JP2615990B2 - Ring attachment device - Google Patents

Ring attachment device

Info

Publication number
JP2615990B2
JP2615990B2 JP7447989A JP7447989A JP2615990B2 JP 2615990 B2 JP2615990 B2 JP 2615990B2 JP 7447989 A JP7447989 A JP 7447989A JP 7447989 A JP7447989 A JP 7447989A JP 2615990 B2 JP2615990 B2 JP 2615990B2
Authority
JP
Japan
Prior art keywords
annular body
spacer
inner ring
linear expansion
mating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7447989A
Other languages
Japanese (ja)
Other versions
JPH02253010A (en
Inventor
浩年 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP7447989A priority Critical patent/JP2615990B2/en
Publication of JPH02253010A publication Critical patent/JPH02253010A/en
Application granted granted Critical
Publication of JP2615990B2 publication Critical patent/JP2615990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mounting Of Bearings Or Others (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、たとえば軸受の内輪,外輪などの環状体
と、この環状体を取り付ける相手部材との線膨張係数が
相違する場合における環状体の取付装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an annular body having a different coefficient of linear expansion between an annular body such as an inner ring and an outer ring of a bearing and a mating member to which the annular body is attached. It relates to a mounting device.

〔従来の技術〕[Conventional technology]

従来、たとえば転がり軸受とこれを取り付ける相手部
材との線膨張係数が相違する場合の取付構造に関する報
文が、LUBRICATION ENGINEERIG 1981年7月号の407〜41
5頁に掲載されている。
Conventionally, for example, a report on a mounting structure in a case where the linear expansion coefficient of a rolling bearing is different from that of a mating member to which the rolling bearing is attached has been published in LUBRICATION ENGINEERIG July 1981, 407-41.
It is listed on page 5.

この転がり軸受は、第3図に示すように、軸1に取り
付けられた内輪2と、図示を省略した軸箱に取り付けら
れた外輪3との間に、保持器6付きの円筒ころ5が配設
されており、軸1は鋼材により、内輪2はセラミック材
により作られている。内輪2の軸方向の両側端面は中心
軸線に対して外開きに拡径するテーパ面であって、軸1
にすきまばめにより嵌合されている。この内輪2の両側
端面は、軸1にしまりばめにより嵌合された鋼材からな
る一対の間座4によって挾着されており、軸1や間座4
が熱膨張したときに、内輪2と間座4とが挾着面上で相
対的に摺動することによって過大な負荷が作用しないよ
うにしてある。
In this rolling bearing, as shown in FIG. 3, a cylindrical roller 5 with a retainer 6 is arranged between an inner ring 2 attached to a shaft 1 and an outer ring 3 attached to a shaft box (not shown). The shaft 1 is made of a steel material, and the inner ring 2 is made of a ceramic material. Both end surfaces in the axial direction of the inner ring 2 are tapered surfaces that expand outwardly with respect to the center axis,
Are fitted by a loose fit. Both end surfaces of the inner ring 2 are clamped by a pair of spacers 4 made of a steel material fitted to the shaft 1 by interference fitting.
When thermal expansion occurs, the inner ring 2 and the spacer 4 slide relatively on the clamping surface so that an excessive load is not applied.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記の転がり軸受においては、軸受に負荷される荷重
は内輪2の両側端面のくさび作用により拡大されて間座
4に伝達されるため、内輪2の両側端面における接触面
圧が著しく増大して摩耗,破損したり、負荷荷重が限界
に達して破壊するなどの不都合が生じることがあり、負
荷荷重の上限値が小さい値に制約されるという問題があ
る。
In the above-mentioned rolling bearing, the load applied to the bearing is enlarged by the wedge action of the both end faces of the inner ring 2 and transmitted to the spacer 4, so that the contact surface pressure on the both end faces of the inner ring 2 is remarkably increased, resulting in wear. In some cases, inconveniences such as breakage or breakage due to the limit of the applied load may occur, and the upper limit of the applied load is limited to a small value.

また、内輪2と間座4とを軸1に組み付けるに当たっ
て、すきまばめにより嵌合されている内輪2と、しまり
ばめにより嵌合されている間座4との間で相対滑りが生
じるため、正確な心出しが困難であって組付け作業に熟
練を要し、作業性の点でも支障がある。
Further, when the inner ring 2 and the spacer 4 are assembled to the shaft 1, a relative slip occurs between the inner ring 2 fitted with the clearance fit and the spacer 4 fitted with the interference fit. However, accurate centering is difficult, and the assembling work requires skill, and there is a problem in workability.

この発明は上記の問題を解決して、相手部材とは異な
る線膨張係数を有する環状体の運転使用中に、環状体の
摩耗,破損等が生じ難く、また相手部材に対して環状体
の正確な組付けが容易にできる取付装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and is less likely to cause abrasion, breakage, etc. of the annular body during operation use of the annular body having a different linear expansion coefficient from that of the mating member. It is an object of the present invention to provide a mounting device capable of easily performing an assembling operation.

〔課題を解決するための手段〕 上記の目的を達成するため、この発明においては、相
手部材の外周または内周に嵌合された環状体がその相手
部材とは異なる線膨張係数を有し、環状体の相手部材と
の嵌合面とは反対側の周面に嵌合するとともに、相手部
材の外周または内周に固く係合する一対の間座により環
状体の軸方向の両側端面を支持してなる取付装置であっ
て、前記間座は、相手部材に接する部分から環状体に接
する部分に至る半径方向の線膨張係数が、相手部材と環
状体とによる半径方向の線膨張係数の変化と共通する方
向をもって半径方向に連続的または段階的に変化する材
料によって構成してある。
[Means for Solving the Problems] In order to achieve the above object, in the present invention, the annular body fitted to the outer or inner periphery of the mating member has a linear expansion coefficient different from that of the mating member, Both sides of the annular body in the axial direction are supported by a pair of spacers that are fitted to the peripheral surface of the annular body opposite to the mating surface with the mating member and firmly engaged with the outer or inner circumference of the mating member. Wherein the spacer has a coefficient of linear thermal expansion in a radial direction from a portion in contact with a mating member to a portion in contact with an annular body, and a change in a coefficient of linear thermal expansion in a radial direction caused by the mating member and the annular body. And a material which changes continuously or stepwise in the radial direction with the same direction as the above.

間座の線膨張係数が連続的に変化する材料としては、
たとえばセラミック材と金属材とからなる複合材料を使
用し、間座の線膨張係数が段階的に変化する材料として
は、たとえば線膨張係数の異なる複数個の素材を半径方
向に積層したものを使用する。
As a material whose linear expansion coefficient changes continuously,
For example, a composite material composed of a ceramic material and a metal material is used, and as the material in which the linear expansion coefficient of the spacer changes stepwise, for example, a material obtained by laminating a plurality of materials having different linear expansion coefficients in a radial direction is used. I do.

間座の線膨張係数は、相手部材に接する部分を相手部
材とほぼ等しい線膨張係数に設定し、環状体に接する部
分を環状体とほぼ等しい膨張係数に設定するのが好まし
い。
It is preferable that the linear expansion coefficient of the spacer is set to a coefficient of linear expansion substantially equal to that of the mating member at a portion contacting the mating member, and to a coefficient of expansion substantially equal to that of the annular member at a portion contacting the annular body.

環状体の相手部材に対する嵌合面は、遅くとも環状体
の運転使用時において固い嵌合状態になり、かつ環状体
に負荷される荷重およびこの嵌合ならびに温度変化によ
る最大応力が、環状体の構成材料の許容最大応力よりも
小さくなるような寸法に設定するのが好都合である。
The fitting surface of the annular body to the mating member is in a firmly fitted state at the latest when the annular body is in operation, and the load applied to the annular body and the maximum stress due to this fitting and temperature change are reduced by the configuration of the annular body. It is advantageous to set the dimensions such that they are smaller than the allowable maximum stress of the material.

また、環状体の軸方向の少なくとも一方の端面をテー
パ面に形成し、この環状体と間座との間に、環状体と同
一テーパ角度の対向端面を有する中間間座を挾着させて
もよい。この中間間座の相手部材との嵌合面とは反対側
の周面は、間座に固く係合するか、あるいは一体的に固
着するようにしてもよい。
Alternatively, at least one end face in the axial direction of the annular body may be formed as a tapered surface, and an intermediate spacer having an opposite end face having the same taper angle as the annular body may be sandwiched between the annular body and the spacer. Good. The peripheral surface of the intermediate spacer opposite to the mating surface with the mating member may be firmly engaged with the spacer or integrally fixed thereto.

環状体の軸方向端面にテーパ面を形成する場合は、そ
のテーパ角度を環状体の肉厚中心における軸方向長さお
よび直径に対して所定の関係が成立するように設定する
のが好ましい。
When a tapered surface is formed at the axial end surface of the annular body, it is preferable that the taper angle is set so that a predetermined relationship is established with respect to the axial length and the diameter at the center of the thickness of the annular body.

この発明を転がり軸受の軌道輪の取付けに適用する場
合は、間座の軸方向端部を転がり軸受の転動体に体する
案内つばに兼用することができ、また転動体の保持器に
対する案内輪に兼用することができる。
When the present invention is applied to the mounting of a bearing ring of a rolling bearing, the axial end of the spacer can be used also as a guide collar for a rolling element of the rolling bearing, and a guide ring for the retainer of the rolling element. Can be shared.

〔作用〕[Action]

この発明の取付装置によって相手部材に取り付けられ
た環状体は、環状体に負荷された荷重を、環状体に嵌合
された間座を介して相手部材に伝達する。
The annular body attached to the mating member by the mounting device of the present invention transmits the load applied to the annular body to the mating member via the spacer fitted to the annular body.

環状体の取付時と運転使用時との間で温度変化が生じ
ても、間座の線膨張係数が相手部材と環状体との線膨張
係数に応じて半径方向に変化する方向性をもっているの
で、相手部材に対する間座の係合状態ないしは環状対の
嵌合状態の変化量は間座によって吸収され、環状体に対
する間座のしめしろはほぼ一定に保たれる。このため、
環状体に負荷された荷重は間座を介して有効に相手部材
に伝達される。
Since the linear expansion coefficient of the spacer has a radial direction that changes in accordance with the linear expansion coefficient between the mating member and the annular body even if a temperature change occurs between the time of mounting the annular body and the time of operation use. The amount of change in the state of engagement of the spacer with respect to the mating member or the state of engagement of the annular pair is absorbed by the spacer, and the interference of the spacer with respect to the annular body is kept substantially constant. For this reason,
The load applied to the annular body is effectively transmitted to the mating member via the spacer.

とくに、間座の相手部材に接する部分の線膨張係数を
相手部材のそれとほぼ等しく、間座の環状体に接する部
分の線膨張係数を環状体のそれとほぼ等しい値に設定し
た場合は、温度変化の前後を通じて環状体に対する間座
の嵌合状態の変動がなくなり、一定のしめしろを確実に
保持することができる。
In particular, when the linear expansion coefficient of the portion of the spacer that is in contact with the mating member is substantially equal to that of the mating member, and the linear expansion coefficient of the portion of the spacer that is in contact with the annular body is set to a value substantially equal to that of the annular member, the temperature change The fitting state of the spacer to the annular body does not fluctuate between before and after, and a certain interference can be reliably held.

環状体の相手部材に対する嵌合面が、遅くとも環状体
の運転使用時において固い嵌合状態となり、かつ環状体
に負荷される荷重およびこの嵌合ならびに温度変化によ
る最大応力が環状体の構成材料の許容最大応力よりも小
さくなるように嵌合面の寸法を設定した場合には、環状
体に負荷された荷重は、環状体と間座とによって分担し
て相手部材に伝達され、しかも環状体は負荷された荷重
によって破壊することがない。
The fitting surface of the annular body to the mating member is in a firmly fitted state at the latest at the time of operation use of the annular body, and the load applied to the annular body and the maximum stress due to this fitting and the temperature change are reduced by the material of the annular body. When the dimensions of the fitting surface are set so as to be smaller than the allowable maximum stress, the load applied to the annular body is transmitted to the mating member while being shared by the annular body and the spacer. It is not destroyed by the applied load.

また、環状体の軸方向端面にテーパ面を形成し、これ
と同一テーパ角度の対向端面を有する中間間座を間座と
の間に介在させた場合は、負荷された荷重は、間座と中
間間座とに分担させること、あるいはさらに環状体と間
座と中間間座とに分担させることができる。
When a tapered surface is formed on the axial end surface of the annular body and an intermediate spacer having an opposite end surface having the same taper angle is interposed between the tapered surface and the spacer, the applied load is It can be shared between the intermediate spacer and the annular body, the spacer and the intermediate spacer.

また、環状体の軸方向端面に形成するテーパ面の角度
を、環状体の肉厚中心における軸方向長さおよび直径に
対して所定の関係が成立するように設定した場合は、温
度変化によって環状体が受ける熱応力の影響を防止する
ことができる。
Further, when the angle of the tapered surface formed on the axial end surface of the annular body is set so that a predetermined relationship is established with respect to the axial length and the diameter at the center of the thickness of the annular body, the annular shape is changed by the temperature change. The effect of thermal stress on the body can be prevented.

〔実施例〕〔Example〕

以下、この発明の実施例を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は、この発明を円筒ころ軸受の内輪(環状体)
と軸(相手部材)との組付けに適用した実施例である。
同図の円筒ころ軸受は、内輪20,外輪30および内輪20と
外輪30との間で保持器51に保持案内される円筒ころ50に
より構成されている。
FIG. 1 shows an inner ring (annular body) of a cylindrical roller bearing according to the present invention.
This is an embodiment in which the present invention is applied to the assembling of a shaft and a shaft (a mating member).
The cylindrical roller bearing shown in FIG. 1 includes an inner ring 20, an outer ring 30, and a cylindrical roller 50 held and guided by a retainer 51 between the inner ring 20 and the outer ring 30.

内輪20の内周側嵌合面21は、軸10に対してすきまばめ
により嵌合し、内輪20の軸方向両側端面22に形成された
垂直面を一対の間座40により挾着支持した状態で取り付
けてある。
The inner peripheral side fitting surface 21 of the inner ring 20 is fitted to the shaft 10 by clearance fit, and the vertical surfaces formed on both axial end surfaces 22 of the inner ring 20 are supported by a pair of spacers 40. It is attached in the state.

各間座40は、軸10の外周面に嵌合する円環部40aと、
円環部40aから軸方向に突出して内輪20の端部の外周側
嵌合面23に嵌合する円筒部40bとにより構成され、円環
部40aの内周42は軸10に対してしまりばめによる嵌合、
または接着,溶接,ねじ締結等により固く係合し、円筒
部40bの内周面43は内輪20に対して嵌合している。
Each spacer 40 has an annular portion 40a fitted on the outer peripheral surface of the shaft 10,
A cylindrical portion 40b protruding in the axial direction from the annular portion 40a and fitted to the outer peripheral side fitting surface 23 at the end of the inner ring 20; if the inner periphery 42 of the annular portion 40a is tight with respect to the shaft 10, Mating,
Alternatively, the inner peripheral surface 43 of the cylindrical portion 40b is fitted to the inner ring 20 by firmly engaging by bonding, welding, screw fastening, or the like.

内輪20の両側端面22と間座40の対向端面とは、接触さ
せる場合だけに限らず、適当な軸方向すきまを介して対
向させてもよい。
The end surfaces 22 on both sides of the inner race 20 and the opposing end surfaces of the spacer 40 are not limited to the case where they are brought into contact with each other, and may be made to face each other via an appropriate axial clearance.

上記の円筒ころ軸受の内輪20の構成材料は、たとえば
窒化珪素のようなセラミック材、軸10の構成材料は鋼材
である。したがって、内輪20の線膨張係数αは、軸10
の線膨張係数αよりも小さい。外輪30の構成材料は軸
受鋼である。
The constituent material of the inner ring 20 of the cylindrical roller bearing is, for example, a ceramic material such as silicon nitride, and the constituent material of the shaft 10 is a steel material. Therefore, the linear expansion coefficient α j of the inner ring 20 is
Is smaller than the coefficient of linear expansion α s . The constituent material of the outer ring 30 is bearing steel.

また、間座40は、軸10に嵌合された内周側部分から内
輪20に嵌合された外周側部分に至る半径方向の線膨張係
数が、軸10の線膨張係数αと内輪20の線膨張係数α
とによる半径方向の変化と共通する方向で半径方向に変
化する材料により構成されている。
Further, the spacer 40, the linear expansion coefficient of the radially extending from the inner peripheral portion fitted to the shaft 10 in the mated outer peripheral portion to the inner ring 20, the linear expansion coefficient alpha s and the inner ring 20 of the shaft 10 Coefficient of linear expansion α j
And a material that changes in the radial direction in the same direction as the change in the radial direction.

間座40の半径方向の線膨張係数は、連続的に変化する
ものであってもよく、段階的変化するものであってもよ
い。線膨張係数が連続的に変化する材料としては、たと
えばセラミック材と金属材との配合比が半径方向に異な
る複合材料(傾斜機能材料)を用いることができ、線膨
張係数が段階的に変化する材料としては、たとえば線膨
張係数の異なる少なくとも2個の素材を嵌合,接着等に
より半径方向に重ね合わせた積層材料を用いることがで
きる。
The linear expansion coefficient of the spacer 40 in the radial direction may change continuously or may change stepwise. As a material whose linear expansion coefficient continuously changes, for example, a composite material (functionally graded material) in which the mixing ratio of the ceramic material and the metal material is different in the radial direction can be used, and the linear expansion coefficient changes stepwise. As the material, for example, a laminated material in which at least two materials having different linear expansion coefficients are overlapped in the radial direction by fitting, bonding, or the like can be used.

上記の各材料を用いて間座40を構成する場合におい
て、間座40の円環部40aの内周面42を含む内周側部分の
線膨張係数を軸10の線膨張係数αにほぼ等しく設定
し、間座40の円筒部40bの内周面43を含む外周側部分の
線膨張係数を内輪20の線膨張係数αにほぼ等しく設定
し、内周側部分から外周側部分に至る中間部分の線膨張
係数が、連続的または段階的に変化して順次減少するよ
うに設定するのが好ましい。
In case of constituting the spacer 40 by using the materials described above, the linear expansion coefficient of the inner peripheral portion including an inner peripheral surface 42 of the annular portion 40a of the spacer 40 substantially in the linear expansion coefficient alpha s of the shaft 10 The linear expansion coefficient of the outer peripheral portion including the inner peripheral surface 43 of the cylindrical portion 40b of the spacer 40 is set substantially equal to the linear expansion coefficient α j of the inner ring 20, and the inner peripheral portion extends from the inner peripheral portion to the outer peripheral portion. It is preferable that the linear expansion coefficient of the intermediate portion is set so as to change continuously or stepwise and to decrease gradually.

次に、上記構成の円筒ころ軸受の使用時の温度Tbが取
付時の温度Taよりも高くなる場合における軸10,内輪20
および間座40の間の荷重伝達機構について説明する。
Next, the shaft 10 when the temperature T b at the time of use of cylindrical roller bearings of the structure is higher than the temperature T a during mounting, the inner ring 20
And a load transmission mechanism between the spacers 40 will be described.

いま、軸受の取付時において、内輪20と軸10とがすき
まばめ、間座40は軸1と内輪200に対してそれぞれしま
りばめであるとし、軸10は鋼材(線膨張係数α),内
輪20はセラミック材(線膨張係数α)であり、間座40
は複合材または積層材であって、軸10に接する内周側部
分の線膨張係数αk1が軸10の線膨張係数αにほぼ等し
く、内輪20に接する外周側部分の線膨張係数αk0が内輪
20の線膨張係数αにほぼ等しいものとする。
Now, when mounting the bearing, it is assumed that the inner ring 20 and the shaft 10 have a loose fit, the spacer 40 has a close fit with respect to the shaft 1 and the inner ring 200, respectively, and the shaft 10 is made of steel (linear expansion coefficient α s ). The inner ring 20 is made of a ceramic material (linear expansion coefficient α j ),
Is a composite material or a laminated material, in which the linear expansion coefficient α k1 of the inner peripheral portion in contact with the shaft 10 is substantially equal to the linear expansion coefficient α s of the shaft 10, and the linear expansion coefficient α k0 of the outer peripheral portion in contact with the inner ring 20. Is an inner ring
It is assumed that the linear expansion coefficient α j is substantially equal to 20.

軸受の取付時における内輪20と軸0とのはめ合いすき
まをΔd,間座40と軸10とのしめしろをΔδ,間座40と内
輪20とのしめしろをΔDとすると、軸受の使用時におい
ては、内輪200の軸10に対するはめ合いすきまは、 Δd−(α−α)(Tb−Ta)d になり、間座40の軸10に対するしめしろは、 Δδ+(α−αk1)(Tb−Ta)d に変化し、間座40の内輪20に対するしめしろは、 ΔD+(α−αk0)(Tb−Ta)D に変化するという計算結果が得られる。
When the clearance between the inner ring 20 and the shaft 0 at the time of mounting the bearing is Δd, the interference between the spacer 40 and the shaft 10 is Δδ, and the interference between the spacer 40 and the inner ring 20 is ΔD. in the clearance fit with respect to the axis 10 of the inner ring 200 will become Δd- (α s -α j) ( T b -T a) d, white accounted for shaft 10 of the spacer 40, Δδ + (α s - α k1 ) (T b −T a ) d, and the interference between the spacer 40 and the inner ring 20 changes to ΔD + (α j −α k0 ) (T b −T a ) D. Can be

これらのはめ合いすきまとしめしろとの変化量は、相
互に関連して影響を受けるが、内輪20の軸10に対するは
め合いすきまの変化量(α−α)(Tb−Ta)dが取
付時のすきまΔdよりも小さくなるように設定されてい
るものとすれば、内輪20の軸10に対するはめ合いすきま
が変化しても、これによって間座40の軸10と内輪20とに
対するしめしろが影響を受けることは少ないと考えてよ
い。
The amount of change between these fits and the interference is influenced in relation to each other, but the amount of change of the fit between the inner ring 20 and the shaft 10 (α s −α j ) (T b −T a ) If d is set to be smaller than the clearance Δd at the time of mounting, even if the clearance of the inner ring 20 fitted to the shaft 10 changes, the clearance between the shaft 10 of the spacer 40 and the inner ring 20 is thereby changed. It can be considered that interference is rarely affected.

そうすれば、間座40の軸10に対するしめしろの変化量
(α−αk1)(Tb−Ta)dは、α≒αk1であるの
で、零に近い値であり、間座40の内輪20に対するしめし
ろの変化量(α−αk0)(Tb−Ta)Dについても同様
に、α≒αk0であるので、零に近い値であるから、間
座40の軸10および内輪20に対する取付時のしめしろΔd
およびΔDは、使用時に温度が上昇しても、温度変化の
前後を通じてほぼ一定に保たれることになる。
Then, the amount of interference (α s −α k1 ) (T b −T a ) d of the interference of the spacer 40 with respect to the axis 10 is a value close to zero because α s ≒ α k1. Similarly, the amount of interferencej −α k0 ) (T b −T a ) D of the interference with respect to the inner ring 20 of the seat 40 is close to zero because α j ≒ α k0. Interference Δd when mounting 40 on shaft 10 and inner ring 20
And ΔD are kept substantially constant before and after the temperature change even if the temperature rises during use.

実際には前記したしめしろ(又はすきま)の変化量が
相互に影響し合うが、間座40の線膨張係数を前記のよう
に方向性を有して構成してあるので、温度がTaからTb
変化することによる嵌合面42および43の嵌合代の変化の
合計を零に近くするように間座の線膨張係数αの大き
さ、および半径方向の変化の程度等を選定すれば、しめ
しろΔDをほぼ一定に保つことが可能である。
Actually, the amount of change in the interference (or clearance) affects each other, but since the linear expansion coefficient of the spacer 40 is configured to have the directionality as described above, the temperature T a from the size of the linear expansion coefficient alpha k of the spacer so as to close to zero the sum of the changes in Hamagodai fitting surface 42 and 43 due to changes in T b, and the degree of radial change such If selected, the interference ΔD can be kept substantially constant.

したがって、軸受に負荷された荷重は、内輪20の外周
側嵌合面23を介して間座40によって軸10に有効に伝達す
ることができる。
Accordingly, the load applied to the bearing can be effectively transmitted to the shaft 10 by the spacer 40 via the outer peripheral side fitting surface 23 of the inner ring 20.

上記実施例においては、軸受の取付時と使用時とを通
じて、内輪20が軸10に対してすきまばめになっている
が、取付時と使用時との温度差および内輪20と軸10との
線膨張係数の差に応じて、遅くとも使用時において軸10
に対してしめしろをもつ固い嵌合状態となるように構成
してもよい。この場合は、内輪20の内周側嵌合面21にお
ける最大引張応力σtmax、すなわち軸10とのしめしろに
よる最大引張応力と、軸受に負荷された荷重による最大
引張応力と、内輪20の外周側嵌合面23でのしめしろによ
る圧縮応力との合計が、内輪20の構成材料の許容引張応
力σよりも小さくなり、かつ内輪20の外周側嵌合面23
における最大圧縮応力σCmax、すなわち間座40とのしめ
しろによる最大圧縮応力と、軸10に負荷された荷重によ
る最大圧縮応力と、内輪20の内周側嵌合面21でのしめし
ろによる引張応力との合計が、内輪20の構成材料の許容
圧縮応力σよりも小さくなるように、内輪20の各嵌合
面21,23の寸法を設定するのが好ましい。
In the above embodiment, the inner ring 20 has a loose fit with respect to the shaft 10 during the mounting and use of the bearing, but the temperature difference between the mounting and the use and the inner ring 20 and the shaft 10 Depending on the difference in the coefficient of linear expansion, the shaft 10
May be configured so as to have a tight fitting state with interference. In this case, the maximum tensile stress σ tmax at the inner peripheral side fitting surface 21 of the inner ring 20, that is, the maximum tensile stress due to interference with the shaft 10, the maximum tensile stress due to the load applied to the bearing, The sum of the compressive stress due to the interference at the side fitting surface 23 becomes smaller than the allowable tensile stress σ T of the constituent material of the inner ring 20 and the outer fitting surface 23 of the inner ring 20.
, The maximum compressive stress due to the interference with the spacer 40, the maximum compressive stress due to the load applied to the shaft 10, and the tension due to the interference at the inner peripheral side fitting surface 21 of the inner ring 20. It is preferable to set the dimensions of the fitting surfaces 21, 23 of the inner ring 20 so that the sum of the stress and the stress is smaller than the allowable compressive stress σ C of the constituent material of the inner ring 20.

このような構成にすると、軸受の使用時の温度Tbが取
付時の温度Taよりも上昇したときに、間座40の内輪20に
対するしめしろが、間座40の軸10に対するしめしろと、
内輪20の軸10に対するしめしろとによる影響を受けるこ
とになるが、間座40の線膨張係数が前述のように半径方
向に変化する方向性をもっていたので、間座40の軸10に
対するしめしろの変化量(α−αk1)(Tb−Ta)d
と、内輪20の軸10に対するしめしろに伴って生ずる間座
40の軸10に対するしめしろの変化量との合計が、間座40
の内部歪によって吸収されて零に近い値になる。このた
め、軸受の取付時に設定した間座40の内輪20に対するし
めしろΔDは、軸10に対するしめしろΔδが変化して
も、温度変化の前後を通じてほぼ一定に保たれることに
なる。
With such a configuration, when the temperature T b at the time of use of the bearing rises above the temperature T a during installation, but white tighten against the inner ring 20 of the spacer 40, white accounted for shaft 10 of the spacer 40 and ,
The interference between the inner ring 20 and the shaft 10 is influenced by the interference, but since the linear expansion coefficient of the spacer 40 has a directionality that changes in the radial direction as described above, the interference of the spacer 40 with respect to the shaft 10 is required. (Α s −α k1 ) (T b −T a ) d
And a spacer generated by interference between the inner ring 20 and the shaft 10
The sum of the amount of change of interference with respect to the axis 10 of 40 is the spacer 40
Becomes a value close to zero by being absorbed by the internal distortion of. For this reason, the interference ΔD of the spacer 40 with respect to the inner ring 20 set at the time of mounting the bearing is kept substantially constant before and after the temperature change even if the interference Δδ with respect to the shaft 10 changes.

これにより、軸受に負荷された荷重は、間座40を介し
て軸10に伝達される部分と、内輪20の内周側嵌合面21を
通して直接軸10に伝達される部分とに分かれ、間座40の
みを介して荷重を伝達する前記実施例の場合に比べて、
内輪20の間座40を介しての分担荷重が減少するから、そ
の分だけ軸受の許容最大負荷荷重を増大するか、あるい
は内輪20の許容引張応力σと許容圧縮応力σとの値
に応じて各嵌合面21,23による伝達荷重を最適値にする
ことによって合計伝達可能荷重を最大にすることができ
る。
Thus, the load applied to the bearing is divided into a portion transmitted to the shaft 10 through the spacer 40 and a portion transmitted directly to the shaft 10 through the inner peripheral side fitting surface 21 of the inner race 20. Compared to the case of the above embodiment in which the load is transmitted only through the seat 40,
Since the shared load via the spacer 40 of the inner ring 20 is reduced, the allowable maximum load of the bearing is increased by that amount, or the allowable tensile stress σ T and the allowable compressive stress σ C of the inner ring 20 are reduced. Accordingly, the total transmittable load can be maximized by optimizing the load transmitted by each of the fitting surfaces 21 and 23.

また、内輪20に軸受荷重が分担負荷されても、内輪20
の最大引張応力と最大圧縮応力とが、その構成材料の各
許容最大応力よりも小さくなるように、各嵌合面21,23
の寸法が設定されているため、内輪20は破壊することが
ない。
Even if the bearing load is shared by the inner ring 20,
So that the maximum tensile stress and the maximum compressive stress of the respective mating surfaces 21 and 23 are smaller than the respective maximum allowable stresses of the constituent materials.
Is set, the inner ring 20 is not broken.

なお、この円周ころ軸受においては、間座40の円筒部
40bの軸方向端部41の端面が円筒ころ50の端面に近接対
向して円筒ころ50の案内つばとしての機能を兼ね、さら
にその軸方向端部41の外径面が保持器51の内径面に近接
対向して保持器51の案内輪としての機能を兼ねている。
これらの機能はいずれか一方のみを兼ねるようにしても
よい。
In this circumferential roller bearing, the cylindrical portion of the spacer 40
The end face of the axial end 41 of the cylindrical roller 40b is closely opposed to the end face of the cylindrical roller 50, and also functions as a guide flange of the cylindrical roller 50. Further, the outer diameter of the axial end 41 is the inner diameter of the retainer 51. , And also functions as a guide wheel of the retainer 51.
These functions may be used for only one of them.

上記実施例では、間座40の内周側部分の線膨張係数α
k1を軸10の線膨張係数αにほぼ等しく、外周側部分の
線膨張係数αk0を内輪20の線膨張係数αにほぼ等しく
設定した場合について説明したが、必ずしもこのように
設定する必要はなく、内周側部分から外周側部分に至る
各部分の線膨張係数の値と、半径方向の線膨張係数の変
化の割合については、軸受の取付時と使用時との温度
差、内輪20と軸10との線膨張係数の差および寸法諸元な
らびに内輪20と間座40との軸10に対する取付条件等に応
じて最適の値と所定の方向性とをもつように適宜選定す
ることができる。
In the above embodiment, the linear expansion coefficient α
The case where k1 is set substantially equal to the coefficient of linear expansion α s of the shaft 10 and the coefficient of linear expansion α k0 of the outer peripheral side portion is set almost equal to the coefficient of linear expansion α j of the inner ring 20 has been described. However, regarding the value of the coefficient of linear expansion of each part from the inner peripheral part to the outer peripheral part and the rate of change of the coefficient of linear expansion in the radial direction, the temperature difference between when the bearing is mounted and when it is used, the inner ring 20 Can be appropriately selected so as to have an optimum value and a predetermined direction according to the difference in linear expansion coefficient between the shaft and the shaft 10 and the dimensions and the conditions for mounting the inner ring 20 and the spacer 40 to the shaft 10. it can.

第2図は、この発明を玉軸受の内輪(環状体)と軸
(相手部材)との組付けに適用した実施例である。同図
の玉軸受は、内輪20,外輪30および内輪20と外輪30との
間で保持器54に保持案内される玉53により構成され、内
輪20の内周側嵌合面21が軸10にすきまばめにより嵌合さ
れ、内輪20の軸方向両側端部の外周側嵌合面23には、軸
10に固く係合する一対の間座40がしまりばめにより嵌合
されている。これらの軸10,内輪20および間座40の構成
材料については、第1図の円筒ころ軸受の場合と同様で
ある。
FIG. 2 shows an embodiment in which the present invention is applied to assembling an inner ring (annular body) of a ball bearing and a shaft (a mating member). The ball bearing shown in FIG. 1 includes an inner ring 20, an outer ring 30, and a ball 53 that is held and guided by a retainer 54 between the inner ring 20 and the outer ring 30. The inner ring 20 is fitted with a clearance fit.
A pair of spacers 40 that firmly engage with 10 are fitted by an interference fit. The constituent materials of the shaft 10, the inner ring 20, and the spacer 40 are the same as those of the cylindrical roller bearing of FIG.

この実施例では、内輪20の軸方向の両側端面22が中心
軸線に対して外開き方向に拡径し、軸直角断面に対して
θ1の傾斜角度をもつテーパ面に形成され、この両
側端面22と同一傾斜角度の対向対面をもつ一対の中間間
座45を、軸10に固く係合して内輪20と間座40との間に配
置し、中間間座45を介して内輪20を挾着してある。この
中間間座45は、軸10と同等の線膨張係数を有する材料に
より作られている。
In this embodiment, both end surfaces 22 in the axial direction of the inner ring 20 are formed in a tapered surface having an inclination angle of θ 1 , θ 2 with respect to a cross section perpendicular to the axis, the diameter of which expands in an outward opening direction with respect to a center axis. A pair of intermediate spacers 45 having opposing facing surfaces having the same inclination angle as the both end surfaces 22 are firmly engaged with the shaft 10 and disposed between the inner ring 20 and the spacer 40, and the inner ring 20 is sandwiched. The intermediate spacer 45 is made of a material having a linear expansion coefficient equivalent to that of the shaft 10.

上記構成の玉軸受においては、軸受に負荷された荷重
は、内輪20の外周側嵌合面23を介して、間座40によって
分担負荷されるだけでなく、内輪20の両側端面22を介し
て中間間座45が分担した荷重を軸10に伝達することがで
きるから、間座40のみで荷重を伝達する場合に比べて内
輪20の分担荷重が減少する。
In the ball bearing having the above-described configuration, the load applied to the bearing is not only shared by the spacer 40 via the outer peripheral side fitting surface 23 of the inner ring 20 but also via the both end surfaces 22 of the inner ring 20. Since the load shared by the intermediate spacer 45 can be transmitted to the shaft 10, the shared load of the inner ring 20 is reduced as compared with the case where the load is transmitted only by the spacer 40.

なお、この実施例においても、内輪20の内周側嵌合面
21が軸10に対して遅くとも軸受の使用時においてしめし
ろをもつ固い嵌合状態になり、かつ内輪20の最大引張応
力と最大圧縮応力とが、その構成材料の各許容最大応力
よりも小さくなるように、各嵌合面21,23の寸法を設定
してもよい。このように構成した場合は、軸受に負荷さ
れた荷重は、内輪20の内周側嵌合面21を介しても軸10に
伝達することができるから、間座40と中間間座45とを介
して荷重を伝達する場合に比べて、さらに内輪20の分担
荷重が減少する。
In this embodiment, the inner peripheral side fitting surface of the inner ring 20 is also used.
21 becomes a firmly fitted state with interference at the latest when the bearing is used with respect to the shaft 10, and the maximum tensile stress and the maximum compressive stress of the inner ring 20 become smaller than each allowable maximum stress of the constituent material As described above, the dimensions of the fitting surfaces 21 and 23 may be set. With this configuration, the load applied to the bearing can be transmitted to the shaft 10 even through the inner peripheral side fitting surface 21 of the inner ring 20, so that the spacer 40 and the intermediate spacer 45 As compared with the case where the load is transmitted through the inner ring 20, the shared load of the inner ring 20 is further reduced.

なお、この実施例においては、内輪20の両側端面22の
傾斜角度θ1を下記のように設定した場合は、軸受
の取付時と使用時との温度変化に伴う内輪20と中間間座
45との接触面および内輪20と軸10との嵌合面に発生する
熱応力による影響を防止することができる。
In this embodiment, when the inclination angles θ 1 , θ 2 of both end surfaces 22 of the inner ring 20 are set as follows, the distance between the inner ring 20 and the intermediate portion due to a temperature change between when the bearing is mounted and when the bearing is used. seat
The effect of thermal stress generated on the contact surface between the shaft 45 and the fitting surface between the inner ring 20 and the shaft 10 can be prevented.

内輪20の肉厚中心における軸方向の長さをWP、直径を
DPとすると、温度変化ΔTによる両側端面22の軸方向の
長さ変化Δx1,Δx2と、半径方向の長さ変化Δy1,Δy2
は、それぞれ次の式で求められる。
The axial length at the center of thickness of the inner ring 20 is W P , and the diameter is
Assuming that D P , the axial length changes Δx 1 , Δx 2 and the radial length changes Δy 1 , Δy 2 of the both end surfaces 22 due to the temperature change ΔT are obtained by the following equations.

内輪20の軸方向および半径方向に、温度変化による相
対的な長さが生じないときの条件は、次の式で与えられ
る。
The condition when the relative length due to the temperature change does not occur in the axial direction and the radial direction of the inner ring 20 is given by the following equation.

そこで、α≠αj,ΔT≠0として上式(1),
(2),(3)を解くと、 tanθ+tanθ=2WP/DP ……(4) が得られる。
Then, assuming α s ≠ α j , ΔT ≠ 0, the above equation (1),
Solving (2) and (3) yields tan θ 1 + tan θ 2 = 2W P / D P (4).

上式のθ1は、図示のように内輪20の両側端面
が、外開き方向に拡径するテーパ面である場合を正と
し、これと反対に内開き方向に縮径するテーパ面である
場合を負とする。
Θ 1 and θ 2 in the above formula are positive when both end surfaces of the inner ring 20 are tapered surfaces that expand in the outward opening direction as shown in the drawing, and conversely, taper surfaces that decrease in the inner opening direction. Is negative if.

この実施例の中間間座45を設ける場合は、内輪20の一
方の軸方向端面だけを挾着するようにしてもよい。
When the intermediate spacer 45 of this embodiment is provided, only one axial end face of the inner ring 20 may be clamped.

また、中間間座45の取付けについては、図示した場合
のほか、中間間座45を軸10に固く係合したのち、中間間
座45の外周面に間座40をしまりばめ等により固く係合す
るか、あるいは中間間座45と間座40とを接合して一体に
固着したものを用いてもよい。
In addition to the illustrated case, the intermediate spacer 45 may be attached to the shaft 10 by firmly engaging the intermediate spacer 45 with the shaft 10 and then tightly fitting the spacer 40 on the outer peripheral surface of the intermediate spacer 45 by fitting. Alternatively, a material in which the intermediate spacer 45 and the spacer 40 are joined and fixed integrally may be used.

前記各実施例では、セラミック材からなる内輪を鋼材
からなる軸に取り付けた場合について説明したが、この
発明はこのような場合に限らず、たとえば鋼材からなる
内輪をステンレス鋼、黄銅、アルミニウム合金等の材料
からなる軸に取り付ける場合についても同様に適用する
ことができる。
In each of the above embodiments, the case where the inner ring made of a ceramic material is attached to a shaft made of a steel material has been described, but the present invention is not limited to such a case. For example, the inner ring made of a steel material may be made of stainless steel, brass, aluminum alloy, or the like. The same can be applied to the case of mounting on a shaft made of the above material.

また、この発明は、内輪と軸との線膨張係数が異なる
軸受だけでなく、外輪と軸箱との線膨張係数が異なる軸
受についても適用することができる。
Further, the present invention is applicable not only to bearings having different coefficients of linear expansion between the inner ring and the shaft, but also to bearings having different coefficients of linear expansion between the outer ring and the shaft box.

また、この発明は、軸受の使用時における温度が取付
時の温度よりも高温になる場合に限らず、軸受の取付時
よりも使用時の方が低温になる場合についても適用する
ことができる。
The present invention can be applied not only to the case where the temperature during use of the bearing is higher than the temperature at the time of mounting, but also to the case where the temperature during use is lower than when the bearing is mounted.

さらに、この発明は、転がり軸受だけでなく、滑り軸
受その他の装置の構成部材である環状体を、線膨張係数
の異なる相手部材に取り付ける場合にも適用することが
できる。
Further, the present invention can be applied not only to a rolling bearing but also to a case where an annular body which is a component of a sliding bearing or other device is attached to a counterpart member having a different linear expansion coefficient.

〔発明の効果〕〔The invention's effect〕

以上説明したように、この発明によれば、環状体の線
膨張係数が相手部材のそれとは異なる場合に、環状体に
負荷される荷重を、環状体に嵌合された間座を介して相
手部材に伝達することができ、取付時と使用時との温度
差に起因して間座の相手部材に対する係合状態ないしは
環状体の相手部材に対する嵌合状態が変化しても、これ
らの変化量は線膨張係数が半径方向に変化する間座の内
部歪によって吸収し、温度変化の前後を通じて環状体に
対する間座のしめしろをほぼ一定に保つことができる。
このため間座による荷重伝達が当初の設計通りに有効に
行われ、伝達可能荷重の上限値を増加することも容易に
できる。
As described above, according to the present invention, when the linear expansion coefficient of the annular body is different from that of the mating member, the load applied to the annular body is changed via the spacer fitted to the annular body. Even if the engagement state of the spacer to the mating member or the fitting state of the annular body to the mating member changes due to a temperature difference between the time of attachment and the time of use, these changes Can be absorbed by the internal strain of the spacer whose linear expansion coefficient changes in the radial direction, and the interference of the spacer with respect to the annular body can be kept substantially constant before and after the temperature change.
Therefore, the load transmission by the spacer is effectively performed as originally designed, and the upper limit of the transmittable load can be easily increased.

また、この発明によれば、負荷された荷重を間座だけ
でなく、環状体と相手部材との嵌合面、あるいはこれに
加えて環状体のテーパ状の軸方向端面を挾着する中間間
座によっても伝達可能な構成とした場合には、環状体の
負荷能力はさらに増大するだけでなく、環状体の軸方向
端面に形成するテーパ面の角度を所定の角度に設定する
ことにより、温度変化による熱応力の集中を防止するこ
とも可能になる。
Further, according to the present invention, the applied load is not only applied to the spacer, but also to the fitting surface between the annular body and the mating member, or in addition to the intermediate space for clamping the tapered axial end surface of the annular body. When the configuration is such that the transmission can also be performed by the seat, not only the load capacity of the annular body is further increased, but also by setting the angle of the tapered surface formed on the axial end face of the annular body to a predetermined angle, the temperature can be increased. It is also possible to prevent the concentration of thermal stress due to the change.

さらに、この発明によれば、環状体の相手部材に対す
るはめ合いすきまを小さくすることができるため、取付
時における心出しが容易になるだけでなく、運転使用時
においても、相手部材に対する同心性を高精度に保持す
ることができるため、取り付けられた装置の高性能が維
持され、信頼性の高い取付装置が得られる。
Further, according to the present invention, the clearance between the annular body and the mating member can be reduced, so that not only the centering at the time of mounting is facilitated but also the concentricity with the mating member at the time of driving use is improved. Since it can be held with high accuracy, the high performance of the attached device is maintained, and a highly reliable attachment device can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、この発明を円筒ころ軸受に適用した実施例を
示す上半部縦断側面図、第2図は、この発明を玉軸受に
適用した実施例を示す上半部縦断側面図、第3図は、従
来の円筒ころ軸受の取付状態を示す上半部縦断側面図で
ある。 図中、10は軸(相手部材)、20は内輪(環状体)、21は
内輪の内周側嵌合面、22は内輪の軸方向端面、23は内輪
の外周側嵌合面、40は間座、42は間座の軸に対する嵌合
面、43は間座の内輪に対する嵌合面、45は中間間座であ
る。
FIG. 1 is an upper half vertical sectional side view showing an embodiment in which the present invention is applied to a cylindrical roller bearing. FIG. 2 is an upper half vertical side view showing an embodiment in which the present invention is applied to a ball bearing. FIG. 3 is an upper half vertical sectional side view showing a mounting state of a conventional cylindrical roller bearing. In the figure, reference numeral 10 denotes a shaft (a mating member), 20 denotes an inner ring (annular body), 21 denotes an inner peripheral side fitting surface of the inner ring, 22 denotes an axial end face of the inner ring, 23 denotes an outer peripheral side fitting surface of the inner ring, and 40 denotes The spacer, 42 is a fitting surface of the spacer to the shaft, 43 is a fitting surface of the spacer to the inner ring, and 45 is an intermediate spacer.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】相手部材の外周または内周に嵌合された環
状体がその相手部材とは異なる線膨張係数を有し、環状
体の相手部材との嵌合面とは反対側の周面に嵌合すると
ともに、相手部材の外周または内周に固く係合する一対
の間座により環状体の軸方向の両側端面を支持してなる
取付装置であって、前記間座は、相手部材に接する部分
から環状体に接する部分に至る半径方向の線膨張係数
が、相手部材と環状体とによる半径方向の線膨張係数の
変化と共通する方向をもって半径方向に連続的または段
階的に変化する材料によって構成されていることを特徴
とする環状体の取付装置。
An annular body fitted to the outer or inner periphery of a mating member has a different linear expansion coefficient than the mating member, and a peripheral surface of the annular body opposite to a fitting surface with the mating member. And a pair of spacers that firmly engage the outer periphery or inner periphery of the mating member to support both end faces in the axial direction of the annular body, wherein the spacer is attached to the mating member. A material in which the coefficient of linear expansion in the radial direction from the contacting part to the part in contact with the annular body changes continuously or stepwise in the radial direction in the same direction as the change in the coefficient of linear thermal expansion in the radial direction due to the mating member and the annular body. A mounting device for an annular body, comprising:
【請求項2】間座の相手部材に接する部分が相手部材と
ほぼ等しい線膨張係数を有し、間座の環状体に接する部
分が環状体とほぼ等しい線膨張係数を有している請求項
(1)記載の環状体の取付装置。
2. A portion of the spacer that contacts the counterpart member has a linear expansion coefficient substantially equal to that of the counterpart member, and a portion of the spacer that contacts the annular body has a coefficient of linear expansion approximately equal to the annular member. (1) A mounting device for an annular body according to (1).
【請求項3】環状体の相手部材に対する嵌合面は、遅く
とも環状体の運転使用時において固い嵌合状態になり、
かつ環状体に負荷される荷重およびこの嵌合ならびに温
度変化による最大応力が、環状体の構成材料の許容最大
応力よりも小さくなるように設定された寸法を有してい
る請求項(1)または(2)記載の環状体の取付装置。
3. The fitting surface of the annular body with respect to the mating member is in a firmly fitted state at the latest when the annular body is used for operation.
And (1) a dimension set so that the load applied to the annular body and the maximum stress due to the fitting and the temperature change are smaller than the allowable maximum stress of the constituent material of the annular body. (2) A mounting device for an annular body according to (2).
【請求項4】環状体の軸方向の少なくとも一方の端面が
テーパ面であり、このテーパ面と同一角度の対向端面を
有する中間間座が環状体と間座との間に挟持されている
請求項(1)ないし(3)のいずれかに記載の環状体の
取付装置。
4. The annular body has at least one end face in the axial direction which is a tapered face, and an intermediate spacer having an opposite end face having the same angle as the tapered face is sandwiched between the annular body and the spacer. Item 8. The mounting device for an annular body according to any one of Items (1) to (3).
【請求項5】環状体の軸方向の両側端面の軸直角断面に
対する角度θ1が、中心軸線に対して外開きの場合
を正,内開きの場合を負として、環状体の肉厚中心にお
ける軸方向長さWPと直径DPとの間に、 tanθ+tanθ=2WP/DP で表される関係に設定されている請求項(4)記載の環
状体の取付装置。
5. The thickness of the annular body, wherein the angles θ 1 , θ 2 of both axial end surfaces of the annular body with respect to a cross section perpendicular to the axis are positive when the center is opened outward and negative when the center is open. The annular body mounting device according to claim 4, wherein the axial length W P at the thickness center and the diameter D P are set to have a relationship represented by tan θ 1 + tan θ 2 = 2 W P / D P. .
【請求項6】環状体が転がり軸受の軌道輪であって、軌
道輪に嵌合された間座の軸方向端部が、転動体に対する
案内つばと保持器に対する案内輪としての機能の少なく
とも一つを有している請求項(1)ないし(5)のいず
れかに記載の環状体の取付装置。
6. An annular body is a bearing ring of a rolling bearing, and an axial end of a spacer fitted to the bearing ring has at least one of a function as a guide collar for a rolling element and a guide wheel for a retainer. The mounting device for an annular body according to any one of claims (1) to (5), comprising:
JP7447989A 1989-03-27 1989-03-27 Ring attachment device Expired - Fee Related JP2615990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7447989A JP2615990B2 (en) 1989-03-27 1989-03-27 Ring attachment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7447989A JP2615990B2 (en) 1989-03-27 1989-03-27 Ring attachment device

Publications (2)

Publication Number Publication Date
JPH02253010A JPH02253010A (en) 1990-10-11
JP2615990B2 true JP2615990B2 (en) 1997-06-04

Family

ID=13548449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7447989A Expired - Fee Related JP2615990B2 (en) 1989-03-27 1989-03-27 Ring attachment device

Country Status (1)

Country Link
JP (1) JP2615990B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5197808A (en) * 1991-03-08 1993-03-30 Nsk Ltd. Device for mounting annular body

Also Published As

Publication number Publication date
JPH02253010A (en) 1990-10-11

Similar Documents

Publication Publication Date Title
EP0421619B1 (en) Ceramic bearing
US6322254B1 (en) Bearing assembly for a threaded drive
US5197808A (en) Device for mounting annular body
US6785965B2 (en) Method for assembling a hub unit for supporting a wheel shaft
JPS61160631A (en) Universal joint for driving shaft
JPH08500887A (en) Metal sealing element
US4545627A (en) Creep preventing device of an annular member
JP2586503B2 (en) Bearing mounting device
JP3177086B2 (en) Sealing device
EP1300600A2 (en) Bearing assembly and method
JP2615990B2 (en) Ring attachment device
US4629350A (en) Tolerance compensating joint
EP1373746B1 (en) Gear shaft bearing assembly
JP2970029B2 (en) Ring attachment device
JP2650400B2 (en) Ring attachment device
JPH0571548A (en) Installation device for annular body
JP2643415B2 (en) bearing
JP2754572B2 (en) Mounting device for shaft and ring
JP2970003B2 (en) Ring attachment device
JPH0830492B2 (en) Bearing device
JP2711434B2 (en) Slide bearing holding structure
JPH0238713A (en) Rolling bearing with clearance compensator
JPH0520897Y2 (en)
JP3116515B2 (en) Ring mounting device
EP0809030A1 (en) Scroll type fluid displacement apparatus with rotation preventing means

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees