JPH02217612A - Bearing - Google Patents

Bearing

Info

Publication number
JPH02217612A
JPH02217612A JP1037065A JP3706589A JPH02217612A JP H02217612 A JPH02217612 A JP H02217612A JP 1037065 A JP1037065 A JP 1037065A JP 3706589 A JP3706589 A JP 3706589A JP H02217612 A JPH02217612 A JP H02217612A
Authority
JP
Japan
Prior art keywords
bearing
annular body
inner ring
shaft
mating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1037065A
Other languages
Japanese (ja)
Other versions
JP2643415B2 (en
Inventor
Hirotoshi Takada
浩年 高田
Etsuo Maeda
前田 悦生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP1037065A priority Critical patent/JP2643415B2/en
Publication of JPH02217612A publication Critical patent/JPH02217612A/en
Application granted granted Critical
Publication of JP2643415B2 publication Critical patent/JP2643415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/525Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to temperature and heat, e.g. insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers

Abstract

PURPOSE:To increase loads and make it possible to readily carry out accurate assembly by setting the coefficient of linear expansion of a fixing annular body in a specific relationship to that of its partner member and a bearing annular body, and setting the fitting face of the bearing annular body to be brought in a firm fitting state when the bearing is in use, and also setting the maximum stress smaller than the allowable maximum stress. CONSTITUTION:A spacer 40 (fixing annular body) has a coefficient of linear expansion equal to that of a shaft 10 (partner member) or that of an inner ring 20 (bearing annular body) or to the middle point between that of the shaft 10 and that of the inner ring 20, and the fitting face of the inner ring 20 against the shaft 10 is firmly fitted when the bearing is in use, and the maximum stress of the inner ring 20 is set smaller than the allowable maximum stress of the component material of the inner shaft 20. The inner ring 20 transfers a part of loads to the shaft 10 via an inner peripheral face 21 without braking the shaft, and the remaining loads are transferred to the shaft 10 through the spacer 40, 40. The contact surface pressure between the inner ring 20 and the spacer 40, 40 is therefore reduced, and damage and abrasion of the contact portions are reduced and durability is increased. Also, because the fitting clearance can be made smaller, assembling work is facilitated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は1、転がり軸受または滑り軸受に関し、とく
に軸受を構成する環状体が、これとは異なる線膨張係数
をもつ相手部材に取り付けられて使用される場合に、負
荷荷重の増大や温度変化に伴う熱応力等によって損傷す
るのを防止するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to (1) a rolling bearing or a sliding bearing, and in particular, an annular body constituting the bearing is attached to a mating member having a linear expansion coefficient different from that of the annular body. This is to prevent damage caused by increased load, thermal stress due to temperature changes, etc. when used.

〔従来の技術] 従来、軸受環状体と相手部材との線膨張係数が異なる場
合の軸受構造としては、たとえば、LtlBRrcAT
ION ENGINIEERING 1981年7月号
の407〜415頁に、間座付き転がり軸受に関する記
事が発表されている。この軸受は第2図に示すように、
軸(相手部材)10に取り付けた内輪(軸受環状体)2
0と図示しない軸箱(相手部材)に取り付けた外輪(軸
受環状体)30との間に、保持器51に保持案内される
円筒ころ50を介装したものであるが、軸10は鋼材に
より、内輪20はセラミック材によりそれぞれ作られて
いる。この内輪20は軸方向の両側端面が中心軸線に対
して外開きに拡大するテーバ面であって、軸】0にすき
まばめにより嵌合され、内輪20の両側端面は、軸10
にしまりばめにより嵌合された鋼材からなる間座(固定
用環状体)40.40により軸方向に支持れており、軸
受に作用する荷重は、内輪20の両側端面から間座40
,40を介して軸10に伝達する構造になっている。
[Prior Art] Conventionally, as a bearing structure when the linear expansion coefficients of the bearing annular body and the mating member are different, for example, LtlBRrcAT
An article about rolling bearings with spacers is published on pages 407 to 415 of the July 1981 issue of ION ENGINEERING. This bearing, as shown in Figure 2,
Inner ring (bearing annular body) 2 attached to shaft (mating member) 10
0 and an outer ring (bearing annular body) 30 attached to an axle box (a mating member, not shown), cylindrical rollers 50 are held and guided by a cage 51, and the shaft 10 is made of steel. , the inner rings 20 are each made of ceramic material. The inner ring 20 has tapered surfaces that expand outwardly with respect to the central axis, and is fitted with a clearance fit on the shaft 10.
It is supported in the axial direction by spacers (fixing annular bodies) 40.
, 40 to the shaft 10.

内輪IOに対する間座40,40の支持については、内
輪20の両側端面に間座40,40の対向端面を接触さ
せて内輪20を半径方向に摺動可能に挾着するか、ある
いは内輪20の両側端面と間座40.40の対向端面と
を接合して一体的に固着するかの何れかの手段が採られ
ている。
To support the spacers 40, 40 with respect to the inner ring IO, the opposing end surfaces of the spacers 40, 40 are brought into contact with both end surfaces of the inner ring 20, and the inner ring 20 is slidably attached in the radial direction, or the inner ring 20 is Either side end surfaces and the opposing end surfaces of the spacers 40, 40 are joined and fixed integrally.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の転がり軸受において、内輪20が間座40.40
を介して半径方向に摺動可能に支持されている場合は、
軸受に半径方向荷重が作用したときに、内輪20には、
その荷重よりも大きな力で間座40,40を軸方向外側
に押し開かせようとするくさび作用が生じるから、内輪
20の両側端面における接触面圧が増大して摩耗、破損
したり、負荷荷重が限界に達して破壊するなどの不都合
が生じる。
In the above rolling bearing, the inner ring 20 has a spacer of 40.40 mm.
If it is slidably supported in the radial direction through
When a radial load is applied to the bearing, the inner ring 20
Since a wedge action occurs that tries to push the spacers 40, 40 outward in the axial direction with a force greater than the load, the contact surface pressure on both end surfaces of the inner ring 20 increases, causing wear, damage, and load. This may cause inconveniences such as reaching its limit and destroying it.

また、内輪20と間座40,40とを軸10に組み付け
るときにおいては、内輪20がすきまばめであるため、
内輪20と間座40,40との間で相対滑りが生じて正
確な心出しが困難となり、組付は作業に熟練を要し、作
業性の点でも支障がある。
Furthermore, when assembling the inner ring 20 and the spacers 40, 40 onto the shaft 10, since the inner ring 20 is a loose fit,
Relative slippage occurs between the inner ring 20 and the spacers 40, 40, making accurate centering difficult, and assembly requires skill, which poses a problem in terms of workability.

また、内輪20に間座40,40が一体的に接合固着さ
れている場合も同様に、軸受に半径方向荷重が作用した
ときに、内輪20の両側端面と間座40,40の接合端
面との間には、くさび作用による大きな力が作用するか
ら、内輪20が接合部分において破損するのを防止する
には、接合面における固着力を強固なものにする必要が
あり、高度の接合技術が要求されることになる。
Similarly, when the spacers 40, 40 are integrally joined and fixed to the inner ring 20, when a radial load is applied to the bearing, both end surfaces of the inner ring 20 and the joint end surfaces of the spacers 40, 40 In order to prevent the inner ring 20 from being damaged at the joint, it is necessary to strengthen the adhesion force at the joint surface, and advanced joining technology is required to prevent the inner ring 20 from being damaged at the joint. will be required.

この発明は、上記の問題を解決して、相手部材とは異な
る線膨張係数を有する軸受環状体を介して相手部材に伝
達されうる負荷荷重を大幅に増大し、かつ軸受環状体と
相手部材との正確な組付けが容易にできる軸受を提供す
ることを目的とするゆ〔課題を解決するための手段〕 この発明は、上記の目的を達成するため、相手部材に取
り付けられた軸受環状体の少なくとも一方の線膨張係数
が相手部材の線膨張係数と相違し、この異なる線膨張係
数をもつ軸受環状体の軸方向両側端面を軸方向に支持す
る一対の固定用環状体が相手部材に固く係合されてなる
軸受において、前記固定用環状体は相手部材もしくは軸
受環状体と同等の値の線膨張係数を有しているか、また
は相手部材と軸受環状体との中間の値の線膨張係数を有
しており、前記軸受環状体の相手部材に対する嵌合面は
、遅くとも軸受の使用時において固く嵌合し、かつ軸受
に負荷された荷重およびこの嵌合ならびに温度変化によ
る最大応力が軸受環状体の構成材料の許容最大応力より
も小さくなるように設定された寸法ををしている。
The present invention solves the above problems, significantly increases the load that can be transmitted to the mating member through the bearing annular body having a coefficient of linear expansion different from that of the mating member, and also significantly increases the load that can be transmitted to the mating member through the bearing annular body and the mating member. [Means for Solving the Problems] In order to achieve the above object, the present invention aims to provide a bearing that can be easily assembled accurately. A pair of fixing annular bodies, in which at least one of the linear expansion coefficients is different from that of the mating member, are firmly attached to the mating member, and axially support both end surfaces of the bearing annular body having different linear expansion coefficients. In the bearing formed by the mating, the fixing annular body has a coefficient of linear expansion equivalent to that of the mating member or the bearing annular body, or a linear expansion coefficient of a value intermediate between that of the mating member and the bearing annular body. The fitting surface of the bearing annular body with respect to the mating member is firmly fitted at the latest when the bearing is in use, and the maximum stress due to the load applied to the bearing, this fitting, and temperature change is limited to the bearing annular body. The dimensions are set to be less than the maximum allowable stress of the materials of construction.

固定用環状体は軸受環状体とは別体で軸受環状体の軸方
向両側端面を挾着して支持する構成であってもよく、ま
た固定用環状体の少なくとも一方は、軸受環状体の軸方
向端面に接合して一体的に固着してもよい。
The fixing annular body may be separate from the bearing annular body and may be configured to support the bearing annular body by clamping both end surfaces of the bearing annular body in the axial direction, and at least one of the fixing annular bodies may be attached to the shaft of the bearing annular body. It may be joined to the direction end face and fixed integrally.

軸受環状体は、軸方向の少なくとも一方の端面をテーバ
面に形成してもよい。このテーバ面の軸直角断面に対す
る角度は、軸受環状体の肉厚中心における軸方向長さお
よび直径とに対応して所定の関係が成立するように設定
するのが好ましい。
The bearing annular body may have at least one end surface in the axial direction formed into a Taber surface. The angle of this tapered surface with respect to the cross section perpendicular to the axis is preferably set so that a predetermined relationship is established corresponding to the axial length and diameter of the bearing annular body at its center of thickness.

〔作用〕[Effect]

この発明の軸受環状体は、遅くとも軸受としての使用時
に相手部材との間の線膨張係数の差と温度差に基づく相
対的寸法変化によって、相手部材に対して固い嵌合状態
となるため、軸受環状体に負荷される荷重を固定用環状
体との間の対向端面だけでなく、軸受環状体と相手部材
との間の嵌合面によっても負担する。
The bearing annular body of the present invention becomes tightly fitted to the mating member due to a relative dimensional change based on the difference in linear expansion coefficient and temperature difference between the bearing annular body and the mating member at the latest when used as a bearing. The load applied to the annular body is borne not only by the opposing end surface between the fixing annular body but also by the fitting surface between the bearing annular body and the mating member.

しかも、軸受環状体は負荷された荷重およびこの嵌合な
らびに温度変化によって発生する最大応力が、その構成
材料の許容最大応力よりも小さくなるように嵌合面の寸
法が設定されているため、軸受環状体が負荷荷重によっ
て破壊することはない。
Moreover, the dimensions of the mating surface of the bearing annular body are set so that the applied load and the maximum stress generated by this mating and temperature change are smaller than the maximum allowable stress of its constituent materials. The annular body will not break under the applied load.

また、軸受環状体の軸方向端面にテーパ面を形成し、そ
の角度を軸受環状体の肉厚中心における軸方向長さおよ
び直径に対して所定の関係が成立するように設定した場
合は、温度変化が生じたときに各構成部材の線膨張係数
の差に基づく軸受環状体と固定環状体との接触または接
合部分における熱応力の集中や軸受環状体と相手部材と
の嵌合面における熱応力の集中を防止することができる
In addition, if a tapered surface is formed on the axial end face of the bearing annular body and the angle is set so that a predetermined relationship is established with respect to the axial length and diameter at the thickness center of the bearing annular body, the temperature When a change occurs, the concentration of thermal stress at the contact or joint between the bearing annular body and the fixed annular body, or the thermal stress at the fitting surface between the bearing annular body and the mating member, based on the difference in linear expansion coefficient of each component. concentration can be prevented.

〔実施例〕〔Example〕

以下、この発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は、この発明をラジアル円筒ころ軸受に適用した
実施例である。この円筒ころ軸受は、軸受環状体である
外輪30と内輪20との間に円筒ころ50が介装され、
円筒ころ50は保持器51に保持案内されて転動するよ
うになっている。
FIG. 1 shows an embodiment in which the present invention is applied to a radial cylindrical roller bearing. This cylindrical roller bearing has cylindrical rollers 50 interposed between an outer ring 30 and an inner ring 20, which are bearing annular bodies.
The cylindrical rollers 50 are held and guided by a cage 51 to roll.

一方の軸受環状体である内輪20は、その内周面(嵌合
面)21が相手部材である軸10に嵌合され、他方の軸
受環状体である外輪30は、その外周面が図示しない相
手部材である軸箱に嵌合されている。
The inner ring 20, which is one bearing annular body, has its inner circumferential surface (fitting surface) 21 fitted to the shaft 10, which is a mating member, and the outer circumferential surface of the other bearing annular body, the outer ring 30, is not shown. It is fitted into an axle box which is a mating member.

上記の円筒ころ軸受の外輪30は通常の軸受綱を材料と
しているが、内輪20はたとえば窒化珪素のようなセラ
ミック材により作られており、その線膨張係数αjは、
鋼材により作られた軸10の線膨張係数α、よりも小さ
くなっている。この内輪20の軸方向の両側端面22a
、22bは、内周縁から中心軸線に対して外開き方向に
拡径し、軸直角断面に対してθ0.θ2の傾斜角度をも
つテーパ面に形成され、軸10に対して後述する所定量
のはめ合いすきまΔdをもって嵌合されている。
The outer ring 30 of the above-mentioned cylindrical roller bearing is made of ordinary bearing steel, but the inner ring 20 is made of a ceramic material such as silicon nitride, and its linear expansion coefficient αj is
The coefficient of linear expansion α is smaller than that of the shaft 10 made of steel. Both end surfaces 22a of this inner ring 20 in the axial direction
, 22b expands in diameter from the inner peripheral edge in the outward opening direction with respect to the central axis, and has a diameter of θ0. It is formed into a tapered surface with an inclination angle of θ2, and is fitted to the shaft 10 with a predetermined fitting clearance Δd, which will be described later.

上記の内輪20の両側端面22a、22bは、一対の固
定用環状体である間座40,40によって軸方向に支持
されている。これらの間座40゜40は、その線膨張係
数αうが軸10の線膨張係数α、と同等であって内輪2
0の線膨張係数α。
Both end surfaces 22a and 22b of the inner ring 20 are supported in the axial direction by spacers 40 and 40, which are a pair of fixing annular bodies. The linear expansion coefficient α of these spacers 40° 40 is equivalent to the linear expansion coefficient α of the shaft 10, and the inner ring 2
Linear expansion coefficient α of 0.

よりも大きい値をもつ材料、もしくは軸IOの線膨張係
数α3よりも小さ(、内輪20の線膨張係数α、よりも
大きい値をもつ金属材、たとえば、特殊な鋳鉄、窒化ア
ルミニウム等により作られるか(αj〈α6≦α、)、
あるいはその線膨張係数αkが内輪20の線膨張係数α
、と同等であって軸10の線膨張係数α5よりも小さい
値をもつ材料、もしくは内輪20の線膨張係数α、より
も大きく、軸lOの線膨張係数α5よりも小さい値をも
つ金属材、たとえば、コバール合金、エリンバ−合金等
により作られている(α、≦α、〈α、)。上記の間座
40,40は、その内周面(嵌合面)41aが軸10に
しまりばめ、またはとまりばめにより固く嵌合されてい
る。また、間座40.40の内輪20との対向端面42
aは、内輪20の両側端面22a、22bの傾斜角度θ
1θ2と同一角度をもつテーパ面に形成されている。
or a metal material with a linear expansion coefficient α smaller than the linear expansion coefficient α of the shaft IO (or a linear expansion coefficient α of the inner ring 20), such as special cast iron, aluminum nitride, etc. or (αj〈α6≦α,),
Or, the linear expansion coefficient αk is the linear expansion coefficient α of the inner ring 20.
, and has a linear expansion coefficient α5 of the shaft 10, or a metal material having a linear expansion coefficient α5 larger than the linear expansion coefficient α of the inner ring 20 and smaller than the linear expansion coefficient α5 of the shaft 10, For example, it is made of Kovar alloy, Elinvar alloy, etc. (α, ≦α, <α,). The inner peripheral surfaces (fitting surfaces) 41a of the spacers 40, 40 are tightly fitted to the shaft 10 by a tight fit or a tight fit. In addition, the end surface 42 of the spacer 40.40 facing the inner ring 20
a is the inclination angle θ of both end surfaces 22a and 22b of the inner ring 20;
It is formed on a tapered surface having the same angle as 1θ2.

この間座40.40は対向端面42aを内輪20の両側
端面22a、22bに接触させて内輪20を挟着する状
態で軸10に取り付けてもよく、また間座40.40の
少なくとも一方は、その端面42aを内輪20の端面に
接合して一体的に固着したものを軸10に取り付けても
よい。間座40゜40を内輪20に固着する方法として
は、一般に採用されている金属材とセラミック材との接
合方法を利用することができる。
The spacer 40.40 may be attached to the shaft 10 with the opposing end surface 42a in contact with both end surfaces 22a, 22b of the inner ring 20 and sandwiching the inner ring 20, and at least one of the spacers 40.40 The end surface 42a may be joined to the end surface of the inner ring 20 and fixed integrally, and the end surface 42a may be attached to the shaft 10. As a method for fixing the spacer 40.degree. 40 to the inner ring 20, a generally employed method for joining metal and ceramic materials can be used.

上記のように、内輪20は、軸重0に固いはめあいで取
り付けられた一対の間座40,40によって軸方向に支
持された状態となるが、この状態で内輪20の内周面2
1と軸lOの外周面との間に形成されるはめ合いすきま
Δdは、内輪20と軸10との線膨張係数の差、軸受の
取付時と使用時との間の温度差に基づく相対的寸法変化
によるすきまの減少量によって減少し、遅くとも使用時
においてしまりばめによる固い嵌合状態が生成するよう
に設定されている。
As described above, the inner ring 20 is supported in the axial direction by the pair of spacers 40, 40 that are attached with a tight fit when the axle load is 0. In this state, the inner peripheral surface of the inner ring 20
The fitting clearance Δd formed between the inner ring 20 and the outer circumferential surface of the shaft 10 is determined by the relative difference based on the difference in linear expansion coefficient between the inner ring 20 and the shaft 10, and the temperature difference between when the bearing is installed and when it is in use. The clearance is reduced by the amount of reduction due to the dimensional change, and the setting is such that a tight fitting state due to interference fit is generated at the latest during use.

また、内輪20の内周面21の寸法は、軸受の使用時に
おいて内輪20に生じる最大応力、すなわち、はめ合い
すきまΔdの減少によるしまりばめに起因して内周面に
生じる最大引張応力と、軸受に半径方向荷重が作用した
ときに生じる最大引張応力と温度変化によって生じる最
大引張応力との合計が、内輪20の構成材料であるセラ
ミック材の許容最大引張応力より小さくなるように設定
されている。
In addition, the dimensions of the inner peripheral surface 21 of the inner ring 20 are the maximum stress generated in the inner ring 20 when the bearing is used, that is, the maximum tensile stress generated in the inner peripheral surface due to interference fit due to a reduction in the fitting clearance Δd. , the sum of the maximum tensile stress that occurs when a radial load is applied to the bearing and the maximum tensile stress that occurs due to temperature change is set so that it is smaller than the allowable maximum tensile stress of the ceramic material that is the constituent material of the inner ring 20. There is.

なお、内輪20の軸方向の両側端面22a、22bのテ
ーパ面は、上記の外開き方向とは反対に、外周縁から中
心軸線に対して内開き方向に縮径するような角度で形成
してもよい。
Note that the tapered surfaces of both end surfaces 22a and 22b in the axial direction of the inner ring 20 are formed at an angle such that the diameter decreases from the outer peripheral edge in the inward opening direction with respect to the central axis, contrary to the above-mentioned outward opening direction. Good too.

また、間座40,40は、軸10に対してねし締結、接
着等の手段を用いて軸10と固く係合させてもよい。
Further, the spacers 40, 40 may be firmly engaged with the shaft 10 by screw fastening, adhesion, or the like.

上記構成の円筒ころ軸受において、軸受の取付時に常温
Tあて、内輪20の内周面21を軸10にすきまばめに
よりはめ合いすきまΔdをもって嵌合し、軸受の使用時
における温度がTbまで上昇した場合について考えると
、軸受の使用時におけるはめ合いすきまは、軸lOの直
径をdとすると、 (α、−αi  )  (Tb   T、  )  d
たけ減少するから、内輪20は軸10に対して、(α、
−α、)(Tb−T、)a−Δdの量のしめしろをもつ
しまりばめによって固く嵌合した状態となる。
In the cylindrical roller bearing of the above configuration, when the bearing is installed, it is exposed to room temperature T, and the inner circumferential surface 21 of the inner ring 20 is fitted to the shaft 10 with a clearance Δd, and the temperature when the bearing is used rises to Tb. Considering the case where the bearing is used, the fitting clearance when using the bearing is (α, -αi) (Tb T, ) d, where d is the diameter of the shaft lO.
Since the inner ring 20 is (α,
-α, )(Tb-T,)a-Δd through interference fit, resulting in a tightly fitted state.

そして、この状態で軸受を使用したときに、内輪20に
生ずる最大引張応力は、その構成材料の許容最大引張応
力よりも小さくなるように内周面21の寸法が設定され
ているから、内輪20は負荷された荷重によって破損す
ることなく、その内周面21を介して軸10へ荷重の一
部を伝達し、その余の荷重は両側端面22a、22bを
介してそれぞれの間座40,40を通して軸重0へ伝達
する。このように軸受に作用する荷重は、内輪20と間
座40,40とが分担負荷して軸10に伝達されること
になるから、内輪20がその両側端面22a、22bを
支持する間座40,40を軸方向外側に押し開かせよう
とするくさび作用による力は、軸受に作用する荷重の一
部だけが増大されて間座40,40の対向端面42aに
伝達されるにすぎない。
When the bearing is used in this state, the dimensions of the inner circumferential surface 21 are set so that the maximum tensile stress generated in the inner ring 20 is smaller than the maximum allowable tensile stress of its constituent materials. transmits a part of the load to the shaft 10 through its inner circumferential surface 21 without being damaged by the applied load, and the remaining load is transmitted to the respective spacers 40, 40 through both side end surfaces 22a, 22b. The axle load is transmitted to zero through the The load that acts on the bearing in this way is shared by the inner ring 20 and the spacers 40, 40 and transmitted to the shaft 10. , 40 axially outwardly, only a portion of the load acting on the bearing is increased and transmitted to the opposing end surfaces 42a of the spacers 40, 40.

したがって、内輪20の両側端面22a、22bに間座
40,40の対向端面42aが接触して挟着している場
合は、その接触面圧が軽減され接触部分の損傷、摩耗が
少なく、破壊し難くなるから、耐久性が増すことになり
、内輪20に間座40.40の対向端面42aが接合し
て一体に固着されている場合も同様に、その接合面に伝
達される荷重が軽減される結果、接合部分が破壊し難く
なり耐久性が増大する。
Therefore, when the opposing end surfaces 42a of the spacers 40, 40 are in contact with and sandwiched between the opposite end surfaces 22a, 22b of the inner ring 20, the contact surface pressure is reduced, and the contact portions are less likely to be damaged or worn, and are not destroyed. Similarly, when the opposing end surfaces 42a of the spacers 40 and 40 are joined to the inner ring 20 and fixed together, the load transmitted to the joint surfaces is reduced. As a result, the joint part becomes difficult to break and durability increases.

なお、内輪20の両側端面22a、22bに形成したテ
ーパ面の傾斜角度θ1.θ2を下記のように設定するこ
とにより、軸受の取付時と使用時との温度が変化した場
合に、内輪20の間座40゜40との接触面または接合
面、内輪20と軸10との嵌合面に発生する熱応力によ
る影響を防止することができる。
Incidentally, the inclination angle θ1. By setting θ2 as shown below, if the temperature changes between when the bearing is installed and when it is in use, the contact surface or joint surface between the inner ring 20 and the spacer 40° 40, and between the inner ring 20 and the shaft 10. The influence of thermal stress generated on the fitting surface can be prevented.

すなわち、内輪20の肉厚中心における軸方向長さをW
7.直径をり、として、温度変化ΔTによる両側端面2
2a、22bの軸方向の長さ変化ΔXI+  Δx2と
半径方向の長さ変化Δy7.Δy2とは、 となる。軸方向および半径方向の相対的な長さ変化が生
じないときの条件は、 であるから、α、≠α4、ΔT≠0として、上式(1)
、 (2)、 (3)を解くと、tan θ、 +ta
n θ2 = 2 WP / D p   ・・・・・
・(4)が、得られる。
That is, the axial length of the inner ring 20 at the center of wall thickness is W
7. Assuming the diameter as R, both end faces 2 due to temperature change ΔT
2a, 22b's axial length change ΔXI+ Δx2 and radial length change Δy7. Δy2 is as follows. The condition when there is no relative length change in the axial and radial directions is as follows. Therefore, assuming α, ≠ α4, ΔT≠0, the above formula (1)
, (2), (3), tan θ, +ta
n θ2 = 2 WP / D p ...
-(4) is obtained.

上式におけるθ3.θ2は、内輪20の両側端面22a
、22bのテーバ面が外開き方向に拡径している場合を
正、内開き方向に縮径している場合を負とする。
θ3 in the above equation. θ2 is both end surfaces 22a of the inner ring 20
, 22b is positive if the diameter thereof expands in the outward opening direction, and negative if the diameter decreases in the inward opening direction.

前記実施例では、セラミック材からなる内輪を鋼材から
なる軸に取り付けた場合について説明したが、この発明
は、このような場合に限らず、例えば鋼材からなる内輪
をステンレス鋼、黄銅、アルミニウム合金等の材料から
なる軸に取り付けた場合についても、間座の材料の線膨
張係数を内輪と軸との材料に対して前記と同様の所定の
関係が成立するように設定することにより、同様に適用
することができる。
In the above embodiment, a case has been described in which an inner ring made of a ceramic material is attached to a shaft made of a steel material, but the present invention is not limited to such a case. The same applies to the case where the spacer is attached to a shaft made of a material of can do.

また、間座による内輪の支持は、前記実施例のように内
輪の軸方向両側端面にテーバ面を形成する場合だけでな
く、内輪の軸方向の両側端面または一方の端面を中心軸
線に対して直交する垂直面に形成してもよい。
In addition, support of the inner ring by the spacer is not limited to forming tapered surfaces on both axial end surfaces of the inner ring as in the above embodiment, but also when supporting both axial end surfaces or one end surface of the inner ring with respect to the center axis. It may also be formed on perpendicular planes.

また、この発明は、内輪と軸との線膨張係数が異なる軸
受だけでなく、外輪と軸箱との線膨張係数が異なる軸受
についても適用することができる。
Further, the present invention can be applied not only to a bearing in which the inner ring and the shaft have different linear expansion coefficients, but also to a bearing in which the outer ring and the axle box have different linear expansion coefficients.

また、この発明は、軸受の使用時における温度が、取付
時の温度よりも高温になる場合に限らず、軸受の取付時
よりも使用時の方が低温になる場合についても適用する
ことができる。
Furthermore, the present invention is applicable not only to cases where the temperature during use of the bearing is higher than the temperature at the time of installation, but also to cases where the temperature during use of the bearing is lower than the temperature at the time of installation. .

さらに、この発明は、転がり軸受だけでなく、滑り軸受
の内周側部材を軸に取り付ける場合および外周側部材(
軸受本体)を軸箱に取り付ける場合についても、前記と
同様の構成にすることができる。
Furthermore, this invention is applicable not only to rolling bearings, but also when attaching the inner circumferential side member of a sliding bearing to the shaft and the outer circumferential side member (
When attaching the bearing body to the axle box, the same structure as above can be used.

〔発明の効果] 以上説明したように、この発明によれば、軸受環状体の
線膨張係数が相手部材のそれとは異なる軸受において、
軸受に作用する荷重を軸受環状体の両側端面を支持する
固定用環状体だけでなく、軸受環状体自体によっても分
担して相手部材に伝達することができるため、負荷し得
る軸受荷重が増大し、あるいは軸受荷重が同一であれば
耐久寿命が長くなるという効果が得られ、軸受環状体を
支持する固定用環状体を軸受環状体と一体的に固着する
場合においても、接合技術上の困難性が解消する。
[Effects of the Invention] As explained above, according to the present invention, in a bearing in which the coefficient of linear expansion of the bearing annular body is different from that of the mating member,
Because the load acting on the bearing can be transmitted to the mating member not only by the fixing annular body that supports both end surfaces of the bearing annular body, but also by the bearing annular body itself, the load that can be applied to the bearing increases. Alternatively, if the bearing load is the same, the durability life will be longer, and even if the fixing annular body that supports the bearing annular body is fixed integrally with the bearing annular body, there are difficulties in joining technology. is resolved.

とくに、軸受環状体の軸方向の端面にテーバ面を形成し
、このテーバ面を所定の角度に設定した場合は、温度変
化によ−る熱応力の集中を防止することができる。
In particular, if a tapered surface is formed on the axial end face of the bearing annular body and the tapered surface is set at a predetermined angle, concentration of thermal stress due to temperature changes can be prevented.

また、この発明によれば、固定用環状体が軸受環状体と
は別体のものであっても、軸受の取付時に相手部材に対
する軸受環状体のはめ合いすきまを小さくすることがで
きるので、取付は作業が容易になるだけでなく、軸受の
使用時においても相手部材に対して高精度の同心性が保
持され、運転初期の温度変化の過程における振動や回転
振れ等が抑制されるため、高性能で信頬性のよい軸受が
得られる。
Further, according to the present invention, even if the fixing annular body is separate from the bearing annular body, it is possible to reduce the fit clearance between the bearing annular body and the mating member when installing the bearing. Not only does this make the work easier, but it also maintains highly accurate concentricity with respect to the mating member when the bearing is used, and suppresses vibrations and rotational runout during the process of temperature changes in the early stages of operation, making it highly efficient. A bearing with good performance and reliability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明を円筒ころ軸受に適用した実施例を
示ず上半部縦断側面図、第2図は、従来の円筒ころ軸受
を示す上半部縦断側面図である。 図中、10は軸(相手部材)、2oは内輪(軸受環状体
)、21は内輪の内周面、22a、22bは内輪の軸方
向の両側端面、4oは間座(固定用環状体)、42aは
間座の対向端面である。
FIG. 1 is a vertical cross-sectional side view of the upper half of a conventional cylindrical roller bearing without showing an embodiment in which the present invention is applied to a cylindrical roller bearing, and FIG. 2 is a vertical cross-sectional side view of the upper half of a conventional cylindrical roller bearing. In the figure, 10 is the shaft (mate member), 2o is the inner ring (bearing annular body), 21 is the inner peripheral surface of the inner ring, 22a, 22b are both end surfaces of the inner ring in the axial direction, 4o is a spacer (fixing annular body) , 42a are opposing end surfaces of the spacer.

Claims (4)

【特許請求の範囲】[Claims] (1)相手部材に取り付けられた軸受環状体の少なくと
も一方が相手部材とは異なる線膨張係数を有し、この軸
受環状体の軸方向の両側端面を軸方向に支持する一対の
固定用環状体が相手部材に固く係合されてなる軸受にお
いて、前記固定用環状体は相手部材もしくは軸受環状体
と同等の値の線膨張係数を有しているか、または相手部
材と軸受環状体との中間の値の線膨張係数を有しており
、前記軸受環状体の相手部材に対する嵌合面は、遅くと
も軸受の使用時において固い嵌合状態になり、かつ軸受
に負荷された荷重およびこの嵌合ならびに温度変化によ
る最大応力が軸受環状体の構成材料の許容最大応力より
も小さくなるように設定された寸法を有していることを
特徴とする軸受。
(1) A pair of fixing annular bodies, in which at least one of the bearing annular bodies attached to the mating member has a coefficient of linear expansion different from that of the mating member, and which axially supports both end surfaces of the bearing annular body in the axial direction. In a bearing in which the fixing annular body is firmly engaged with a mating member, the fixing annular body has a coefficient of linear expansion equivalent to that of the mating member or the bearing annular body, or has a coefficient of linear expansion that is the same value as that of the mating member or the bearing annular body, or has a coefficient of linear expansion that is an intermediate value between the mating member and the bearing annular body. The fitting surface of the bearing annular body with respect to the mating member is in a hard fitting state at the latest when the bearing is in use, and the load applied to the bearing, this fitting, and the temperature A bearing characterized in that the dimensions are set such that the maximum stress caused by the change is smaller than the maximum allowable stress of the constituent material of the bearing annular body.
(2)固定用環状体の少なくとも一方は、軸受環状体の
軸方向端面に一体的に固着されている請求項(1)記載
の軸受。
(2) The bearing according to claim (1), wherein at least one of the fixing annular bodies is integrally fixed to an axial end surface of the bearing annular body.
(3)軸受環状体の軸方向の少なくとも一方の端面がテ
ーパ面である請求項(1)または(2)記載の軸受。
(3) The bearing according to claim (1) or (2), wherein at least one end surface in the axial direction of the bearing annular body is a tapered surface.
(4)軸受環状体の軸方向の両側端面の軸直角断面に対
する角度θ_1、θ_2が、中心軸線に対して外開きの
場合を正、内開きの場合を負として、軸受環状体の肉厚
中心における軸方向長さW_Pと直径D_Pとの間に、 tanθ_1+tanθ_2=2W_P/D_Pで表さ
れる関係に設定されている請求項(3)記載の軸受。
(4) The angles θ_1 and θ_2 with respect to the cross section perpendicular to the axis of both end faces in the axial direction of the bearing annular body are positive when they open outward with respect to the central axis, and negative when they open inward, and the thickness center of the bearing annular body The bearing according to claim 3, wherein the relationship between the axial length W_P and the diameter D_P is set as follows: tanθ_1+tanθ_2=2W_P/D_P.
JP1037065A 1989-02-16 1989-02-16 bearing Expired - Fee Related JP2643415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1037065A JP2643415B2 (en) 1989-02-16 1989-02-16 bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1037065A JP2643415B2 (en) 1989-02-16 1989-02-16 bearing

Publications (2)

Publication Number Publication Date
JPH02217612A true JPH02217612A (en) 1990-08-30
JP2643415B2 JP2643415B2 (en) 1997-08-20

Family

ID=12487150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1037065A Expired - Fee Related JP2643415B2 (en) 1989-02-16 1989-02-16 bearing

Country Status (1)

Country Link
JP (1) JP2643415B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996018047A1 (en) * 1994-12-08 1996-06-13 Sihi Gmbh & Co. Kg Centring a bush made of a material sensitive to tensile stress on a shaft
WO2015136622A1 (en) * 2014-03-11 2015-09-17 株式会社ハーモニック・ドライブ・システムズ Wave generator and strain wave gear device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996018047A1 (en) * 1994-12-08 1996-06-13 Sihi Gmbh & Co. Kg Centring a bush made of a material sensitive to tensile stress on a shaft
US5775816A (en) * 1994-12-08 1998-07-07 Sihi Gmbh & Co Kg Bearing arrangement
WO2015136622A1 (en) * 2014-03-11 2015-09-17 株式会社ハーモニック・ドライブ・システムズ Wave generator and strain wave gear device
CN106068401A (en) * 2014-03-11 2016-11-02 谐波传动系统有限公司 Wavegenerator and Wave gear device
JPWO2015136622A1 (en) * 2014-03-11 2017-04-06 株式会社ハーモニック・ドライブ・システムズ Wave generator and wave gear device
US10145459B2 (en) 2014-03-11 2018-12-04 Harmonic Drive Systems Inc. Wave generator and strain wave gear device
TWI658221B (en) * 2014-03-11 2019-05-01 日商和諧驅動系統股份有限公司 Harmonic generator and harmonic gear device

Also Published As

Publication number Publication date
JP2643415B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
US6785965B2 (en) Method for assembling a hub unit for supporting a wheel shaft
US6880898B2 (en) Bearing unit for wheel and manufacturing method thereof
JP2519507B2 (en) Steering wheel bearing
US5197808A (en) Device for mounting annular body
KR100450712B1 (en) Wheel hub bearing unit suitable for cold forming coupling to brake member.
JPH02217612A (en) Bearing
JP2005503518A (en) Gear shaft bearing assembly
JP2711434B2 (en) Slide bearing holding structure
JPH02217613A (en) Attachment device for annular body
JP2007177800A (en) Bearing device
JPH01295025A (en) Fitting device for shaft and annular body
JPH02253010A (en) Ring member attaching device
JP2970029B2 (en) Ring attachment device
JP2001124073A (en) Rolling bearing
JPH0481043B2 (en)
JPH0571548A (en) Installation device for annular body
JPH0830492B2 (en) Bearing device
JPH0520897Y2 (en)
JPH04282024A (en) Annular body fitting device
JP3897193B2 (en) Plain bearing
JP3116515B2 (en) Ring mounting device
JPH0632736U (en) Rolling bearing for roll support of rolling mill
JP2597520Y2 (en) Anti-creep device for rolling bearings
JPS60116919A (en) Rolling bearing having splitted outer ring
JPH0610207Y2 (en) Sealed rolling bearing

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees