JPH0225087A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH0225087A
JPH0225087A JP17439688A JP17439688A JPH0225087A JP H0225087 A JPH0225087 A JP H0225087A JP 17439688 A JP17439688 A JP 17439688A JP 17439688 A JP17439688 A JP 17439688A JP H0225087 A JPH0225087 A JP H0225087A
Authority
JP
Japan
Prior art keywords
semiconductor laser
wavelengths
lambda2
lambda1
distributed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17439688A
Other languages
Japanese (ja)
Other versions
JPH0636459B2 (en
Inventor
Tatsuhiko Hidaka
日高 建彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP17439688A priority Critical patent/JPH0636459B2/en
Publication of JPH0225087A publication Critical patent/JPH0225087A/en
Publication of JPH0636459B2 publication Critical patent/JPH0636459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1215Multiplicity of periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1215Multiplicity of periods
    • H01S5/1218Multiplicity of periods in superstructured configuration, e.g. more than one period in an alternate sequence

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable the supermulti-oscillation of a semiconductor laser by a method wherein a laser and a distributed reflecting section are formed on the same position on the same substrate to form the semiconductor laser of a Fourier resultant wave type structure. CONSTITUTION:In a distributed reflection type semiconductor laser which oscillates concurrently in two wavelengths, if the period of a distributed reflection section 3 is l, l is represented by an equation, l=l/2ne (where ne denotes the refractive index of the distributed reflection section 3). Therefore, if l is made to change, the semiconductor laser oscillates in different wavelengths correspondingly. And, if the distributed reflection section 3 is constituted in such a manner that the laser oscillate a resultant wave that two wavelengths lambda1 and lambda2 of two periods l1(=lambda1/2ne) and l2 (=lambda2/2ne) are compounded together, the reflectivity of this part from an active section 2 side as a basis is high toward the wavelengths lambda1 and lambda2. In the combination of a reflector and a laser obtained as mentioned above, if an interval between lambda1 and lambda2 is large to a certain extent, light rays of the wavelengths lambda1 and lambda2 can be concurrently oscillated, so that wavelengths lambda1, lambda2... can be set independently of each other.

Description

【発明の詳細な説明】 (産業上の利用分野〕 この発明は、安定化された多波長同時発振を行う半導体
レーザに関するものであり、特に、いわゆる分布反射型
(DBR)半導体レーザの反射部が、多波長において同
時に高い反射率を得るべく、その構造が単一周期ではな
く、多波長に対応する周期を合成したフーリエ合成波形
構造を有する半導体レーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) This invention relates to a semiconductor laser that performs stable multi-wavelength simultaneous oscillation, and in particular to a so-called distributed reflection type (DBR) semiconductor laser in which the reflection section is The present invention relates to a semiconductor laser device having a Fourier-synthesized waveform structure in which periods corresponding to multiple wavelengths are synthesized instead of a single period in order to simultaneously obtain high reflectance at multiple wavelengths.

〔従来の技術) 従来の多波長同時発振半導体レーザは、第4図のごとく
、1枚の基板1上に各々異なる場所に1波長に対し1個
ずつ半導体レーザの活性部2と分布反射部3を作り、そ
れぞれに設けた電極リード線4から独立に電流を供給し
て発振させていた。
[Prior Art] As shown in FIG. 4, a conventional multi-wavelength simultaneous oscillation semiconductor laser has two active parts 2 and one distributed reflection part 3 for each wavelength on a single substrate 1 at different locations. were made, and current was supplied independently from the electrode lead wires 4 provided to each to cause oscillation.

これにより、比較的小サイズで多波長同時発振が得られ
る。第4図の場合はλ1.λ2.λ3゜λ4.λ、の5
波長が得られる。なお、IL、、・・・・・・、15は
分布反射部3の周期を示す。
This allows simultaneous oscillation of multiple wavelengths with a relatively small size. In the case of Fig. 4, λ1. λ2. λ3゜λ4. λ, no 5
The wavelength can be obtained. Note that IL, . . . , 15 indicates the period of the distributed reflection section 3.

(発明が解決しようとする課題) しかしながら、上記従来技術においては、以下のような
問題点があった。
(Problems to be Solved by the Invention) However, the above conventional technology has the following problems.

■ 各々の波長用の半導体レーザの活性部2および分布
反射部3は基板1上の別位置に作製されるため、活性部
2および分布反射部3の結晶の不均一性、加工の精度の
限界および熱分布のくいちがいのため、各々の発振波長
λ1.・・・・・・、λ、の精度にばらつきがあり、そ
のため実際上は波長間隔を5Å以下にはできなかった。
■ Since the active part 2 and distributed reflective part 3 of the semiconductor laser for each wavelength are fabricated at different positions on the substrate 1, there are problems with crystal non-uniformity of the active part 2 and distributed reflective part 3 and limits of processing accuracy. Due to differences in heat distribution and heat distribution, each oscillation wavelength λ1. There are variations in the accuracy of .

また、発熱のため、同一の基板1上には5波長程度しか
組み込めなかった。
Furthermore, due to heat generation, only about five wavelengths could be incorporated on the same substrate 1.

■ 独立の位置に1波長ずつレーザを作るため、より多
波長(100〜1000)にするためにはサイズが巨大
化してしまう。
■ Since lasers are created for each wavelength at an independent position, the size becomes enormous if more wavelengths (100 to 1000) are required.

この発明は、上記の問題点を解消するためになされたも
ので、小型でかつ多波長の発振を可能とした半導体レー
ザ装置を提供することを目的とする。
The present invention was made to solve the above problems, and an object of the present invention is to provide a semiconductor laser device that is compact and capable of oscillating multiple wavelengths.

〔課題を解決するための手段〕[Means to solve the problem]

この発明にかかる半導体レーザ装置は、分布反射部ある
いは分布帰還部の周期構造を、多波長用のフーリエ合成
波形構造としたものである。
In the semiconductor laser device according to the present invention, the periodic structure of the distributed reflection section or the distributed feedback section is a Fourier synthesis waveform structure for multiple wavelengths.

〔作用〕[Effect]

この発明においては、分布反射部あるいは分布帰還部の
周期構造が、多波長用のフーリエ合成波形構造となって
いるために、このフーリエ合成波形に含まれる多波長の
レーザ光が出力される。
In this invention, since the periodic structure of the distributed reflection section or the distributed feedback section has a Fourier composite waveform structure for multiple wavelengths, laser light of multiple wavelengths included in this Fourier composite waveform is output.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す側面図である。この
実施例は簡単化するため、2波長同時発振の場合を示し
ている。分布反射型半導体レーザ(DBR)においては
、その発振波長λは、分布反射部3の周期をLとすると
、 で与えられる。ここで、noは分布反射部3の屈折率で
ある。したがって、周期℃を変えればそれに応じて異な
る波長で発振する。
FIG. 1 is a side view showing an embodiment of the present invention. For the sake of simplicity, this embodiment shows the case of simultaneous oscillation of two wavelengths. In a distributed reflection semiconductor laser (DBR), its oscillation wavelength λ is given by the following, where L is the period of the distributed reflection section 3. Here, no is the refractive index of the distributed reflection section 3. Therefore, if the period °C is changed, oscillation occurs at a different wavelength accordingly.

もし、この分布反射部3の周期構造を第2図のように、
つまり、第2図(i)  と(if)とを合わせた(i
ii)のように フグ法などで容易に作製し得る。さらに、この構造は2
波長に限らず、最大1000波長程度まで構成可能であ
り、結果として最大1000波長程度までの同時多重発
振が可能である。このようにして得た反射体とレーザの
組み合わせにおいて、λ1.λ2の間隔がある程度(い
わゆる均−広がり幅1〜3GH工)より大きければ、波
長λ1゜λ2.・・・・・・の光は同時発振が可能とな
り、かつ波長λ1.λ2.・・・・・・は独立して設定
(加工段階で)可能である。
If the periodic structure of the distributed reflection section 3 is as shown in Fig. 2,
In other words, (i) is the sum of (i) and (if) in Figure 2.
As shown in ii), it can be easily produced by the blowfish method or the like. Furthermore, this structure has two
The configuration is not limited to wavelengths, and it is possible to configure up to about 1000 wavelengths at the maximum, and as a result, simultaneous multiplex oscillation of up to about 1000 wavelengths is possible. In the combination of the reflector and laser thus obtained, λ1. If the interval λ2 is larger than a certain degree (so-called uniform spread width 1 to 3 GH), the wavelength λ1°λ2. . . . can be oscillated simultaneously, and the wavelength λ1. λ2. . . . can be set independently (at the processing stage).

第2図に示したごとく、2(多)周期の合成であるよう
な構造をしたI)BR部をもった分布反射部3の反射率
は、各々の周期II I + Jl、、 l・・・・・
・に相当する波長λ1.λ2.・・・・・・で高い反射
率を示す。一方、半導体レーザの活性部2の増幅度はか
なりの、いわゆる平均−広がり(10THz以上)を示
す。この平均−広がりによりて、波長λ1.λ2.・・
・・・・の光は、その間隔が充分広ければ独立に発振し
得る。通常の分布反射部をもたない端面反射型レーザに
おいては、しばしば多重軸モード発振を示す。その理由
は半導体物質の平均−広がり現象による。この場合、そ
の発振波長はλ=2L−n、/m で決る。ここでLは半導体レーザの両端の距雛、面を反
射面としたときの多重発振の様子を示す。
As shown in Fig. 2, the reflectance of the distributed reflection section 3 having the I) BR section, which has a structure that is a combination of two (multi) periods, is as follows for each period II I + Jl,, l... ...
・The wavelength λ1. λ2. ... exhibits high reflectance. On the other hand, the amplification degree of the active part 2 of the semiconductor laser exhibits a considerable so-called average spread (10 THz or more). Due to this average spread, the wavelength λ1. λ2.・・・
The lights of ... can oscillate independently if the interval between them is wide enough. Edge-reflection lasers that do not have a normal distributed reflector often exhibit multi-axis mode oscillation. The reason for this is due to the mean-spreading phenomenon of semiconductor materials. In this case, the oscillation wavelength is determined by λ=2L-n,/m. Here, L indicates the state of multiple oscillation when the rays and surfaces at both ends of the semiconductor laser are used as reflective surfaces.

このように、半導体レーザの活性部2の増幅度は平均−
広がりをもつので、その平均−広がりの範囲内ではある
が、異なる波長λ1.λ2.・・・・・・で高い反射率
をもつ反射体を所要のレーザ本体に装着すれば、波長λ
1.λ2.・・・・・・で同時に発振する。
In this way, the amplification degree of the active part 2 of the semiconductor laser is -
Since it has a spread, different wavelengths λ1 . λ2. If a reflector with high reflectance is attached to the required laser body, the wavelength λ
1. λ2. ...and oscillate at the same time.

なお、第3図において、増幅度は波長によって変化する
ので、各々の波長λ1.λ2.・・・・・・に対する分
布反射部3の反射率が一定なら、出力は増幅度に略比例
することになり、中心部と周辺部とでは出力に大きな差
を生ずる。このような出力特性は実用上好ましくない。
Note that in FIG. 3, since the amplification degree changes depending on the wavelength, each wavelength λ1. λ2. If the reflectance of the distributed reflection section 3 for . Such output characteristics are not practical.

この発明によれば、簡単な工夫によりこれを解消できる
。すなわち、第2図おいて、波長λ1に対する周期構造
の振幅al+ λ1に対する振幅82などを、各々その
波長に対する活性部2の増幅度に反比例する反射率を与
えるべく、各々異なる値とする。そうすれば、その反射
率を含めた全体の増幅度を各波長に対して、略一定とな
し得る。結果として出力を波長λ1.λ2.・・・・・
・に対してほぼ一定に設定できる。
According to the present invention, this problem can be solved by a simple device. That is, in FIG. 2, the amplitude al+ of the periodic structure with respect to wavelength λ1, the amplitude 82 with respect to λ1, etc. are set to different values in order to provide reflectances that are inversely proportional to the amplification degree of the active part 2 for each wavelength. In this way, the overall amplification including the reflectance can be made substantially constant for each wavelength. As a result, the output has a wavelength λ1. λ2.・・・・・・
・Can be set almost constant.

(発明の効果) この発明は以上説明したように、分布反射部あるいは分
布帰還部の周期構造を、多波長用のフーリエ合成波形構
造としたので、従来不可能であった半導体レーザの超多
重発振ができる。すなわち、第4図の従来例のように、
同一基板上に構成したレーザでは、波長間隔5人でせい
ぜい5多重発振が限度であったが、この発明によれば、
0゜05人間隔で1000多重まで可能となる。なぜな
ら、同一基板上の同一位置にレーザおよび分布反射部を
作製するために、結晶の歪、熱効果はすべての波長に対
し、同一の効果を与えるため、発振波長が設計値に対し
てランダムに変動し、たがいに重なり合って干渉するこ
とはあり得ない。変動は存在するにしても、すべての発
振線に対して、同時に同一の方向に変動する。さらに、
DBRあるいはDFBレーザにおいては単一波長動作を
させると、第3図中の1木だけが発振するため、それ以
外の波長領域のエネルギーは、実はすべて無駄になって
いる。この発明によれば、この部分もすべて発振に寄与
するため、全体としてエネルギー利用効率は極めて高く
なる。
(Effects of the Invention) As explained above, this invention uses the periodic structure of the distributed reflection section or the distributed feedback section as a Fourier synthesis waveform structure for multiple wavelengths, so that ultra-multiplexed oscillation of a semiconductor laser, which was previously impossible, is achieved. I can do it. That is, as in the conventional example shown in Fig. 4,
With lasers constructed on the same substrate, the limit was at most 5 multiplexed oscillations with a wavelength interval of 5 people, but according to this invention,
Up to 1000 multiplexes are possible with an interval of 0°05 people. This is because the distortion and thermal effects of the crystal have the same effect on all wavelengths because the laser and the distributed reflector are fabricated at the same location on the same substrate, so the oscillation wavelength is randomly generated relative to the design value. They cannot overlap and interfere with each other. Even if variations exist, they occur simultaneously and in the same direction for all oscillation lines. moreover,
When a DBR or DFB laser is operated at a single wavelength, only one tree in FIG. 3 oscillates, so all the energy in the other wavelength ranges is actually wasted. According to this invention, all of this part also contributes to oscillation, so that the energy utilization efficiency as a whole becomes extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す側面図、第2図はこ
の発明の分布反射部の構成を説明する図、第3図は半導
体レーザの多重軸モード発振の説明図、第4図は従来の
多波長同時発振半導体レーザの一例を示す斜視図である
。 図中、1は基板、2は半導体レーザの活性部、3は分布
反射部、4は電極リード線である。 第1図 第3図 □〜30THz 第2図 (iii)
FIG. 1 is a side view showing an embodiment of the present invention, FIG. 2 is a diagram explaining the configuration of the distributed reflection section of the present invention, FIG. 3 is a diagram explaining multi-axis mode oscillation of a semiconductor laser, and FIG. 1 is a perspective view showing an example of a conventional multi-wavelength simultaneous oscillation semiconductor laser. In the figure, 1 is a substrate, 2 is an active part of a semiconductor laser, 3 is a distributed reflection part, and 4 is an electrode lead wire. Figure 1 Figure 3 □~30THz Figure 2 (iii)

Claims (1)

【特許請求の範囲】[Claims] 分布ブラッグ反射型あるいは分布帰還型の半導体レーザ
装置において、多波長同時発振を得るために、分布反射
部あるいは分布帰還部の周期構造を、多波長用のフーリ
エ合成波形構造としたことを特徴とする半導体レーザ装
置。
In a distributed Bragg reflection type or distributed feedback type semiconductor laser device, in order to obtain simultaneous oscillation of multiple wavelengths, the periodic structure of the distributed reflection part or the distributed feedback part is a Fourier synthesis waveform structure for multiple wavelengths. Semiconductor laser equipment.
JP17439688A 1988-07-13 1988-07-13 Semiconductor laser device Expired - Lifetime JPH0636459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17439688A JPH0636459B2 (en) 1988-07-13 1988-07-13 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17439688A JPH0636459B2 (en) 1988-07-13 1988-07-13 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH0225087A true JPH0225087A (en) 1990-01-26
JPH0636459B2 JPH0636459B2 (en) 1994-05-11

Family

ID=15977852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17439688A Expired - Lifetime JPH0636459B2 (en) 1988-07-13 1988-07-13 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH0636459B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653616A (en) * 1992-03-06 1994-02-25 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser complete with wavelength sweep function
JPH0661578A (en) * 1992-08-12 1994-03-04 Nippon Telegr & Teleph Corp <Ntt> Distribution reflection device, waveguide type fabry-pero 't optical wavelength filter using the same, and semiconductor laser
WO2001011401A1 (en) * 1999-08-05 2001-02-15 Daniel Levner Synthesis of supergratings by fourier methods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653616A (en) * 1992-03-06 1994-02-25 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser complete with wavelength sweep function
JPH0661578A (en) * 1992-08-12 1994-03-04 Nippon Telegr & Teleph Corp <Ntt> Distribution reflection device, waveguide type fabry-pero 't optical wavelength filter using the same, and semiconductor laser
WO2001011401A1 (en) * 1999-08-05 2001-02-15 Daniel Levner Synthesis of supergratings by fourier methods
US6415081B1 (en) 1999-08-05 2002-07-02 Daniel Levner Synthesis of supergratings by fourier methods

Also Published As

Publication number Publication date
JPH0636459B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
US4913525A (en) Frequency stabilized light source
WO2017033476A1 (en) Wavelength coupled external resonator-type laser device
JPH08162710A (en) Semiconductor laser with distributed bragg reflector of superlattice diffraction-plate structure
CN110109259A (en) The beam merging apparatus of semiconductor laser high light beam quality high-power output
US5282219A (en) Semiconductor laser structure having a non-reflection film
JPH0225087A (en) Semiconductor laser device
US10305256B2 (en) Semiconductor laser diode and method of manufacture thereof
JP4402030B2 (en) External cavity semiconductor laser
JPS622478B2 (en)
JPS6362917B2 (en)
JPH02185085A (en) Semiconductor laser
JPH04105382A (en) Semiconductor laser
JPWO2019156226A1 (en) Tunable laser and optical module
JPS6295886A (en) Distribution feedback construction semiconductor laser
JPH06175169A (en) Light frequency converter element
WO2010122899A1 (en) Laser system
JPH03185887A (en) External resonator type semiconductor laser oscillator
JPS62136890A (en) Semiconductor laser device
WO1991001057A1 (en) Grouped, phase-locked, diode arrays
JPS62195192A (en) Semiconductor laser diode
JP6872750B2 (en) Light source device, light source utilization device, multi-wavelength light generation method, optical element and optical amplifier
JPS62124791A (en) Semiconductor laser
JPH01208884A (en) Variable wavelength uniaxial mode laser diode
JP4620216B2 (en) Tunable semiconductor laser
JPH08316575A (en) Variable wavelength optical source

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term