JP2643415B2 - bearing - Google Patents
bearingInfo
- Publication number
- JP2643415B2 JP2643415B2 JP1037065A JP3706589A JP2643415B2 JP 2643415 B2 JP2643415 B2 JP 2643415B2 JP 1037065 A JP1037065 A JP 1037065A JP 3706589 A JP3706589 A JP 3706589A JP 2643415 B2 JP2643415 B2 JP 2643415B2
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- mating member
- inner ring
- annular body
- linear expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/52—Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
- F16C19/525—Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to temperature and heat, e.g. insulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C35/00—Rigid support of bearing units; Housings, e.g. caps, covers
- F16C35/04—Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
- F16C35/06—Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
- F16C35/063—Fixing them on the shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/22—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
- F16C19/24—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
- F16C19/26—Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Mounting Of Bearings Or Others (AREA)
- Rolling Contact Bearings (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、転がり軸受または滑り軸受に関し、とく
に軸受を構成する環状体が、これとは異なる線膨張係数
をもつ相手部材に取り付けられて使用される場合に、負
荷荷重の増大や温度変化に伴う熱応力等によって損傷す
るのを防止するものである。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolling bearing or a sliding bearing, and more particularly to a use in which an annular body forming a bearing is attached to a mating member having a different coefficient of linear expansion from this. In this case, it is intended to prevent damage due to an increase in applied load or thermal stress accompanying a temperature change.
従来、軸受環状体と相手部材との線膨張係数が異なる
場合の軸受構造としては、たとえば、LUBRICATION ENGI
NIEERING 1981年7月号の407〜415頁に、間座付き転が
り軸受に関する記事が発表されている。この軸受は第2
図に示すように、軸(相手部材)10に取り付けた内輪
(軸受環状体)20と図示しない軸箱(相手部材)に取り
付けた外輪(軸受環状体)30との間に、保持器51に保持
案内される円筒ころ50を介装したものであるが、軸10は
鋼材により、内輪20はセラミック材によりそれぞれ作ら
れている。この内輪20は軸方向の両側端面が中心軸線に
対して外開きに拡大するテーパ面であって、軸10にすき
まばめにより嵌合され、内輪20の両側端面は、軸10にし
まりばめにより嵌合された鋼材からなる間座(固定用環
状体)40,40により軸方向に支持れており、軸受に作用
する荷重は、内輪20の両側端面から間座40,40を介して
軸10に伝達する構造になっている。Conventionally, as a bearing structure when the linear expansion coefficient of the bearing ring body and the mating member are different, for example, LUBRICATION ENGI
An article on rolling bearings with spacers is published on pages 407-415 of the July 1981 issue of NIEERING. This bearing is the second
As shown in the figure, a retainer 51 is provided between an inner ring (bearing ring) 20 attached to a shaft (mating member) 10 and an outer ring (bearing ring) 30 attached to a shaft box (mating member) (not shown). The shaft 10 is made of a steel material, and the inner race 20 is made of a ceramic material. The inner ring 20 is a tapered surface in which both end surfaces in the axial direction expand outwardly with respect to the central axis, and are fitted to the shaft 10 by loose fit, and both end surfaces of the inner ring 20 are tightly fitted to the shaft 10. The bearings are supported in the axial direction by spacers (fixed annular bodies) 40, 40 made of steel material fitted together, and the load acting on the bearing is transferred from both end surfaces of the inner ring 20 to the shaft via the spacers 40, 40. It has a structure to transmit to 10.
内輪10に対する間座40,40の支持については、内輪20
の両側端面に間座40,40の対向端面を接触させて内輪20
を半径方向に摺動可能に挾着するか、あるいは内輪20の
両側端面と間座40,40の対向端面とを接合して一体的に
固着するかの何れかの手段が採られている。Regarding the support of the spacers 40, 40 with respect to the inner ring 10,
The opposite end faces of spacers 40, 40 are brought into contact with both end faces of
Are slidably held in the radial direction, or both end surfaces of the inner race 20 and the opposing end surfaces of the spacers 40, 40 are joined and fixed integrally.
上記の転がり軸受において、内輪20が間座40,40を介
して半径方向に摺動可能に支持されている場合は、軸受
に半径方向荷重が作用したときに、内輪20には、その荷
重よりも大きな力で間座40,40を軸方向外側に押し開か
せようとするくさび作用が生じるから、内輪20の両側端
面における接触面圧が増大して摩耗,破損したり、負荷
荷重が限界に達して破壊するなどの不都合が生じる。In the above-mentioned rolling bearing, when the inner ring 20 is supported so as to be slidable in the radial direction through the spacers 40, 40, when a radial load is applied to the bearing, the inner ring 20 receives less than the load. Since the wedge action occurs to push the spacers 40 and 40 outward in the axial direction with a large force, the contact surface pressure on the both end faces of the inner ring 20 increases, resulting in wear, breakage, and the limit of the applied load. Inconveniences such as reaching and destroying occur.
また、内輪20と間座40,40とを軸10に組み付けるとき
においては、内輪20がすきまばめであるため、内輪20と
間座40,40との間で相対滑りが生じて正確な心出しが困
難となり、組付け作業に熟練を要し、作業性の点でも支
障がある。Also, when the inner ring 20 and the spacers 40, 40 are assembled to the shaft 10, since the inner ring 20 has a loose fit, relative slippage occurs between the inner ring 20 and the spacers 40, 40, and accurate centering is performed. However, the assembling work requires skill and there is a problem in workability.
また、内輪20に間座40,40が一体的に接合固着されて
いる場合も同様に、軸受に半径方向荷重が作用したとき
に、内輪20の両側端面と間座40,40の接合端面との間に
は、くさび作用による大きな力が作用するから、内輪20
が接合部分において破損するのを防止するには、接合面
における固着力を強固なものにする必要があり、高度の
接合技術が要求されることになる。Similarly, when the spacers 40, 40 are integrally joined and fixed to the inner ring 20, when a radial load is applied to the bearing, both end surfaces of the inner ring 20 and the joint end surfaces of the spacers 40, 40 are connected. Between the inner ring 20
In order to prevent the joint from being damaged at the joint portion, it is necessary to strengthen the fixing force at the joint surface, and a high joining technique is required.
この発明は、上記の問題を解決して、相手部材とは異
なる線膨張係数を有する軸受環状体を介して相手部材に
伝達されうる負荷荷重を大幅に増大し、かつ軸受環状体
と相手部材との正確な組付けが容易にできる軸受を提供
することを目的とする。The present invention solves the above-described problem, greatly increases the load that can be transmitted to a mating member through a bearing annular body having a different linear expansion coefficient from that of the mating member, and reduces the load between the bearing annular body and the mating member. It is an object of the present invention to provide a bearing capable of easily assembling the bearing easily.
この発明は、上記の目的を達成するため、相手部材に
取り付けられた軸受環状体の少なくとも一方の線膨張係
数が相手部材の線膨張係数と相違し、この異なる線膨張
係数をもつ軸受環状体の軸方向両側端面を軸方向に支持
する一対の固定用環状体が相手部材に固く係合されてな
る軸受において、前記固定用環状体は相手部材もしくは
軸受環状体と同等の値の線膨張係数を有しているか、ま
たは相手部材と軸受環状体との中間の値の線膨張係数を
有しており、前記軸受環状体の相手部材に対する嵌合面
は、遅くとも軸受の使用時において固く嵌合し、かつ軸
受に負荷された荷重およびこの嵌合ならびに温度変化に
よる最大応力が軸受環状体の構成材料の許容最大応力よ
りも小さくなるように設定された寸法を有している。According to the present invention, in order to achieve the above object, at least one of a bearing annular body attached to a mating member has a different linear expansion coefficient from a linear expansion coefficient of a mating member. In a bearing in which a pair of fixing annular bodies that axially support both end surfaces in the axial direction are firmly engaged with a mating member, the fixing annular body has a linear expansion coefficient equivalent to that of the mating member or the bearing annular body. Has a coefficient of linear expansion intermediate between the mating member and the bearing ring, and the fitting surface of the bearing ring to the mating member is firmly fitted at the latest when the bearing is used. The bearing has a dimension set so that the maximum stress caused by the load applied to the bearing, the fitting thereof, and the temperature change is smaller than the allowable maximum stress of the constituent material of the bearing annular body.
固定用環状体は軸受環状体とは別体で軸受環状体の軸
方向両側端面を挾着して支持する構成であってもよく、
また固定用環状体の少なくとも一方は、軸受環状体の軸
方向端面に接合して一体的に固着してもよい。The fixing annular body may be configured separately from the bearing annular body to sandwich and support both axial end surfaces of the bearing annular body,
At least one of the fixing annular members may be joined to the axial end surface of the bearing annular member and integrally fixed.
軸受環状体は、軸方向の少なくとも一方の端面をテー
パ面に形成してもよい。このテーパ面の軸直角断面に対
する角度は、軸受環状体の肉厚中心における軸方向長さ
および直径とに対応して所定の関係が成立するように設
定するのが好ましい。The bearing ring may have at least one end face in the axial direction formed as a tapered face. The angle of the tapered surface with respect to the cross section perpendicular to the axis is preferably set such that a predetermined relationship is established corresponding to the axial length and the diameter at the center of the thickness of the bearing annular body.
この発明の軸受環状体は、遅くとも軸受としての使用
時に相手部材との間の線膨張係数の差と温度差に基づく
相対的寸法変化によって、相手部材に対して固い嵌合状
態となるため、軸受環状体に負荷される荷重を固定用環
状体との間の対向端面だけでなく、軸受環状体と相手部
材との間の嵌合面によっても負担する。The bearing annular body of the present invention is firmly fitted to the mating member at the latest when used as a bearing due to a relative dimensional change based on a difference in linear expansion coefficient between the mating member and a temperature difference between the mating member and the bearing. The load applied to the annular body is borne not only by the facing end face between the fixing annular body but also by the fitting surface between the bearing annular body and the mating member.
しかも、軸受環状体は負荷された荷重およびこの嵌合
ならびに温度変化によって発生する最大応力が、その構
成材料の許容最大応力よりも小さくなるように嵌合面の
寸法が設定されているため、軸受環状体が負荷荷重によ
って破壊することはない。Moreover, the dimensions of the fitting surface of the annular bearing body are set such that the applied load and the maximum stress generated by the fitting and temperature change are smaller than the allowable maximum stress of the constituent material. The annulus does not break under the applied load.
また、軸受環状体の軸方向端面にテーパ面を形成し、
その角度を軸受環状体の肉厚中心における軸方向長さお
よび直径に対して所定の関係が成立するように設定した
場合は、温度変化が生じたときに各構成部材の線膨張係
数の差に基づく軸受環状体と固定環状体との接触または
接合部分における熱応力の集中や軸受環状体と相手部材
との嵌合面における熱応力の集中を防止することができ
る。Also, a tapered surface is formed on the axial end surface of the bearing annular body,
If the angle is set so that a predetermined relationship is established with respect to the axial length and the diameter at the center of the thickness of the bearing annular body, the difference in the coefficient of linear expansion of each component when a temperature change occurs. It is possible to prevent concentration of thermal stress at a contact or joint portion between the bearing annular body and the fixed annular body and concentration of thermal stress at a fitting surface between the bearing annular body and the mating member.
以下、この発明の実施例を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第1図は、この発明をラジアル円筒ころ軸受に適用し
た実施例である。この円筒ころ軸受は、軸受環状体であ
る外輪30と内輪20との間に円筒ころ50が介装され、円筒
ころ50は保持器51に保持案内されて転動するようになっ
ている。FIG. 1 shows an embodiment in which the present invention is applied to a radial cylindrical roller bearing. In this cylindrical roller bearing, a cylindrical roller 50 is interposed between an outer ring 30 and an inner ring 20, which are annular bearing bodies, and the cylindrical roller 50 is held and guided by a retainer 51 to roll.
一方の軸受環状体である内輪20は、その内周面(嵌合
面)21が相手部材である軸10に嵌合され、他方の軸受環
状体である外輪30は、その外周面が図示しない相手部材
である軸箱に嵌合されている。An inner ring 20, which is one bearing ring, has an inner peripheral surface (fitting surface) 21 fitted to the shaft 10 as a mating member, and an outer ring 30, which is the other bearing ring, has an outer peripheral surface not shown. It is fitted to a shaft box which is a mating member.
上記の円筒ころ軸受の外輪30は通常の軸受鋼を材料と
しているが、内輪20はたとえば窒化珪素のようなセラミ
ック材により作られており、その線膨張係数αjは、鋼
材により作られた軸10の線膨張係数αsよりも小さくな
っている。この内輪20の軸方向の両側端面22a,22bは、
内周縁から中心軸線に対して外開き方向に拡径し、軸直
角断面に対してθ1,θ2の傾斜角度をもつテーパ面に形
成され、軸10に対して後述する所定量のはめ合いすきま
Δdをもって嵌合されている。The outer ring 30 of the above-mentioned cylindrical roller bearing is made of ordinary bearing steel, but the inner ring 20 is made of a ceramic material such as silicon nitride, for example, and has a linear expansion coefficient α j of a shaft made of steel. It is smaller than the linear expansion coefficient of 10 α s. Both end surfaces 22a and 22b in the axial direction of the inner ring 20 are
From the inner peripheral edge, the diameter increases in the direction of opening outward with respect to the central axis, and is formed on a tapered surface having an inclination angle of θ 1 , θ 2 with respect to a section perpendicular to the axis, and is fitted to the shaft 10 by a predetermined amount described later. They are fitted with a clearance Δd.
上記の内輪20の両側端面22a,22bは、一対の固定用環
状体である間座40,40によって軸方向に支持されてい
る。これらの間座40,40は、その線膨張係数αkが軸10
の線膨張係数αsと同等であって内輪20の線膨張係数α
jよりも大きい値をもつ材料、もしくは軸10の線膨張係
数αsよりも小さく、内輪20の線膨張係数αjよりも大
きい値をもつ金属材、たとえば、特殊な鋳鉄,窒化アル
ミニウム等により作られるか(αj<αk≦αs)、あ
るいはその線膨張係数αkが内輪20の線膨張係数αjと
同等であって軸10の線膨張係数αsよりも小さい値をも
つ材料、もしくは内輪20の線膨張係数αjよりも大き
く、軸10の線膨張係数αsよりも小さい値をもつ金属
材、たとえば、コバール合金,エリンバー合金等により
作られている(αj≦αk<αs)。上記の間座40,40
は、その内周面(嵌合面)41aが軸10にしまりばめ、ま
たはとまりばめにより固く嵌合されている。また、間座
40,40の内輪20との対向端面42aは、内輪20の両側端面22
a,22bの傾斜角度θ1,θ2と同一角度をもつテーパ面に
形成されている。この間座40,40は対向端面42aを内輪20
の両側端面22a,22bに接触させて内輪20を挾着する状態
で軸10に取り付けてもよく、また間座40,40の少なくと
も一方は、その端面42aを内輪20の端面に接合して一体
的に固着したものを軸10に取り付けてもよい。間座40,4
0を内輪20に固着する方法としては、一般に採用されて
いる金属材とセラミック材との接合方法を利用すること
ができる。Both end surfaces 22a, 22b of the inner ring 20 are supported in the axial direction by spacers 40, 40, which are a pair of fixing annular bodies. These spacers 40, 40 have a linear expansion coefficient α k of which axis 10
Linear expansion coefficient of the inner ring 20 a similar linear expansion coefficient alpha s of alpha
material having a value greater than j, or smaller than the linear expansion coefficient of the shaft 10 alpha s, metallic material having a value larger than the linear expansion coefficient alpha j of the inner ring 20, for example, special cast iron, of aluminum nitride or the like created (Α j <α k ≦ α s ) or a material whose linear expansion coefficient α k is equal to the linear expansion coefficient α j of the inner ring 20 and has a smaller value than the linear expansion coefficient α s of the shaft 10. Alternatively, it is made of a metal material having a value larger than the coefficient of linear expansion α j of the inner ring 20 and smaller than the coefficient of linear expansion α s of the shaft 10, for example, a Kovar alloy, an Elinvar alloy, or the like (α j ≦ α k < α s ). The above spacers 40, 40
The inner peripheral surface (fitting surface) 41a is tightly fitted to the shaft 10 or is tightly fitted by the fit. Also, the zama
The end faces 42 a of the inner ring 20 facing the inner ring 20 are the side end faces 22 of the inner ring 20.
a, 22b are formed on tapered surfaces having the same angles as the inclination angles θ 1 , θ 2 . The spacers 40, 40 have the opposite end surface 42a
The inner ring 20 may be attached to the shaft 10 in a state where the inner ring 20 is clamped by being in contact with both side end faces 22a, 22b. At least one of the spacers 40, 40 has its end face 42a joined to the end face of the inner ring 20 to form an integral body. What is fixed to the shaft 10 may be attached to the shaft 10. Spacer 40,4
As a method of fixing the “0” to the inner ring 20, a generally used joining method of a metal material and a ceramic material can be used.
上記のように、内輪20は、軸10に固いはめあいで取り
付けられた一対の間座40,40によって軸方向に支持され
た状態となるが、この状態で内輪20の内周面21と軸10の
外周面との間に形成されるはめ合いすきまΔdは、内輪
20と軸10との線膨張係数の差、軸受の取付時と使用時と
の間の温度差に基づく相対的寸法変化によるすきまの減
少量によって減少し、遅くとも使用時においてしまりば
めによる固い嵌合状態が生成するように設定されてい
る。As described above, the inner ring 20 is in a state of being supported in the axial direction by the pair of spacers 40, 40 fixedly fitted to the shaft 10, and in this state, the inner peripheral surface 21 of the inner ring 20 and the shaft 10 are supported. The clearance Δd formed between the outer ring and the outer ring
Decrease due to the difference in linear expansion coefficient between 20 and shaft 10, the amount of clearance reduction due to relative dimensional change based on the temperature difference between when the bearing is mounted and when it is used, and at the latest when used, the tight fit due to interference fit It is set to generate a match state.
また、内輪20の内周面21の寸法は、軸受の使用時にお
いて内輪20に生じる最大応力、すなわち、はめ合いすき
まΔdの減少によるしまりばめに起因して内周面に生じ
る最大引張応力と、軸受に半径方向荷重が作用したとき
に生じる最大引張応力と温度変化によって生じる最大引
張応力との合計が、内輪20の構成材料であるセラミック
材の許容最大引張応力より小さくなるように設定されて
いる。The dimension of the inner peripheral surface 21 of the inner ring 20 is determined by the maximum stress generated in the inner ring 20 when the bearing is used, that is, the maximum tensile stress generated on the inner peripheral surface due to the interference fit due to the decrease in the fitting clearance Δd. The total of the maximum tensile stress generated when a radial load is applied to the bearing and the maximum tensile stress generated by a temperature change is set to be smaller than the allowable maximum tensile stress of the ceramic material constituting the inner ring 20. I have.
なお、内輪20の軸方向の両側端面22a,22bのテーパ面
は、上記の外開き方向とは反対に、外周縁から中心軸線
に対して内開き方向に縮径するような角度で形成しても
よい。The tapered surfaces of both end surfaces 22a and 22b in the axial direction of the inner ring 20 are formed at an angle such that the diameter of the inner ring 20 is reduced in the inward opening direction with respect to the central axis from the outer peripheral edge, opposite to the outward opening direction. Is also good.
また、間座40,40は、軸10に対してねじ締結,接着等
の手段を用いて軸10と固く係合させてもよい。Further, the spacers 40, 40 may be firmly engaged with the shaft 10 by using a means such as screw fastening, bonding, or the like.
上記構成の円筒ころ軸受において、軸受の取付時に常
温Taで、内輪20の内周面21を軸10にすきまばめによりは
め合いすきまΔdをもって嵌合し、軸受の使用時におけ
る温度がTbまで上昇した場合について考えると、軸受の
使用時におけるはめ合いすきまは、軸10の直径をdとす
ると、 (αs−αj)(Tb−Ta)d だけ減少するから、内輪20は軸10に対して、 (αs−αj)(Tb−Ta)d−Δd の量のしめしろをもつしまりばめによって固く嵌合した
状態となる。In the cylindrical roller bearing of the above construction, at ambient temperature T a during installation of the bearing fitted with a gap Δd fit by clearance fit to the shaft 10 to the inner peripheral surface 21 of the inner ring 20, the temperature T b at the time of use of the bearing Considering the case where the inner ring 20 is raised, the fitting clearance during use of the bearing decreases by (α s −α j ) (T b −T a ) d when the diameter of the shaft 10 is d. The shaft 10 is firmly fitted to the shaft 10 by an interference fit having an interference amount of (α s −α j ) (T b −T a ) d−Δd.
そして、この状態で軸受を使用したときに、内輪20に
生ずる最大引張応力は、その構成材料の許容最大引張応
力よりも小さくなるように内周面21の寸法が設定されて
いるから、内輪20は負荷された荷重によって破損するこ
となく、その内周面21を介して軸10へ荷重の一部を伝達
し、その余の荷重は両側端面22a,22bを介してそれぞれ
の間座40,40を通して軸10へ伝達する。このように軸受
に作用する荷重は、内輪20と間座40,40とが分担負荷し
て軸10に伝達されることになるから、内輪20がその両側
端面22a,22bを支持する間座40,40を軸方向外側に押し開
かせようとするくさび作用による力は、軸受に作用する
荷重の一部だけが増大されて間座40,40の対向端面42aに
伝達されるにすぎない。When the bearing is used in this state, the dimension of the inner peripheral surface 21 is set so that the maximum tensile stress generated in the inner ring 20 is smaller than the allowable maximum tensile stress of the constituent material. Transmits part of the load to the shaft 10 via the inner peripheral surface 21 thereof without being damaged by the applied load, and the remaining load is transmitted to the spacers 40, 40 via the side end surfaces 22a, 22b. Through to the shaft 10. In this way, the load acting on the bearing is transmitted to the shaft 10 by sharing the load between the inner ring 20 and the spacers 40, 40, so that the inner ring 20 supports the spacers 40 supporting the both end surfaces 22a, 22b. , 40 is only transmitted to the opposed end surfaces 42a of the spacers 40, 40 by increasing only a part of the load acting on the bearing.
したがって、内輪20の両側端面22a,22bに間座40,40の
対向端面42aが接触して挾着している場合は、その接触
面圧が軽減され接触部分の損傷,摩耗が少なく、破壊し
難くなるから、耐久性が増すことになり、内輪20に間座
40,40の対向端面42aが接合して一体に固着されている場
合も同様に、その接合面に伝達される荷重が軽減される
結果、接合部分が破壊し難くなり耐久性が増大する。Therefore, when the opposed end surfaces 42a of the spacers 40, 40 are in contact with and sandwiched between the both end surfaces 22a, 22b of the inner ring 20, the contact surface pressure is reduced, and the damage and wear of the contact portions are reduced, resulting in breakage. Because it becomes difficult, the durability increases, and the spacer is attached to the inner ring 20
Similarly, when the opposed end surfaces 42a of the 40, 40 are joined and fixed integrally, the load transmitted to the joined surface is reduced, so that the joined portion is less likely to be broken and the durability is increased.
なお、内輪20の両側端面22a,22bに形成したテーパ面
の傾斜角度θ1,θ2を下記のように設定することによ
り、軸受の取付時と使用時との温度が変化した場合に、
内輪20の間座40,40との接触面または接合面、内輪20と
軸10との嵌合面に発生する熱応力による影響を防止する
ことができる。In addition, by setting the inclination angles θ 1 and θ 2 of the tapered surfaces formed on both end surfaces 22a and 22b of the inner ring 20 as follows, when the temperature at the time of mounting and during use of the bearing changes,
The influence of thermal stress generated on the contact surface or joint surface between the spacers 40, 40 of the inner ring 20 and the fitting surface between the inner ring 20 and the shaft 10 can be prevented.
すなわち、内輪20の肉厚中心における軸方向長さを
WP,直径をDPとして、温度変化ΔTによる両側端面22a,2
2bの軸方向の長さ変化Δx1,Δx2と半径方向の長さ変化
Δy1,Δy2とは、 となる。軸方向および半径方向の相対的な長さ変化が生
じないときの条件は、 であるから、αs≠αj、ΔT≠0として、上式
(1),(2),(3)を解くと、 tanθ1+tanθ2=2WP/DP ……(4) が得られる。That is, the axial length at the center of the thickness of the inner ring 20 is
Let W P be the diameter D P and both end faces 22a, 2 due to temperature change ΔT.
The axial length changes Δx 1 , Δx 2 and the radial length changes Δy 1 , Δy 2 of 2b are: Becomes When there is no relative change in axial and radial length, Therefore, assuming α s ≠ α j and ΔT ≠ 0, solving the above equations (1), (2) and (3) gives tan θ 1 + tan θ 2 = 2W P / D P (4) .
上式におけるθ1,θ2は、内輪20の両側端面22a,22b
のテーパ面が外開き方向に拡径している場合を正、内開
き方向に縮径している場合を負とする。Θ 1 and θ 2 in the above equation are both side end faces 22a and 22b of the inner ring 20.
Is positive when the diameter of the tapered surface is increased in the outward opening direction, and negative when the tapered surface is reduced in the inner opening direction.
前記実施例では、セラミック材からなる内輪を鋼材か
らなる軸に取り付けた場合について説明したが、この発
明は、このような場合に限らず、例えば鋼材からなる内
輪をステンレス鋼,黄銅,アルミニウム合金等の材料か
らなる軸に取り付けた場合についても、間座の材料の線
膨張係数を内輪と軸との材料に対して前記と同様の所定
の関係が成立するように決定することにより、同様に適
用することができる。In the above embodiment, the case where the inner ring made of a ceramic material is attached to the shaft made of a steel material has been described. However, the present invention is not limited to such a case. The same applies to the case where the bearing is attached to a shaft made of the material described above, by determining the linear expansion coefficient of the spacer material so that the predetermined relationship similar to the above holds for the material of the inner ring and the shaft. can do.
また、間座による内輪の支持は、前記実施例のように
内輪の軸方向両側端面にテーパ面を形成する場合だけで
なく、内輪の軸方向の両側端面または一方の端面を中心
軸線に対して直交する垂直面に形成してもよい。In addition, the support of the inner ring by the spacer is not limited to the case where tapered surfaces are formed on both axial end surfaces of the inner ring as in the above-described embodiment, but also the two axial end surfaces or one end surface of the inner ring with respect to the center axis. It may be formed on an orthogonal vertical plane.
また、この発明は、内輪と軸との線膨張係数が異なる
軸受だけでなく、外輪と軸箱との線膨張係数が異なる軸
受についても適用することができる。Further, the present invention is applicable not only to bearings having different coefficients of linear expansion between the inner ring and the shaft, but also to bearings having different coefficients of linear expansion between the outer ring and the shaft box.
また、この発明は、軸受の使用時における温度が、取
付時の温度よりも高温になる場合に限らず、軸受の取付
時よりも使用時の方が低温になる場合についても適用す
ることができる。Further, the present invention can be applied not only to the case where the temperature during use of the bearing is higher than the temperature at the time of mounting, but also to the case where the temperature during use is lower than when the bearing is mounted. .
さらに、この発明は、転がり軸受だけでなく、滑り軸
受の内周側部材を軸に取り付ける場合および外周側部材
(軸受本体)を軸箱に取り付ける場合についても、前記
と同様の構成にすることができる。Further, the present invention can be applied to not only the rolling bearing but also the case where the inner peripheral side member of the slide bearing is attached to the shaft and the case where the outer peripheral side member (bearing main body) is attached to the shaft box. it can.
以上説明したように、この発明によれば、軸受環状体
の線膨張係数が相手部材のそれとは異なる軸受におい
て、軸受に作用する荷重を軸受環状体の両側端面を支持
する固定用環状体だけでなく、軸受環状体自体によって
も分担して相手部材に伝達することができるため、負荷
し得る軸受荷重が増大し、あるいは軸受荷重が同一であ
れば耐久寿命が長くなるという効果が得られ、軸受環状
体を支持する固定用環状体を軸受環状体と一体的に固着
する場合においても、接合技術上の困難性が解消する。As described above, according to the present invention, in a bearing in which the linear expansion coefficient of the bearing annular body is different from that of the mating member, the load acting on the bearing is applied only by the fixing annular body that supports both end surfaces of the bearing annular body. In addition, since the bearing ring itself can share and transmit to the mating member, the bearing load that can be applied increases, or if the bearing load is the same, the effect that the durability life becomes longer is obtained. Even in the case where the fixing annular body for supporting the annular body is integrally fixed to the bearing annular body, the difficulty in the joining technique is solved.
とくに、軸受環状体の軸方向の端面にテーパ面を形成
し、このテーパ面を所定の角度に設定した場合は、温度
変化による熱応力の集中を防止することができる。In particular, when a tapered surface is formed on the axial end surface of the bearing annular body and the tapered surface is set at a predetermined angle, concentration of thermal stress due to temperature change can be prevented.
また、この発明によれば、固定用環状体が軸受環状体
とは別体のものであっても、軸受の取付時に相手部材に
対する軸受環状体のなめ合いすきまを小さくすることが
できるので、取付け作業が容易になるだけでなく、軸受
の使用時においても相手部材に対して高精度の同心性が
保持され、運転初期の温度変化の過程における振動や回
転振れ等が抑制されるため、高性能で信頼性のよい軸受
が得られる。Further, according to the present invention, even if the fixing annular body is separate from the bearing annular body, the clearance between the bearing annular body and the mating member can be reduced when the bearing is mounted. Not only does the work become easier, but it also maintains high precision concentricity with the mating member when using the bearing, and suppresses vibration and rotational runout during the temperature change process at the beginning of operation, resulting in high performance. And a reliable bearing can be obtained.
第1図は、この発明を円筒ころ軸受に適用した実施例を
示す上半部縦断側面図、第2図は、従来の円筒ころ軸受
を示す上半部縦断側面図である。 図中、10は軸(相手部材)、20は内輪(軸受環状体)、
21は内輪の内周面、22a,22bは内輪の軸方向の両側端
面、40は間座(固定用環状体)、42aは間座の対向端面
である。FIG. 1 is an upper half longitudinal sectional side view showing an embodiment in which the present invention is applied to a cylindrical roller bearing, and FIG. 2 is an upper half longitudinal sectional side view showing a conventional cylindrical roller bearing. In the figure, 10 is a shaft (a mating member), 20 is an inner ring (annular bearing),
Reference numeral 21 denotes the inner peripheral surface of the inner ring, 22a and 22b denote both end surfaces in the axial direction of the inner ring, 40 denotes a spacer (fixing annular body), and 42a denotes an opposite end surface of the spacer.
Claims (4)
なくとも一方が相手部材とは異なる線膨張係数を有し、
この軸受環状体の軸方向の両側端面を軸方向に支持する
一対の固定用環状体が相手部材に固く係合されてなる軸
受において、前記固定用環状体は相手部材もしくは軸受
環状体と同等の値の線膨張係数を有しているか、または
相手部材と軸受環状体との中間の値の線膨張係数を有し
ており、前記軸受環状体の相手部材に対する嵌合面は、
遅くとも軸受の使用時において固い嵌合状態になり、か
つ軸受に負荷された荷重およびこの嵌合ならびに温度変
化による最大応力が軸受環状体の構成材料の許容最大応
力よりも小さくなるように設定された寸法を有している
ことを特徴とする軸受。At least one of a bearing annular body attached to a mating member has a linear expansion coefficient different from that of the mating member,
In a bearing in which a pair of fixing annular bodies that axially support both end surfaces in the axial direction of the bearing annular body are firmly engaged with a mating member, the fixing annular body is equivalent to the mating member or the bearing annular body. Has a linear expansion coefficient of the value, or has a linear expansion coefficient of a value intermediate between the mating member and the bearing ring, the fitting surface of the bearing ring to the mating member,
At the latest, it is set so that the bearing is firmly fitted when the bearing is used, and the load applied to the bearing and the maximum stress due to this fitting and temperature change are smaller than the allowable maximum stress of the material constituting the bearing ring. A bearing having dimensions.
状体の軸方向端面に一体的に固着されている請求項
(1)記載の軸受。2. The bearing according to claim 1, wherein at least one of the fixing annular members is integrally fixed to an axial end face of the bearing annular member.
面がテーパ面である請求項(1)または(2)記載の軸
受。3. The bearing according to claim 1, wherein at least one end face in the axial direction of the bearing annular body is a tapered surface.
面に対する角度θ1,θ2が、中心軸線に対して外開きの
場合を正、内開きの場合を負として、軸受環状体の肉厚
中心における軸方向長さWPと直径DPとの間に、 tanθ1+tanθ2=2WP/DP で表される関係に設定されている請求項(3)記載の軸
受。4. The bearing ring body, wherein the angles θ 1 , θ 2 of both axial end surfaces of the bearing ring body with respect to the cross section perpendicular to the axis are positive when the opening is outward with respect to the central axis, and negative when the opening is inward with respect to the center axis. The bearing according to claim 3, wherein a relationship represented by tan θ 1 + tan θ 2 = 2 W P / D P is set between the axial length W P and the diameter D P at the center of thickness of the bearing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1037065A JP2643415B2 (en) | 1989-02-16 | 1989-02-16 | bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1037065A JP2643415B2 (en) | 1989-02-16 | 1989-02-16 | bearing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02217612A JPH02217612A (en) | 1990-08-30 |
JP2643415B2 true JP2643415B2 (en) | 1997-08-20 |
Family
ID=12487150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1037065A Expired - Fee Related JP2643415B2 (en) | 1989-02-16 | 1989-02-16 | bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2643415B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE9419709U1 (en) * | 1994-12-08 | 1996-04-04 | Sihi GmbH & Co KG, 25524 Itzehoe | Arrangement for centering a bushing made of tension-sensitive material on a shaft |
US10145459B2 (en) | 2014-03-11 | 2018-12-04 | Harmonic Drive Systems Inc. | Wave generator and strain wave gear device |
-
1989
- 1989-02-16 JP JP1037065A patent/JP2643415B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02217612A (en) | 1990-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0421619B1 (en) | Ceramic bearing | |
US5197808A (en) | Device for mounting annular body | |
JPS61160631A (en) | Universal joint for driving shaft | |
WO2010047213A1 (en) | Rolling bearing and rotating-shaft support structure | |
JPH0757367B2 (en) | Ceramic sleeve assembly type rolling roll | |
JPH1047357A (en) | Rolling bearing | |
JP2586503B2 (en) | Bearing mounting device | |
JP2643415B2 (en) | bearing | |
US20030012475A1 (en) | Fixing a wheel hub bearing to the suspension of a motor vehicle | |
EP1373746B1 (en) | Gear shaft bearing assembly | |
JP4525476B2 (en) | Preloading method for double row tapered roller bearing unit | |
JP2754572B2 (en) | Mounting device for shaft and ring | |
JP2650400B2 (en) | Ring attachment device | |
JP2970029B2 (en) | Ring attachment device | |
JP2615990B2 (en) | Ring attachment device | |
JP2970003B2 (en) | Ring attachment device | |
JPH0571548A (en) | Installation device for annular body | |
JP2001124073A (en) | Rolling bearing | |
JPH0830492B2 (en) | Bearing device | |
JPH0520897Y2 (en) | ||
JP5049044B2 (en) | Rolling bearing | |
JP3116515B2 (en) | Ring mounting device | |
JP2007177800A (en) | Bearing device | |
JP2629270B2 (en) | Shaft and ring attachment | |
JP3897193B2 (en) | Plain bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |