JPS639720A - Gap correcting device for rolling bearing - Google Patents

Gap correcting device for rolling bearing

Info

Publication number
JPS639720A
JPS639720A JP61153290A JP15329086A JPS639720A JP S639720 A JPS639720 A JP S639720A JP 61153290 A JP61153290 A JP 61153290A JP 15329086 A JP15329086 A JP 15329086A JP S639720 A JPS639720 A JP S639720A
Authority
JP
Japan
Prior art keywords
temperature side
spacer
bearing
correction device
spacers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61153290A
Other languages
Japanese (ja)
Inventor
Yoshiro Suga
菅 芳郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP61153290A priority Critical patent/JPS639720A/en
Publication of JPS639720A publication Critical patent/JPS639720A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • F16C19/548Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/20Thermal properties
    • F16C2202/28Shape memory material

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)

Abstract

PURPOSE:To correct a bearing gap due to a temperature change, and prevent a reduction in bearing performance, by installing a spacer formed of a shape memory alloy having a two-direction characteristic at high and low temperatures between an end surface of a loosely fitted race of a bearing and a side surface of a positioning member opposed to the race. CONSTITUTION:A spacer 60 is installed between a back surface of an outer race 31 of a tapered roller bearing 30 and a side surface of an outer race retainer 11 as a positioning member opposed to the outer race 31. The spacer 60 is formed of a shape memory alloy having a two-direction operating characteristic wherein the spacer 60 becomes an annular member 60a at low temperatures and becomes a disc spring member 60b at high temperature, such a deformation being reversible. Three of the spacer 60 at low temperatures are stacked in such a manner that the direction of deformation is counter to each other. Accordingly, at high temperatures, as the outer race 31 loosely fitted with a housing 10 is pressed by the high-temperature operation of the spacer, the axial expansion of the housing 10 is maintained at an initially set quantity, thus preventing a reduction in bearing performance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、転がり軸受のすきま補正装置に関し、とく
に転がり軸受の使用中の温度の影響による軸方向のすき
ま、ないしは予圧の変化を形状記憶合金のスペーサによ
って補正するようにしたものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a clearance correction device for a rolling bearing, and in particular, the present invention relates to a clearance correction device for a rolling bearing, and in particular, it uses a shape memory alloy to compensate for changes in the axial clearance or preload due to the influence of temperature during use of the rolling bearing. This is corrected using a spacer.

〔従来の技術〕[Conventional technology]

一般に、転がり軸受は、外輪をハウジングに取り付け、
内輪を軸に取り付けて使用するが、軸受を組み付ける機
械、装置の種類によっては、ハウジング側 成形されたものが使用されている。
Generally, rolling bearings have an outer ring attached to a housing.
The inner ring is attached to the shaft and used, but depending on the type of machine or device to which the bearing is assembled, a bearing molded on the housing side is used.

この種の軸受の一例を第13図に示す。同図は、アルミ
合金材からなるハウジング10と鉄鋼材からなる軸20
との間に2個の単列の円すいころ軸受30.40を正面
を向い合わせに取り付けた組合わせ型の軸受であって、
円すいころ軸受30゜40の外輪31.41は、ハウジ
ング10に緩い嵌合いで取り付けられた静止側の軌道輪
であり、内輪32.42は軸20に強固な嵌合いで取り
付けられた回転側の軌道輪である。外輪31.44と内
輪32.42との軌道面の間には、保持器34.44付
きの円すいころ33.43が介装されている。
An example of this type of bearing is shown in FIG. The figure shows a housing 10 made of aluminum alloy material and a shaft 20 made of steel material.
A combination type bearing in which two single-row tapered roller bearings 30 and 40 are mounted face-to-face between the
The outer ring 31.41 of the tapered roller bearing 30°40 is the stationary side bearing ring attached to the housing 10 with a loose fit, and the inner ring 32.42 is the rotating side bearing ring attached to the shaft 20 with a tight fit. It is a bearing ring. Tapered rollers 33.43 with a retainer 34.44 are interposed between the raceway surfaces of the outer ring 31.44 and the inner ring 32.42.

外輪31.41は、その背面(小径側端面)がハウジン
グ10の軸方向両側端面に固着された外輪押さえ11.
12によって位置決めされ、内輪32.42は、対向す
る背面(案内つば側端面)を軸20に嵌着した内輪間座
21に当接させて相互間の軸方向の間隔を規制し、外輪
31.41および内輪32.42と円すいころ34.4
4との間には、一定の設定された軸方向のすきまが与え
られた状態になっている。
The outer ring 31.41 is attached to the outer ring retainer 11.41 whose back surface (small diameter side end surface) is fixed to both axial end surfaces of the housing 10.
The inner rings 32.42 are positioned by the inner rings 31.42, whose opposing back surfaces (end faces on the guide collar side) abut against the inner ring spacer 21 fitted on the shaft 20 to regulate the axial distance between them, and the inner rings 32.42 are positioned by the outer rings 31.42. 41 and inner ring 32.42 and tapered roller 34.4
4, a certain set axial clearance is provided.

なお、軸20の一方の端部には、ベルト車50がナフト
51によって固着されており、ベルト車50に掛は渡さ
れた図示しない無端ベルトによって回転駆動されるよう
になっている。
A belt pulley 50 is fixed to one end of the shaft 20 by a napht 51, and is rotatably driven by an endless belt (not shown) that is passed around the belt pulley 50.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように、アルミ合金材のハウジングと鉄鋼材の軸
とに組み合わせて取り付けられた転がり軸受においては
、ハウジングの純膨張係数が軸の線膨張係数よりも大き
いため、軸受の使用中に温度が上昇すると、ハウジング
の軸方向の変位(伸び)は、軸の軸方向の変位よりも大
きくなり、ハウジング側の軸受間距離り、はこれに対応
する軸の長さL2よりも大きくなるから、L、とL2と
の差が軸受の取付は時に設定された軸方向のすきまより
も大きくなった場合には、外輪と内輪との間に遊びが生
じた状態となる。
As mentioned above, in a rolling bearing that is installed in combination with an aluminum alloy housing and a steel shaft, the housing's net expansion coefficient is larger than the shaft's linear expansion coefficient, so the temperature increases while the bearing is in use. As it rises, the axial displacement (elongation) of the housing becomes larger than the axial displacement of the shaft, and the distance between the bearings on the housing side becomes larger than the corresponding shaft length L2, so L , and L2 becomes larger than the axial clearance set when the bearing is installed, there will be play between the outer ring and the inner ring.

このような内外輪間の遊びは、振動、異常摩耗など軸受
性能を低下させる原因となるため、これを防止する対策
として、軸受の取付は時に一方の軌道輪(第13図の軸
受では外輪)牽ナンドで強く締め付けるか、あるいはば
ねで押圧することによって、予圧を負荷しておく手段な
どが採用されている。
This kind of play between the inner and outer rings can cause vibrations, abnormal wear, and other deterioration in bearing performance, so as a measure to prevent this, bearings are sometimes installed using only one raceway (the outer race in the case of the bearing in Figure 13). Means for applying a preload such as strongly tightening with a tensioner or pressing with a spring are used.

しかし、軸受を組み付ける機械、装置のなかには、低ト
ルクで使用する必要があるなどの理由により、予圧を負
荷することが好ましくないものがある。したがって、こ
のような軸受は温度上昇によって内外輪間に遊びが生ず
るのを受忍せざるを得す、その結果、軸受性能が低下し
、軸受寿命が短くなるという問題がある。
However, some machines and devices in which bearings are assembled are undesirable to be preloaded because they need to be used at low torque. Therefore, such bearings have to endure the play that occurs between the inner and outer rings due to the rise in temperature, resulting in a problem that the bearing performance deteriorates and the bearing life is shortened.

この発明は、上記の問題を解決して、軸受の使用中の温
度変化によって生ずる軸方向の過大もしくは過小な軸方
向のすきまを予圧を与える等の手段を講することなく適
正なすきまに調整することができるすきま補正装置を提
供することを目的とする。
The present invention solves the above problems and adjusts the excessive or insufficient axial clearance caused by temperature changes during use of the bearing to an appropriate clearance without applying preload or other means. The purpose of the present invention is to provide a gap correction device that can.

〔問題点を解決するための手段〕[Means for solving problems]

この発明のすきま補正装置は、線膨張係数の異なるハウ
ジングと軸との間に組み合わせて取り付けられた少なく
とも2個の転がり軸受において、少な(とも1個の軸受
の2個の軌道輪のうち、嵌合いが緩い側の軌道輪の一方
の端面と、この軌道輪の端面側に対向する位置決め部の
側面との間に、二方向性の形状記憶合金からなるスペー
サが組み込まれている。
The clearance correction device of the present invention provides for at least two rolling bearings installed in combination between a housing and a shaft having different coefficients of linear expansion. A spacer made of a bidirectional shape memory alloy is incorporated between one end surface of the loosely fitting bearing ring and the side surface of the positioning portion opposite to the end surface of the bearing ring.

このスペーサは、・軸受の使用中の温度変化に伴って生
ずる設定量を超える正もしくは負の軸方向のすきまに相
当する変位量を記憶して、それぞれ高温側と低温側とに
可逆的に動作する特性を有している。
This spacer memorizes the amount of displacement corresponding to the positive or negative axial clearance that exceeds the set amount that occurs due to temperature changes during use of the bearing, and operates reversibly on the high temperature side and the low temperature side, respectively. It has the characteristics of

〔作用〕[Effect]

この発明のすきま補正装置におけるスペーサは、ハウジ
ングと軸との成形材料の線膨張係数が異なる場合におい
て、温度上昇によって生じた設定量を超える軸方向のす
きまが設定量に対して正であるか、負であるかによって
、それぞれ次のように作動する。
In the spacer in the clearance correction device of the present invention, when the linear expansion coefficients of the molding materials of the housing and the shaft are different, whether the axial clearance that exceeds the set amount caused by the temperature rise is positive with respect to the set amount; Depending on whether the value is negative or not, the operation is as follows.

(1)  温度上昇により設定量を超える正の軸方向の
すきまが生じたときは、スペーサが設定量を超える軸方
向のすきまに相当する変位量だけ軸方向幅を増大して、
嵌合いが緩い側の軌道輪を軸方向のすきまを減少させる
方向に移動させ、温度が低下したときは、スペーサの軸
方向幅が縮小して原形状に戻り、前記軌道輪を原位置に
復帰させることによって、温度変化に伴って生ずる軸方
向のすきまの変化を補正する。
(1) When a positive axial clearance that exceeds the set amount occurs due to temperature rise, the spacer increases its axial width by the amount of displacement equivalent to the axial clearance that exceeds the set amount.
The bearing ring on the loosely fitted side is moved in the direction to reduce the axial clearance, and when the temperature drops, the axial width of the spacer shrinks and returns to its original shape, returning the bearing ring to its original position. This compensates for changes in the axial clearance that occur due to temperature changes.

(2)温度上昇により設定量を超える負の軸方向のすき
まが生じたときは、スペーサが設定量を超える軸方向の
すきまに相当する変位量だけ軸方向幅を縮小して、嵌合
いが緩い側の軌道輪を軸方向のすきまを増大させる方向
に移動させ、温度が低下したときは、スペーサの軸方向
幅が増大して原形状に戻り、前記軌道輪を原位置に復帰
させることによって、温度変化に伴って生ずる軸方向の
きすきまの変化を補正する。
(2) When a negative axial clearance that exceeds the set amount occurs due to temperature rise, the spacer reduces the axial width by the amount of displacement equivalent to the axial clearance that exceeds the set amount, and the fit is loose. By moving the side bearing ring in the direction of increasing the axial clearance, and when the temperature drops, the axial width of the spacer increases and returns to its original shape, and the bearing ring is returned to its original position. Corrects changes in axial clearance that occur due to temperature changes.

〔実施例〕〔Example〕

以下、この発明の実施例について、図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は、この発明の第1実施例を示す縦断側面図、第
2図はその要部の拡大図であり、両図とも軸受の取付は
時の状態で示しである。
FIG. 1 is a longitudinal cross-sectional side view showing a first embodiment of the present invention, and FIG. 2 is an enlarged view of its main parts, both of which show the mounting of the bearing.

この実施例は、前述した第13図の円すいころ軸受にこ
の発明を適用したものであり、ハウジングと軸との成形
材料、円すいころ軸受自体の構成部品とその取付は構造
とについては異なるところがないから、同一部分を同一
符号で示すに留め、繰り返しての説明は省略する。
This embodiment is an application of the present invention to the tapered roller bearing shown in FIG. 13 described above, and there is no difference in structure in terms of the molding materials for the housing and shaft, the components of the tapered roller bearing itself, and their mounting. Therefore, the same parts will be designated by the same reference numerals, and repeated explanation will be omitted.

2個の円すいころ軸受30.40のうち、左側に取り付
けられた軸受30の外輪31の背面とこれに対向する外
輪押え(位置決め部)11の側面との間には、スペーサ
60が組み込まれており、この状態で所定の軸方向のす
きまが与えられている。
A spacer 60 is incorporated between the back surface of the outer ring 31 of the bearing 30 mounted on the left side of the two tapered roller bearings 30 and 40 and the side surface of the outer ring holder (positioning part) 11 opposing this. In this state, a predetermined axial clearance is provided.

このスペーサ60は、二方向の動作特性を有する形状記
憶合金を素材として成形されており、低温側の形状が第
4図[alに示すような円環状体60a、高温側の形状
が第4図(b)に示すような皿ばね状体60bであって
、交互に可逆的に変動動作する特性を有しており、低温
側のもの3個を互いに変形方向が反対方向となるように
重ね合わせて組み付けられている。
This spacer 60 is formed from a shape memory alloy having bidirectional operating characteristics, and the shape on the low temperature side is an annular body 60a as shown in FIG. The disc spring-like bodies 60b as shown in (b) have a characteristic of alternately and reversibly fluctuating, and three pieces on the low temperature side are stacked so that the deformation directions are opposite to each other. It is assembled.

各スペーサ60の高温側と低温側とにおける変形動作温
度は、常温から軸受の使用中に最高温度に上昇するまで
の間を3段階に区分した温度に設定されており、階段的
に順次高い(または低い)温度で動作するようになって
いる。
The deformation operation temperatures on the high temperature side and low temperature side of each spacer 60 are set at temperatures divided into three stages from room temperature to the maximum temperature during use of the bearing, and are set in a stepwise manner. or lower) temperatures.

また、組み合わされた3個のスペーサ60の温度変化に
よる変位量(軸方向幅の増減量)h2−hlは、軸受の
使用中に最高温度に達したときに設定量を超えて生ずる
正の軸方向のすきまに相当する量に設定されており、そ
れぞれの円環状体60aと皿ばね状体60bとは、各別
の動作温度において、順次変位するようになっている。
In addition, the amount of displacement (increase/decrease in axial width) h2-hl of the combined three spacers 60 due to temperature change is the positive axial displacement amount (increase/decrease in axial width) h2-hl that occurs in excess of the set amount when the maximum temperature is reached during use of the bearing. The amount is set to correspond to the gap in the direction, and the respective annular bodies 60a and disc spring-like bodies 60b are sequentially displaced at different operating temperatures.

上記構成の軸受の使用中に温度が、上昇すると、ハウジ
ングIOの軸方向の伸びが軸20の軸方向の伸びよりも
大きくなるから、軸受30の外輪31が内輪32よりも
軸方向外側により大きく変位して設定量を超える正の軸
方向のすきまが生ずるが、所定の温度に上昇するごとに
、スペーサ60の各円環状体60aが形状記憶特性によ
り高温側の形状を回復して順次その軸方向幅を増大する
When the temperature rises during use of the bearing configured as described above, the axial elongation of the housing IO becomes larger than the axial elongation of the shaft 20, so the outer ring 31 of the bearing 30 becomes larger axially outward than the inner ring 32. The displacement causes a positive axial clearance that exceeds the set amount, but each time the temperature rises to a predetermined temperature, each annular body 60a of the spacer 60 recovers its shape on the high temperature side due to its shape memory property and sequentially changes its axis. Increase direction width.

このため、ハウジング10に緩い嵌合いで取り付けられ
た外輪31は、スペーサ60の各円環状体60aの軸方
向幅が増大するごとに、スペーサ60によって押圧され
て軸方向内側に移動し、増大した軸方向のすきまを階段
的に補正して設定量と等しくする。
Therefore, each time the axial width of each annular body 60a of the spacer 60 increases, the outer ring 31 attached to the housing 10 with a loose fit is pressed by the spacer 60 and moves inward in the axial direction. Correct the axial clearance stepwise to make it equal to the set amount.

また、軸受の使用中の温度が高温から低温になると、ス
ペーサ60の各国ばね状体60bが形状記憶特性により
所定の温度に低下するごとに低温側の形状に復帰して順
次その軸方向幅を縮少し、外輪31を軸方向外側に移動
させて組付は時の原位置に戻す。
Furthermore, when the temperature during use of the bearing changes from high to low, each spring-like body 60b of the spacer 60 returns to its low-temperature shape due to its shape memory property and sequentially changes its axial width. The outer ring 31 is moved axially outward and returned to its original position for assembly.

第3図はこの発明の第2実施例の要部を示す縦断側面図
である。
FIG. 3 is a longitudinal sectional side view showing the main parts of a second embodiment of the invention.

この実施例は、第1図の軸受において内輪32が緩い嵌
合いで軸20に取り付けられた場合にこの発明を適用し
たものであり、内輪32の背面とこれに対向する内輪間
座(位置決め部)21の側面との間に、二方向性の形状
記憶特性を有する合金からなるスペーサ60を組み込ん
である。
In this embodiment, the present invention is applied to the case where the inner ring 32 is attached to the shaft 20 with a loose fit in the bearing shown in FIG. ) 21, a spacer 60 made of an alloy having bidirectional shape memory characteristics is incorporated.

この実施例においても、温度が上昇すると、外輪31の
軸方向外側への変位が内輪32よりも大きくなって設定
量を超える正の軸方向のすきまが生ずるが、スペーサ6
0の各円環状体60aが温度上昇に伴って順次高温側の
形状を回復してその軸方向幅を増大するごとに、内輪3
2を軸方向外側に押圧して移動させるから、増大した軸
方向のすきまが階段的に補正されて設定量と等しくなる
In this embodiment as well, when the temperature rises, the axially outward displacement of the outer ring 31 becomes larger than that of the inner ring 32, creating a positive axial clearance that exceeds the set amount, but the spacer 6
As each annular body 60a of 0 gradually recovers its shape on the high temperature side and increases its axial width as the temperature rises, the inner ring 3
2 is moved outward in the axial direction, the increased axial clearance is corrected stepwise and becomes equal to the set amount.

高温時の状態から温度が低下すると、スペーサ60の各
国ばね状体60bが順次低温側の形状に復帰してその軸
方向幅を縮少するごとに、内輪32は軸方向内側に移動
して組付は時の原位置に戻る。
When the temperature drops from the high temperature state, each spring-like body 60b of the spacer 60 sequentially returns to the low temperature side shape and reduces its axial width, and the inner ring 32 moves axially inward to complete the assembly. The attachment returns to its original position.

第5図は、上記の第1および第2実施例において、温度
変化に対する軸方向のすきまとスペーサの変位量との関
係を図示したものである。
FIG. 5 illustrates the relationship between the axial clearance and the displacement amount of the spacer with respect to temperature change in the first and second embodiments described above.

同図に示すように、所定の温度ごとにスペーサが変位し
て軸方向のすきまが階段的に補正されることになる。
As shown in the figure, the spacer is displaced at every predetermined temperature, and the axial clearance is corrected stepwise.

上記の第1および第2実施例のような構成にすることに
より、内外輪間に遊びが生ずることがなくなるから、従
来のこの種の軸受で予圧を負荷しない場合の振動、異常
摩耗等の軸受性能を低下させる原因が除去されることに
なる。
By configuring as in the first and second embodiments above, there is no play between the inner and outer rings, which prevents vibrations, abnormal wear, etc. that would occur in conventional bearings of this type without preload. The cause of performance deterioration will be removed.

第6図は、この発明の第3実施例を示す縦断側面、第7
図はその要部の拡大図であり、両図とも軸受の組付は時
の状態で示しである。
FIG. 6 is a longitudinal side view showing the third embodiment of the present invention, and FIG.
The figures are enlarged views of the main parts, and both figures show the bearings in their original state.

この実施例においても、ハウジング10はアルミ合金材
により、軸20は鉄鋼材によりそれぞれ成形されている
が、軸受の取付は構造が前記第1および第2実施例と異
なり、2個の単列の円すいころ軸受30.40は背面を
向い合わせに組み合わせて取り付けられている。
In this embodiment as well, the housing 10 is made of aluminum alloy material, and the shaft 20 is made of steel. However, the structure of mounting the bearings is different from that of the first and second embodiments, and two single-row bearings are used. The tapered roller bearings 30, 40 are mounted with their backs facing each other.

この軸受30,40は、外輪31.41がハウジング1
0に緩い嵌合いで取り付けられた静止側の軌道輪、内輪
32.42が軸20に強固な嵌合いで取り付けられた回
転側の軌道輪である。なお、符号33.43は円すいこ
ろ、34.44は保持器をそれぞれ示す。      
′ 上記の2個の円すいころ軸受30.40のうち、左側に
取り付けられた軸受30の外輪31の背面とこれに対向
するハウジング10の段部(位置決め部)13の側面と
の間には、スペーサ60が組み込まれており、内輪32
の背面は軸20の肩部22の側面に当接させて位置決め
され、この状態で所定の軸方向のすきまが与えられてい
る。  、右側に取り付けられた軸受40の外輪41は
、その前面をハウジング10の段部14の側面に当接さ
せ、内輪42は苛面倒から軸20に螺合し−たナツト2
3によって締め付けて位置決めされている。
In these bearings 30, 40, the outer ring 31.41 is connected to the housing 1.
The stationary side bearing ring is attached to the shaft 20 with a loose fit, and the inner ring 32.42 is the rotating side bearing ring attached to the shaft 20 with a firm fit. Note that 33.43 indicates a tapered roller, and 34.44 indicates a cage.
' Of the two tapered roller bearings 30 and 40 mentioned above, there is a space between the back surface of the outer ring 31 of the bearing 30 installed on the left side and the side surface of the stepped portion (positioning portion) 13 of the housing 10 facing thereto. A spacer 60 is incorporated, and the inner ring 32
The back surface of the shaft 20 is positioned in contact with the side surface of the shoulder portion 22 of the shaft 20, and in this state, a predetermined axial clearance is provided. The outer ring 41 of the bearing 40 mounted on the right side has its front surface in contact with the side surface of the stepped portion 14 of the housing 10, and the inner ring 42 has a nut 2 screwed onto the shaft 20 from the rough surface.
3 is tightened and positioned.

この実施例のスペーサ60は、前記実施例と同様に高温
側と低温側との二方向性の形状記憶特性を有する合金を
素材として成形されているが、低温側の形状が前記第4
図中)に示すような皿ばね状体60bに、高温側の形状
が第4図(alに示すような円環状体60aに交互に可
逆的に変形動作する特性を有しており、低温側のもの3
個を、互いに変形方向を反対にした直列に組み合わせて
組み付けられている。
The spacer 60 of this embodiment is made of an alloy having bidirectional shape memory characteristics on the high temperature side and the low temperature side, as in the previous embodiment, but the shape on the low temperature side is the same as that of the fourth embodiment.
The disc spring-like body 60b as shown in FIG. thing 3
The pieces are assembled in series with their deformation directions opposite to each other.

各スペーサ60の高温側の低温側とにおける変形動作温
度は、常温から軸受の使用中に最高温度に上昇するまで
の間を3段階に区分した温度に設定されており、階段的
に順次高い(または低い)温度で動作するようになって
いる。
The deformation operation temperatures on the high-temperature side and the low-temperature side of each spacer 60 are set to temperatures divided into three stages from room temperature to the maximum temperature during use of the bearing, and the temperature increases stepwise ( or lower) temperatures.

また、組み合わされた3個のスペーサ60の温度変化に
よる変位量(軸方向幅の増減1)h、−h、は、軸受の
使用中に最高温度に達したときに設定量を超えて生ずる
負の軸方向のすきまに相当する量に設定されており、そ
れぞれの皿ばね状体60bと円環状体60aとは、各別
の動作温度において、順次変位・するようになっている
In addition, the amount of displacement (increase/decrease in axial width 1) h, -h of the combined three spacers 60 due to temperature change is the negative value that occurs when the maximum temperature is reached during use of the bearing, which exceeds the set amount. The disk spring-like body 60b and the annular body 60a are set to have an amount equivalent to the axial clearance of , and the disc spring-like body 60b and the annular body 60a are sequentially displaced at different operating temperatures.

上記構成の軸受の使用中に温度が上昇すると、ハウジン
グ10の軸方向の伸びが軸20の軸方向の伸びよりも大
きくなるから、軸受30の外輪31が内輪32よりも軸
方向外側により大きく変位して、あたかも過大な予圧が
負荷されたのと同じ状態となり、設定量を超える負の軸
方向のすきまが生ずるが、所定の温度に上昇するごとに
、スペーサ60の各国ばね状体60bが形状記憶特性に
より高温側の形状を回復して順次その軸方向幅を縮少す
る。このため、ハウジング10に緩い嵌合いで取り付け
られた外輪31は、スペーサ60の各国ばね状体60t
>の軸方向幅が縮少するごとに、縮少幅に相当する長さ
だけ軸方向内側に移動し、減少した軸方向のすきまを階
段的に補正して設定量と等しくする。
When the temperature rises during use of the bearing configured as described above, the axial elongation of the housing 10 becomes greater than the axial elongation of the shaft 20, so the outer ring 31 of the bearing 30 is displaced more axially outward than the inner ring 32. As a result, the state is the same as if an excessive preload was applied, and a negative axial clearance exceeding the set amount occurs, but each spring-like body 60b of the spacer 60 changes its shape each time the temperature rises to a predetermined temperature Due to the memory property, the shape on the high temperature side is recovered and its axial width is gradually reduced. Therefore, the outer ring 31 attached to the housing 10 in a loose fit
Every time the axial width of > is reduced, the axial width is moved inward in the axial direction by a length corresponding to the reduced width, and the reduced axial clearance is corrected stepwise to make it equal to the set amount.

また、軸受の使用中の温度が高温から低温になると、ス
ペーサ60の各円環状体60aが形状記憶特性により所
定の温度に低下するごとに低温側の形状に復帰して順次
その軸方向幅を増大し、外輪31はスペーサ60により
押圧されて軸方向外側に移動して組付は時の原位置に戻
る。
Furthermore, when the temperature during use of the bearing changes from a high temperature to a low temperature, each annular body 60a of the spacer 60 returns to the shape on the low temperature side each time the temperature decreases to a predetermined temperature due to its shape memory property, and sequentially changes its axial width. The outer ring 31 is pressed by the spacer 60 and moves axially outward, returning to the original position at the time of assembly.

第8図はこの発明の第4実施例の要部を示す縦断側面図
である。
FIG. 8 is a longitudinal sectional side view showing the main parts of a fourth embodiment of the present invention.

この実施例は、第6図の軸受において内輪32が緩い嵌
合いで軸31に取り付けられた場合にこの発明を適用し
たものであり、内輪32の背面とこれに対向する軸20
の肩部(位置決め部)22の側面との間に、二方向性の
形状記憶特性を有する゛合金からなるスペーサ60を組
み込んである。
In this embodiment, the present invention is applied to the case where the inner ring 32 is attached to the shaft 31 in a loose fit in the bearing shown in FIG.
A spacer 60 made of an alloy having bidirectional shape memory characteristics is incorporated between the shoulder portion (positioning portion) 22 and the side surface thereof.

この実施例においても、温度が上昇すると、外輪31の
軸方向外側への変位が内輪32よりも大きくなって設定
量を超える負の軸方向のすきまが生ずるが、スペーサ6
0の各国ばね状体60bが温度上昇に伴って順次高温側
の形状を回復してその軸方向幅を縮少するごとに、内輪
32が軸方向外側に移動するから、減少した軸方向のす
きまが階段的に補正されて設定量と等しくなる。
In this embodiment as well, when the temperature rises, the displacement of the outer ring 31 toward the outside in the axial direction becomes larger than that of the inner ring 32, creating a negative axial clearance that exceeds the set amount.
Each time the spring-like body 60b of each spring 60b gradually recovers its high-temperature side shape as the temperature rises and reduces its axial width, the inner ring 32 moves axially outward, so the reduced axial clearance is corrected stepwise to become equal to the set amount.

高温時の状態から温度が低下すると、スペーサ60の各
円環状体60aが順次低温側の形状に復帰してその軸方
向幅を増大することに、内輪32は、軸方向内側に押圧
されて組付は時の原位置に戻る。
When the temperature drops from the high temperature state, each annular body 60a of the spacer 60 sequentially returns to its low temperature shape and increases its axial width, and the inner ring 32 is pressed axially inward and assembled. The attachment returns to its original position.

第9図は、上記の第3および第4実施例において、温度
上昇時の軸方向のすきまと軸方向のすきまの減少によっ
て生ずるスペーサの変位による予圧荷重(変位荷重)と
の関係を図示したものである。
FIG. 9 illustrates the relationship between the axial clearance when the temperature rises and the preload load (displacement load) due to the displacement of the spacer caused by the decrease in the axial clearance in the third and fourth embodiments described above. It is.

同図において、二点鎖線はこの発明のスペーサに代えて
皿ばねをスペーサとして使用したときの変位荷重を示す
In the figure, the two-dot chain line indicates the displacement load when a disc spring is used as a spacer instead of the spacer of the present invention.

同図から明らかなように、皿ばねを使用したときは、温
度上昇に伴って予圧が増大していくのに・対し、この発
明のスペーサを使用することにより、所定の温度に上昇
するごとに予圧が解除されることが判る。
As is clear from the figure, when a disc spring is used, the preload increases as the temperature rises, but by using the spacer of the present invention, the preload increases as the temperature rises to a predetermined level. It can be seen that the preload is released.

上記の第3および第4実施例のような構成にすることに
より、過大な予圧が負荷されることがなくなるから、従
来のこの種の軸受におけるトルクの増大、過熱、焼付き
、グリースの劣化等の軸受性能を低下させる原因が除去
されることになる。
By adopting the configurations as in the third and fourth embodiments described above, excessive preload is not applied, so there are problems such as increased torque, overheating, seizure, and grease deterioration in conventional bearings of this type. This eliminates the causes of deterioration in bearing performance.

前記第1ないし第4の各実施例におけるスペーサの組込
み個数については、温度変化によって生ずる軸方向のす
きまに応じて、スペーサの変形動作温度の異なるものを
数種類組み合わせることにより、軸方向のすきまに対す
る追従性のよいす′ニアーな補正が可能となるが、軸受
の使用条件によっては1個のみを組み込んでもよい。
Regarding the number of spacers to be incorporated in each of the first to fourth embodiments, depending on the axial clearance caused by temperature change, by combining several types of spacers with different deformation operation temperatures, it is possible to follow the axial clearance. Although it is possible to perform a near-correction with good performance, only one may be incorporated depending on the usage conditions of the bearing.

また、前記各実施例においては、組み合わせて取り付け
られた2個の円すいころ軸受のうち、一方の側の軸受の
嵌合いが緩い方の軌道輪の背面にスペーサを組み込んだ
場合について説明したが、他方の側の軸受についても、
前記と同様の対応する位置にスペーサを組み込む構成と
することもできる。
Further, in each of the above embodiments, a case was described in which a spacer was incorporated into the back surface of the bearing ring of the loosely fitted bearing on one side of two tapered roller bearings installed in combination. Regarding the bearing on the other side,
It is also possible to adopt a configuration in which spacers are incorporated in corresponding positions similar to those described above.

第10図および第11図は、それぞれこの発明のスペー
サの他の実施例を示す斜視図である。
FIGS. 10 and 11 are perspective views showing other embodiments of the spacer of the present invention, respectively.

第10図のスペーサ61は、低温側の形状が同図゛(a
)に示すような板状の平面体61a、高温側の形状が同
図(blに示すような円弧状の曲面体61bであるもの
、またはこれと反対に低温側が同図(b)の円弧状曲面
体6 l b、高温側が同図(alの板状平面体61a
のものであって、前者の場合は前記第1および第2実施
例の軸受のスペーサとして、後者の場合は前記第3およ
び第4実施例の軸受のスペーサとしてそれぞれ使用する
The spacer 61 in FIG. 10 has a shape on the low temperature side as shown in the figure (a).
), the shape of the high temperature side is an arc-shaped curved body 61b as shown in the same figure (bl), or on the contrary, the shape of the low temperature side is the arc shape of the figure (b) The curved surface body 6lb, the high temperature side is the plate-like plane body 61a in the same figure (al
In the former case, it is used as a spacer for the bearings of the first and second embodiments, and in the latter case, it is used as a spacer for the bearings of the third and fourth embodiments.

このスペーサを第1および第2実施例の軸受に組み付け
るときは、第12図に示すように、低温側が板状である
等長の平面体61aを複数個用いて、それぞれの板状面
を同一平面上に配置し、変形動作時の円弧面のわん白方
向が同一方向となるようにして、第1実施例の軸受の場
合は直径D(ハウジング10の内径DI)の円に内接す
る正多角形状に組み合わせ、第2実施例の軸受の場合は
直径d(軸20の外径dυの円に外接する正多角形状に
組み合わせる。第12図では、その−例として正八角形
状に組み合わせた場合を図示しである。
When assembling this spacer to the bearings of the first and second embodiments, as shown in FIG. The bearing of the first embodiment is a regular polygon inscribed in a circle with a diameter D (inner diameter DI of the housing 10). In the case of the second embodiment, the bearings are combined into a regular polygonal shape circumscribing a circle with a diameter d (the outer diameter dυ of the shaft 20. In FIG. 12, as an example, the case is combined into a regular octagonal shape. It is illustrated.

組み合わされたスペーサの変位量は、円弧状曲面体61
bの中央縦路と板厚との和t2と、板状平面体61aの
板厚1.との差1.−1.として得られる。
The amount of displacement of the combined spacers is the arc-shaped curved surface body 61
The sum t2 of the center vertical path of b and the plate thickness, and the plate thickness 1 of the plate-like plane body 61a. Difference with 1. -1. obtained as.

また、このスペーサを第3および第4実施例の軸受に組
み付けるときは、低温側が円弧状である等長の曲面体6
1bを複数個用いて、それぞれの円弧面の凸側もしくは
凹側の何れか一方が同一面側で同一平面上にあるように
配置して、第3実施例の軸受の場合は直径D(ハウジン
グ10の内径りりの円に内接する正多角形状に組み合わ
せ、第4実施例の軸受の場合は直径d(軸20の外径d
z)の円に外接する正多角形状に組み合わせる。
In addition, when assembling this spacer to the bearings of the third and fourth embodiments, a curved body 6 of equal length whose low temperature side is an arc shape is used.
1b is used, and arranged so that either the convex side or the concave side of each circular arc surface is on the same side and on the same plane, and in the case of the bearing of the third embodiment, the diameter D (housing In the case of the bearing of the fourth embodiment, the diameter d (outer diameter d of the shaft 20
Combine them into a regular polygon that circumscribes the circle of z).

組み合わされたスペーサの変位量は、前記と同様に、板
状平面体61aの板厚1.と、円弧状曲面体61bの中
央縦路と板厚との和t:との差1゜−1,としt得られ
る。
The amount of displacement of the combined spacers is determined by the thickness of the plate-shaped plane body 61a, 1. , and the sum t: of the center longitudinal path of the arc-shaped curved surface body 61b and the plate thickness, 1°-1, and t is obtained.

このスペーサは、変位量tt   tIの等しいものだ
けを用いて正多角形状に組み合わせてもよいが、円弧状
曲面体51bの曲率と動作温度とが異なるものを複数種
用いて、同一種類のものを正多角径の対向辺に配置して
組み合わせることが好ましい。このような組合わせにす
ることにより、温度変化によって生ずる軸方向のすきま
を階段的に補正することができ、追従性のよいすきま補
正が行われることになる。
These spacers may be combined into a regular polygon by using only spacers with the same amount of displacement tt tI, but by using multiple types of spacers with different curvatures of the arc-shaped curved surface bodies 51b and different operating temperatures, spacers of the same type may be combined. It is preferable to arrange and combine them on opposite sides of a regular polygon diameter. By using such a combination, the axial clearance caused by temperature change can be corrected in a stepwise manner, and the clearance correction can be performed with good followability.

第11図のスペーサ61は、低温側の形状が同図(a)
に示すような楕円形断面の中空体62a、高温側の形状
が同図(blに示すような円形断面の中空体62bであ
るもの、またはこれと反対に低温側が同図(b)の円形
断面中空体62b、高温側が同図(a)の楕円形断面中
空体62aのものであって、前者の場合は前記第1およ
び第2実施例の軸受のスペーサとして、後者の場合は前
記第3および第4実施例の軸受のスペーサとしてそれぞ
れ使用する。
The spacer 61 in FIG. 11 has a shape on the low temperature side as shown in FIG. 11(a).
A hollow body 62a with an elliptical cross section as shown in FIG. The high temperature side of the hollow body 62b is that of the hollow body 62a with an elliptical cross section shown in FIG. Each is used as a spacer for the bearing of the fourth embodiment.

このスペーサを軸受に組み付けるときも、前記第10図
のスペーサについて第12図で説明したように、正多角
形状に組み合わせたものを使用する。
When assembling this spacer to the bearing, the spacer of FIG. 10 is combined into a regular polygon as explained in FIG. 12.

第1および第2実施例の軸受においては、低温側が楕円
形断面である等長の中空体62aを複数個用いて、それ
ぞれの楕円の長径を含む長さ方向中心軸面を同一平面上
に配置して、第1実施例の軸受の場合は直径D(ハウジ
ング10の内径D+)の円に内接する正多角形状に組み
合わせ、第2実施例の軸受の場合は直径d(軸20の外
径a+)の円に外接する正多角形状に組み合わせる。
In the bearings of the first and second embodiments, a plurality of hollow bodies 62a of equal length each having an elliptical cross section on the low-temperature side are used, and the central axis planes in the longitudinal direction including the major axis of each ellipse are arranged on the same plane. The bearing of the first embodiment is combined into a regular polygon inscribed in a circle with a diameter D (inner diameter D+ of the housing 10), and the bearing of the second embodiment is combined with a diameter d (outer diameter a+ of the shaft 20). ) into a regular polygon that circumscribes the circle.

組み合わされたスペーサの変位量は、円形断面中空体6
2bの外径δ2と、楕円形断面中空体62aの短径方向
の外径δ1との差δ2−61として得られる。
The amount of displacement of the combined spacers is the circular cross-section hollow body 6
It is obtained as the difference δ2-61 between the outer diameter δ2 of the hollow body 2b and the outer diameter δ1 in the minor axis direction of the elliptical cross-section hollow body 62a.

また、第3および第4実施例の軸受においては、低温側
が円形断面である等長の中空体62bを複数個用いて、
それぞれの変形動作時における楕円形断面の長径を含む
長さ方向中心軸面が同一平面上にあるように配置して、
第3実施例の軸受の場合は直径D(ハウジング10の内
径OX)の円に内接する正多角形状に組み合わせ、第4
実施例の軸受の場合は直径d(軸20の外径dz)の円
に外接する正多角形状に組み合わせる。
Furthermore, in the bearings of the third and fourth embodiments, a plurality of hollow bodies 62b of equal length each having a circular cross section on the low temperature side are used.
Arranged so that the longitudinal center axis plane including the major axis of the elliptical cross section during each deformation operation is on the same plane,
In the case of the bearing of the third embodiment, the fourth
In the case of the bearings of the embodiment, they are combined into a regular polygon shape circumscribing a circle with a diameter d (outer diameter dz of the shaft 20).

組み合わされたスペーサの変位量は、前記と同様に、楕
円形断面中空体62aの短径方向の外径δ、と、円形断
面中空体62bの外径δ2との差δ1−62として得ら
れる。
Similarly to the above, the displacement amount of the combined spacers is obtained as the difference δ1-62 between the outer diameter δ of the elliptical cross-section hollow body 62a in the short axis direction and the outer diameter δ2 of the circular cross-section hollow body 62b.

この実施例のスペーサにおいても、変位量δ2−δ、の
等しいものだけを用いて正多角形状に組み合わせる場合
だけでなく、楕円形断面中空体62aの短径方向の外径
δ、と動作温度とが異なるものを複数種用いて、同一種
類のものを正多角形の対向辺に配置して組み合わせ、そ
れぞれの動作温度ごとに階段的に変位させるようにする
こともできる。
In the case of the spacers of this embodiment as well, not only spacers having the same displacement amount δ2−δ are used to combine them into a regular polygon, but also the outer diameter δ in the short axis direction of the elliptical cross-section hollow body 62a and the operating temperature It is also possible to use a plurality of types with different values and combine the same types by arranging them on opposite sides of a regular polygon so that they are displaced stepwise for each operating temperature.

なお、前記の各実施例においては、ハウジングの成形材
料の線膨張係数が軸のそれよりも大きい装置′に軸受を
取り付けた場合について説明したが、これと反対にハウ
ジングの成形材料の線膨張係数が軸のそれよりも小さい
装置に取り付けた軸受についても、この発明を適用する
ことができる−0−このようにハウジングの成形材・料
の線膨張係数が軸のそれよりも小さい装置においては、
前記第1および第2実施例の軸受の場合は、温度変化に
より設定量を超える負の軸方向のすきまが生ずるから、
たとえば第4図(′b)の皿ばね状体のスペーサを組み
込む構成にすればよく、また前記第3および第4実施例
の軸受の場合は、温度変化により設定量を超える正の軸
方向のすきまが生ずるから、たとえば第4図(a)の円
環状体のスペーサを組み込む構成にすればよく、このよ
うな構成にすることによりそれぞれのスペーサの動作特
性に応じたすきま補正が行われることになる。
In each of the above-mentioned embodiments, the case where the bearing is attached to the device' is explained where the coefficient of linear expansion of the molding material for the housing is larger than that of the shaft. The present invention can also be applied to a bearing installed in a device where the linear expansion coefficient of the housing molding material is smaller than that of the shaft.
In the case of the bearings of the first and second embodiments, a negative axial clearance exceeding the set amount is generated due to temperature change.
For example, a configuration may be adopted that incorporates a disk spring-like spacer as shown in FIG. Since a gap is generated, for example, a configuration may be adopted in which the annular spacer shown in FIG. Become.

また、この発明は、前記実施例で説明した円すいころ軸
受に限定されるものではなく、その他の転がり軸受、た
とえば深みぞ玉軸受、アンギュラコンタクト玉軸受、外
輪と内輪との少なくとも一方に案内つばを有する円筒こ
ろ軸受についても、前記と同様の構成にすることができ
る。
Furthermore, the present invention is not limited to the tapered roller bearing described in the above embodiments, but can also be applied to other rolling bearings, such as deep groove ball bearings, angular contact ball bearings, and guide collars on at least one of the outer ring and the inner ring. The cylindrical roller bearing can also have the same configuration as described above.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明のすきま補正装置は、ハ
ウジングと軸との線膨張係数が異なる装置に取り付けら
れた組合わせ型の転がり軸受のうち、少なくとも1個の
軸受の嵌合いが緩い側の軌道輪と位置決め部との間に、
二方向の動作特性をもつ形状記憶合金からなるスペーサ
を組み込み、軸受使用中の温度変化に応じてスペーサの
軸方向幅を変位させて、軸方向のすきまが設定量と等し
くなるように補正する構成としている。したがって、こ
の発明によれば、軸受の取付は時に予圧を負荷する等の
手段を講することなく、温度変化による軸方向のすきま
の変化を調整することができ、遊びが生じたり、あるい
は過大な予圧荷重が負荷される現象がなくなるから、振
動、異常摩耗あるいは過熱、焼付き等の軸受性能を低下
させる原因が除去され、低トルクを必要とする機械、装
置の軸受にもっとも好適なすきま補正装置として利用す
ることができる。
As explained above, the clearance correction device of the present invention is arranged so that at least one of the combined rolling bearings installed in the device where the linear expansion coefficients of the housing and the shaft are different is on the side where at least one bearing is loosely fitted. Between the bearing ring and the positioning part,
A configuration in which a spacer made of a shape memory alloy with bidirectional operating characteristics is incorporated, and the axial width of the spacer is displaced in response to temperature changes during bearing use, so that the axial clearance is corrected to be equal to the set amount. It is said that Therefore, according to the present invention, it is possible to adjust the change in the axial clearance due to temperature change when mounting the bearing without taking any measures such as applying preload. Since the phenomenon of preload loading is eliminated, causes of deterioration of bearing performance such as vibration, abnormal wear, overheating, and seizure are eliminated, making it the most suitable clearance correction device for bearings in machines and equipment that require low torque. It can be used as

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1実施例を示す縦断側面図、第2
図はその要部の拡大図、第3図はこの発明の第2実施例
の要部を示す縦断側面図、第4図はスペーサの縦断面図
であり、同図(alは低温側、同図(blは高温側の形
状、第5図は温度変化による軸方向のすきまとスペーサ
の変位量との関係を示す図表、第6図はこの発明の第3
実施例を示す縦断側面図、第7図はその要部の拡大図、
第8図はこの発明の第4実施例の要部を示す縦断側面図
、第9図は温度変化による軸方向のすきまとスペーサ変
位荷重との関係を示す図表、第10図はスペーサの他の
実施例を示す斜視図であり、同図(alは低温側、同図
中)は高温側の形状、第11図はスペーサのさらに他の
実施例を示す斜視図であり、同図(a)は低温側、同図
(b)は高温側の形状、第12図はスペーサを組み合わ
せた状態を示す正面図、第13図は従来の組合わせ型の
円すいころ軸受の一例を示す縦断側面図である。 図中、10はハウジング11.12は外輪押え、13.
14はハウジングの段部、2oは軸、21は内輪間座、
22は軸の肩部、30.40・は円すいころ軸受、31
.41は外輪、32.42は内輪、60はスペーサであ
る。 第4図 (a)      (b) 第5図 1屓 第9図 第10=       第11図 第12図 第13図
FIG. 1 is a longitudinal cross-sectional side view showing a first embodiment of the present invention, and a second embodiment of the present invention is shown in FIG.
The figure is an enlarged view of the main part, FIG. 3 is a longitudinal sectional side view showing the main part of the second embodiment of the invention, and FIG. 4 is a longitudinal sectional view of the spacer. Figure (bl is the shape on the high temperature side, Figure 5 is a chart showing the relationship between the axial clearance and the amount of displacement of the spacer due to temperature change, Figure 6 is the third figure of this invention)
A vertical side view showing the embodiment, FIG. 7 is an enlarged view of the main part,
FIG. 8 is a vertical side view showing the main part of the fourth embodiment of the present invention, FIG. 9 is a chart showing the relationship between the axial clearance due to temperature change and the spacer displacement load, and FIG. FIG. 11 is a perspective view showing an example; the figure (al indicates the low temperature side, in the figure) is the shape of the high temperature side; FIG. 11 is a perspective view showing still another example of the spacer; 12 is a front view showing a state in which a spacer is combined, and FIG. 13 is a vertical side view showing an example of a conventional combination type tapered roller bearing. be. In the figure, 10 is a housing 11, 12 is an outer ring holder, and 13.
14 is a stepped portion of the housing, 2o is a shaft, 21 is an inner ring spacer,
22 is the shoulder of the shaft, 30.40 is the tapered roller bearing, 31
.. 41 is an outer ring, 32.42 is an inner ring, and 60 is a spacer. Figure 4 (a) (b) Figure 5 1 Figure 9 Figure 10 = Figure 11 Figure 12 Figure 13

Claims (17)

【特許請求の範囲】[Claims] (1)少なくとも2個の軸受を線膨張係数の異なるハウ
ジングと軸との間に取り付けて使用する転がり軸受にお
いて、少なくとも1個の軸受の嵌合いが緩い側の軌道輪
の一方の端面と、この軌道輪の端面側に対向する位置決
め部の側面との間に、温度変化に伴って生ずる設定量を
超える軸方向のすきまに相当する変位量を記憶して、高
温側と低温側とに可逆的に動作する二方向性の形状記憶
合金からなるスペーサを組み込んだことを特徴とする転
がり軸受のすきま補正装置。
(1) In a rolling bearing in which at least two bearings are installed between a housing and a shaft having different coefficients of linear expansion, one end face of the bearing ring on the loosely fitting side of at least one bearing; The amount of displacement corresponding to the axial clearance that exceeds the set amount that occurs due to temperature changes between the end surface side of the bearing ring and the side surface of the positioning part that is opposite to the side surface of the bearing ring is memorized, and the displacement is reversible between the high-temperature side and the low-temperature side. A clearance correction device for a rolling bearing, which is characterized by incorporating a spacer made of a bidirectional shape memory alloy that operates as follows.
(2)ハウジングの線膨張係数が軸のそれよりも大きく
、ハウジング側の軌道輪の嵌合いが緩い軸受であって、
高温側の軸方向幅が低温側の軸方向幅よりも大きいスペ
ーサが、前記軌道輪の軸方向外側の端面側に組み込まれ
ている特許請求の範囲第1項記載の転がり軸受のすきま
補正装置。
(2) A bearing in which the coefficient of linear expansion of the housing is larger than that of the shaft, and the bearing ring on the housing side is loosely fitted,
2. A clearance correction device for a rolling bearing according to claim 1, wherein a spacer having an axial width on a high-temperature side that is larger than an axial width on a low-temperature side is incorporated in an axially outer end surface of the bearing ring.
(3)ハウジングの線膨張係数が軸のそれよりも大きく
、軸側の軌道輪の嵌合いが緩い軸受であって、高温側の
軸方向幅が低温側の軸方向幅よりも大きいスペーサが、
前記軌道輪の軸方向内側の端面側に組み込まれている特
許請求の範囲第1項記載の転がり軸受のすきま補正装置
(3) A bearing in which the coefficient of linear expansion of the housing is larger than that of the shaft, the bearing ring on the shaft side is loosely fitted, and the spacer has an axial width on the high temperature side that is larger than the axial width on the low temperature side.
The clearance correction device for a rolling bearing according to claim 1, which is incorporated in an axially inner end surface side of the bearing ring.
(4)スペーサの低温側の形状が円環状体であって、高
温側の形状が皿ばね状体である特許請求の範囲第2項ま
たは第3項記載の転がり軸受のすきま補正装置。
(4) A clearance correction device for a rolling bearing according to claim 2 or 3, wherein the shape of the spacer on the low temperature side is an annular body, and the shape on the high temperature side is a disc spring-like body.
(5)変形動作温度が各別に異なる複数種のスペーサが
、互いに変形方向を反対にして重ね合わされている特許
請求の範囲第4項記載の転がり軸受のすきま補正装置。
(5) A clearance correction device for a rolling bearing according to claim 4, wherein a plurality of types of spacers having different deformation operating temperatures are stacked on top of each other with deformation directions opposite to each other.
(6)低温側の形状が板状平面体であって、高温側の形
状が円弧状曲面体である複数個のスペーサが、同一平面
上で変形方向を同一にして多角形状に組み合わされてい
る特許請求の範囲第2項または第3項記載の転がり軸受
のすきま補正装置。
(6) A plurality of spacers whose shape on the low temperature side is a plate-like flat body and whose shape on the high temperature side is an arcuate curved body are combined into a polygonal shape on the same plane with the same deformation direction. A clearance correction device for a rolling bearing according to claim 2 or 3.
(7)円弧状曲面体の曲率と動作温度とが異なる複数種
のスペーサのうち、同一種類のスペーサが正多角形の対
向辺に配置されている特許請求の範囲第6項記載の転が
り軸受のすきま補正装置。
(7) The rolling bearing according to claim 6, wherein spacers of the same type among a plurality of types of spacers having different curvatures and operating temperatures of the arcuate curved surface are arranged on opposite sides of a regular polygon. Gap correction device.
(8)低温側の形状が楕円形断面中空体であって、高温
側の形状が円形断面中空体である複数個のスペーサが、
楕円形断面中空体の長径を含む長さ方向中心軸面を同一
平面上にして多角形状に組み合わされている特許請求の
範囲第2項または第3項記載の転がり軸受のすきま補正
装置。
(8) A plurality of spacers whose shape on the low temperature side is a hollow body with an elliptical cross section and whose shape on the high temperature side is a hollow body with a circular cross section,
4. A clearance correction device for a rolling bearing according to claim 2 or 3, wherein the elliptical cross-sectional hollow bodies are combined into a polygonal shape so that the longitudinal center axis planes including the major axis lie on the same plane.
(9)楕円形断面中空体の短径方向の外径と動作温度と
が異なる複数種のスペーサのうち、同一種類のスペーサ
が正多角形の対向辺に配置されている特許請求の範囲第
8項記載の転がり軸受のすきま補正装置。
(9) Claim 8, wherein spacers of the same type among a plurality of types of spacers having different outer diameters in the short axis direction of the elliptical cross-sectional hollow body and different operating temperatures are arranged on opposite sides of the regular polygon. Clearance correction device for rolling bearings as described in .
(10)ハウジングの線膨張係数が軸のそれよりも大き
く、ハウジング側の軌道輪の嵌合いが緩い軸受であって
、高温側の軸方向幅が低温側の軸方向幅よりも小さいス
ペーサが、前記軌道輪の軸方向内側の端面側に組み込ま
れている特許請求の範囲第1項記載の転がり軸受のすき
ま補正装置。
(10) A bearing in which the coefficient of linear expansion of the housing is larger than that of the shaft, the bearing ring on the housing side is loosely fitted, and the axial width of the spacer on the high temperature side is smaller than the axial width on the low temperature side, The clearance correction device for a rolling bearing according to claim 1, which is incorporated in an axially inner end surface side of the bearing ring.
(11)ハウジングの線膨張係数が軸のそれよりも大き
く、軸側の軌道輪の嵌合いが緩い軸受であって、高温側
の軸方向幅が低温側の軸方向幅よりも小さいスペーサが
、前記軌道輪の軸方向外側の端面側に組み込まれている
特許請求の範囲第1項の転がり軸受のすきま補正装置。
(11) A bearing in which the coefficient of linear expansion of the housing is larger than that of the shaft, the bearing ring on the shaft side is loosely fitted, and the axial width of the spacer on the high temperature side is smaller than the axial width on the low temperature side, A clearance correction device for a rolling bearing according to claim 1, which is incorporated on the axially outer end surface side of the bearing ring.
(12)スペーサの低温側の形状が皿ばね状体であって
、高温側の形状が円環状体である特許請求の範囲第10
項または第11項記載の転がり軸受のすきま補正装置。
(12) Claim 10, wherein the shape of the spacer on the low temperature side is a disc spring-like body, and the shape on the high temperature side is a toric body.
A clearance correction device for a rolling bearing as described in item 1 or item 11.
(13)変形動作温度が各別に異なる複数種のスペーサ
が、互いに変形方向を反対にして重ね合わされている特
許請求の範囲第12項記載の転がり軸受のすきま補正装
置。
(13) A clearance correction device for a rolling bearing according to claim 12, wherein a plurality of types of spacers having different deformation operation temperatures are stacked on top of each other with deformation directions opposite to each other.
(14)低温側の形状が円弧状曲面体であって、高温側
の形状が板状平面体である複数個のスペーサが、同一平
面上で変形方向を同一にして多角形状に組み合わされて
いる特許請求の範囲第10項または第11項記載の転が
り軸受のすきま補正装置。
(14) A plurality of spacers whose shape on the low-temperature side is an arcuate curved body and whose shape on the high-temperature side is a plate-like flat body are combined into a polygonal shape on the same plane with the same deformation direction. A clearance correction device for a rolling bearing according to claim 10 or 11.
(15)円弧状曲面体の曲率と動作温度とが異なる複数
種のスペーサのうち、同一種類のスペーサが正多角形の
対向辺に配置されている特許請求の範囲第14項記載の
軸がり軸受のすきま補正装置。
(15) The axial bearing according to claim 14, wherein spacers of the same type among a plurality of types of spacers having different curvatures and operating temperatures of the arcuate curved surface are arranged on opposite sides of the regular polygon. Gap correction device.
(16)低温側の形状が円形断面中空体であって、高温
側の形状が楕円形断面中空体である複数個のスペーサが
、楕円形断面中空体の長径を含む長さ方向中心軸面を同
一平面上にして多角形状に組み合わされている特許請求
の範囲第10項または第11項記載の転がり軸受のすき
ま補正装置。
(16) A plurality of spacers whose low-temperature side shape is a circular cross-section hollow body and whose high-temperature side shape is an elliptical cross-section hollow body are arranged so that the longitudinal central axis plane including the major axis of the elliptical cross-section hollow body A clearance correction device for a rolling bearing according to claim 10 or 11, wherein the devices are combined in a polygonal shape on the same plane.
(17)楕円形断面中空体の短径方向の外径と動作温度
とが異なる複数種のスペーサのうち、同一種類のスペー
サが正多角形の対向辺に配置されている特許請求の範囲
第16項記載の転がり軸受のすきま補正装置。
(17) Claim 16, wherein spacers of the same type are arranged on opposite sides of a regular polygon among a plurality of types of spacers having different outer diameters in the short axis direction of the elliptical cross-sectional hollow body and operating temperatures. Clearance correction device for rolling bearings as described in .
JP61153290A 1986-06-30 1986-06-30 Gap correcting device for rolling bearing Pending JPS639720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61153290A JPS639720A (en) 1986-06-30 1986-06-30 Gap correcting device for rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61153290A JPS639720A (en) 1986-06-30 1986-06-30 Gap correcting device for rolling bearing

Publications (1)

Publication Number Publication Date
JPS639720A true JPS639720A (en) 1988-01-16

Family

ID=15559242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61153290A Pending JPS639720A (en) 1986-06-30 1986-06-30 Gap correcting device for rolling bearing

Country Status (1)

Country Link
JP (1) JPS639720A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2630172A1 (en) * 1988-04-15 1989-10-20 Renault Device for controlling the preload of an assembly of two rolling-contact bearings in operation
FR2648200A1 (en) * 1989-06-09 1990-12-14 Aerospatiale Method and device for releasing a preload initially applied to a mechanism such as a rolling bearing on board a spacecraft
FR2688037A1 (en) * 1992-02-28 1993-09-03 Renault Device for controlling the axial load of a bearing during operation
DE102005020783A1 (en) * 2005-05-04 2006-11-09 Schaeffler Kg roller bearing
DE102005020782A1 (en) * 2005-05-04 2006-11-09 Schaeffler Kg roller bearing
DE102007010693A1 (en) * 2007-03-06 2008-09-18 Schaeffler Kg Bearing arrangement for damping shocks and compensating for angular errors
JP2008298284A (en) * 2007-05-01 2008-12-11 Jtekt Corp Bearing device for turbocharger
US8803014B2 (en) 2009-08-05 2014-08-12 Trw Automotive Electronics & Components Gmbh Contact switches in a uniform control panel
KR20210091734A (en) 2018-11-08 2021-07-22 고쿠리츠다이가쿠호우징 카가와다이가쿠 Manufacturing method of rare sugar-containing composition and rare sugar-containing composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150614A (en) * 1980-04-23 1981-11-21 Nippon Seiko Kk Spindle device
JPS6055037B2 (en) * 1977-08-16 1985-12-03 株式会社東芝 fuel rod

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055037B2 (en) * 1977-08-16 1985-12-03 株式会社東芝 fuel rod
JPS56150614A (en) * 1980-04-23 1981-11-21 Nippon Seiko Kk Spindle device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2630172A1 (en) * 1988-04-15 1989-10-20 Renault Device for controlling the preload of an assembly of two rolling-contact bearings in operation
FR2648200A1 (en) * 1989-06-09 1990-12-14 Aerospatiale Method and device for releasing a preload initially applied to a mechanism such as a rolling bearing on board a spacecraft
FR2688037A1 (en) * 1992-02-28 1993-09-03 Renault Device for controlling the axial load of a bearing during operation
DE102005020783A1 (en) * 2005-05-04 2006-11-09 Schaeffler Kg roller bearing
DE102005020782A1 (en) * 2005-05-04 2006-11-09 Schaeffler Kg roller bearing
DE102007010693A1 (en) * 2007-03-06 2008-09-18 Schaeffler Kg Bearing arrangement for damping shocks and compensating for angular errors
JP2008298284A (en) * 2007-05-01 2008-12-11 Jtekt Corp Bearing device for turbocharger
US8803014B2 (en) 2009-08-05 2014-08-12 Trw Automotive Electronics & Components Gmbh Contact switches in a uniform control panel
KR20210091734A (en) 2018-11-08 2021-07-22 고쿠리츠다이가쿠호우징 카가와다이가쿠 Manufacturing method of rare sugar-containing composition and rare sugar-containing composition

Similar Documents

Publication Publication Date Title
US5540575A (en) High speed rotating apparatus having face-to-face angular contact ball bearings
US8128291B2 (en) Needle roller bearing and bearing structure
US6554480B2 (en) Single row deep groove radial ball bearing
JP3563354B2 (en) Roller chains incorporating roller bearings
US10851837B2 (en) Swing bearing
JPS639720A (en) Gap correcting device for rolling bearing
JP2008014411A (en) Rolling bearing lubricating structure
JP2006326695A (en) Bearing device for main spindle of machine tool
JP3419053B2 (en) Double-row rolling bearing device with preload
JP3682998B2 (en) Rolling bearing device
JP7186580B2 (en) slewing bearing
JP2000320558A (en) Synthetic resin made retainer for roller bearing
JP2005214330A (en) Four-point contact ball bearing and manufacturing method thereof
US7976224B2 (en) Eccentric thrust bearing assembly
US11815130B2 (en) Follower bearing
EP0426279A2 (en) Hollow roller bearing and method of making and mounting same
JP2010506121A (en) Radial cylindrical roller bearing
JP3025594B2 (en) Four-row tapered roller bearing
JP2021167647A (en) Rolling bearing
US20090123104A1 (en) Needle Roller Bearing
JP2007187259A (en) Split type rolling bearing
JP4480639B2 (en) Needle roller bearing and outer ring manufacturing method
JP3550712B2 (en) Ball bearing device
WO2019195746A1 (en) Self retained multi-row bearing unit and installing method
JPH0522086B2 (en)