸とは同等の線膨張係数を
有して固く係合する一対の内間座と、該内間座
の外側にあつて軸と固く係合し、かつ内側に曲
げた端部を有してその端部を前記内輪の外周面
に係合せしめた外間座とを備えたことを特徴と
するころがり軸受装置。 (2) 前記内輪は、その両端面の傾斜角θa,θb、内
輪の中心直径Dp、その中心直径での幅Wp、お
よび内輪の線膨張係数αj、内間座の線膨張係数
αsの相互関係を αj<αsのとき θa,θb≧tan-1(Wp/Dp) αj>αsのとき θa,θb≦tan-1(Wp/Dp) の成り立つように形成されていることを特徴と
する実用新案登録請求の範囲第1項記載のころ
がり軸受装置。
[Claims for Utility Model Registration] (1) In a rolling bearing device in which the coefficient of linear expansion of the inner ring of the bearing is different from that of the shaft on which the inner ring is mounted, the inner ring is fitted with the shaft in a loose fit, and the inner ring has a loose fit with the shaft, and a pair of inner spacers that are formed into inclined surfaces that open outward with respect to the center of the bearing, sandwich the inner ring through the inclined surfaces, and that have the same coefficient of linear expansion and are tightly engaged with the shaft. and an outer spacer which is located on the outside of the inner spacer and is firmly engaged with the shaft, and has an end bent inward and the end is engaged with the outer circumferential surface of the inner ring. A rolling bearing device featuring: (2) The inner ring has an inclination angle θ a , θ b of both end faces, a center diameter D p of the inner ring, a width W p at the center diameter, a linear expansion coefficient α j of the inner ring, and a linear expansion of the inner spacer. The correlation between the coefficients α s is expressed as θ a , θ b ≧tan -1 (W p /D p ) when α js , and θ a , θ b ≦tan -1 (W p / D p ) when α j > α s . The rolling bearing device according to claim 1, which is characterized in that it is formed so that D p ) is satisfied.
JP2772287U 1987-02-26 1987-02-26 Expired - Lifetime JPH0520897Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2772287U JPH0520897Y2 (en) 1987-02-26 1987-02-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2772287U JPH0520897Y2 (en) 1987-02-26 1987-02-26

Publications (2)

Publication Number Publication Date
JPS63135023U JPS63135023U (en) 1988-09-05
JPH0520897Y2 true JPH0520897Y2 (en) 1993-05-28

Family

ID=30830021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2772287U Expired - Lifetime JPH0520897Y2 (en) 1987-02-26 1987-02-26

Country Status (1)

Country Link
JP (1) JPH0520897Y2 (en)

Also Published As

Publication number Publication date
JPS63135023U (en) 1988-09-05

Similar Documents

Publication Publication Date Title
US5316393A (en) Duplex rolling element bearing mounting for ensuring preload control
US5067827A (en) Machine bearing arrangement with form-memory deformable element
US20090080824A1 (en) Bearing having thermal compensating capability
US5197808A (en) Device for mounting annular body
JP2586503B2 (en) Bearing mounting device
JPH0519652U (en) Needle-shaped roller bearings with split cage
JP2563692Y2 (en) Double row angular contact ball bearing device
EP1373746B1 (en) Gear shaft bearing assembly
JPH0520897Y2 (en)
US20040141674A1 (en) Method for forming a taper roller bearing assembly
JP4622195B2 (en) Rotation support mechanism
JPH0238713A (en) Rolling bearing with clearance compensator
JPH01295025A (en) Fitting device for shaft and annular body
JP2643415B2 (en) bearing
JPS6239288B2 (en)
JP2970003B2 (en) Ring attachment device
JPH0137220Y2 (en)
JPS6230609Y2 (en)
JP2970029B2 (en) Ring attachment device
JPH0571548A (en) Installation device for annular body
JPH02253010A (en) Ring member attaching device
JPH0725849Y2 (en) Spindle head spindle support device
JP3116515B2 (en) Ring mounting device
JPS61175313A (en) Rolling bearing with spacer
JP2003028154A (en) Double row rolling bearing device