JPH06175169A - Light frequency converter element - Google Patents

Light frequency converter element

Info

Publication number
JPH06175169A
JPH06175169A JP32421592A JP32421592A JPH06175169A JP H06175169 A JPH06175169 A JP H06175169A JP 32421592 A JP32421592 A JP 32421592A JP 32421592 A JP32421592 A JP 32421592A JP H06175169 A JPH06175169 A JP H06175169A
Authority
JP
Japan
Prior art keywords
region
wavelength
diffraction grating
optical waveguide
frequency conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32421592A
Other languages
Japanese (ja)
Inventor
Hiroshi Yasaka
洋 八坂
Kiyoto Takahata
清人 高畑
Kunishige Oe
邦重 尾江
Yuzo Yoshikuni
裕三 吉国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP32421592A priority Critical patent/JPH06175169A/en
Publication of JPH06175169A publication Critical patent/JPH06175169A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a light frequency converting element capable of sweeping the wavelength of a light frequency converted light in a wide range. CONSTITUTION:An optical waveguide region 14 having a super-high periodic diffraction grating 32 and an optical waveguide region 15 having a super-high periodic diffraction grating 32 whose periodicity is somewhat different from that of the optical waveguide region 14 are formed on one side of an active region 10 composed of a gain region 11 and a supersaturated absorption region 12 and an electrode capable of individually impressing a bias current on each region is formed so as to constitute a light frequency converting element having a DBR laser structure. By performing current injection into an optical waveguide region 15, the wavelength with the highest reflectivity in the diffraction grating waveguide is swept in a wide wavelength range and the converted light wavelength of the light frequency converting element is swept in a wide range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、広い変換光波長掃引幅
を有する半導体材料からなる光周波数変換素子に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical frequency conversion element made of a semiconductor material having a wide conversion light wavelength sweep width.

【0002】[0002]

【従来の技術】従来、変換光波長を掃引できる波長変換
素子(光周波数変換素子)としては、図2に示すよう
な、可飽和吸収領域12及び利得領域11を有する活性
領域10に、均一ピッチの回折格子31を有する回折格
子型光導波路領域(DBR領域)13を集積した分布反
射型(DBR型)レーザ構造を有するもの(例えば、S.
Yamakoshi et al., Postdeadline Papers of OFC'88, P
D-10(1988)) 、及び図3に示すような、素子上部に3分
割された電極21,22及び均一ピッチの回折格子31
を有し、電流をそれぞれの部分に独立に注入できる構造
とした分布帰還型(DFB型)レーザ構造を有し、電極
21には電流を印加せず可飽和吸収領域12としたもの
(例えば、H.Kawaguchi et al., Journal of Quantum E
lectronics,vol. 24, No.11, pp.2153-2159, 1988)が
知られている。
2. Description of the Related Art Conventionally, as a wavelength conversion element (optical frequency conversion element) capable of sweeping a converted light wavelength, an active region 10 having a saturable absorption region 12 and a gain region 11 as shown in FIG. A structure having a distributed reflection type (DBR type) laser structure in which a diffraction grating type optical waveguide region (DBR region) 13 having the diffraction grating 31 of FIG.
Yamakoshi et al., Postdeadline Papers of OFC'88, P
D-10 (1988)), and as shown in FIG. 3, electrodes 21 and 22 divided into three parts on the upper part of the device and a diffraction grating 31 having a uniform pitch.
And a distributed feedback (DFB type) laser structure in which a current can be independently injected into each part, and the saturable absorption region 12 is formed without applying a current to the electrode 21 (for example, H. Kawaguchi et al., Journal of Quantum E
lectronics, vol. 24, No. 11, pp. 2153-2159, 1988) is known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、図2に
示すDBRレーザ構造を有する光周波数変換素子におい
ては、変換光の波長掃引は、回折格子型光導波路領域1
3への電流注入による屈折率変化にともなうブラッグ波
長変化により行われており、波長掃引幅として3nm程
度しか取れなかった。また、図3に示す多電極DFBレ
ーザ構造素子においては、2つの利得領域11へ注入す
る電流の比を変化させ、変換光波長掃引を実現している
が、波長掃引幅としては0.5nm程度の値しか実現さ
れていなかった。そこで、さらに広い範囲で光周波数変
換光の波長を掃引できる光周波数変換素子の実現が期待
されている。
However, in the optical frequency conversion element having the DBR laser structure shown in FIG. 2, the wavelength sweep of the converted light is performed by the diffraction grating type optical waveguide region 1
The Bragg wavelength was changed in accordance with the change in the refractive index due to the current injection into No. 3, and the wavelength sweep width was only about 3 nm. Further, in the multi-electrode DFB laser structure element shown in FIG. 3, the wavelength of the converted light is swept by changing the ratio of the currents injected into the two gain regions 11, but the wavelength sweep width is about 0.5 nm. Only the value of was realized. Therefore, it is expected to realize an optical frequency conversion element capable of sweeping the wavelength of the optical frequency conversion light in a wider range.

【0004】本発明の目的は上記の問題点に鑑み、広い
範囲で光周波数変換光の波長を掃引できる光周波数変換
素子を提供することにある。
In view of the above problems, an object of the present invention is to provide an optical frequency conversion element capable of sweeping the wavelength of optical frequency conversion light in a wide range.

【0005】[0005]

【課題を解決するための手段】本発明は上記の目的を達
成するために、請求項1では、活性領域中に可飽和吸収
領域を有する光周波数変換素子において、一方の光出力
側に、ピッチを徐々に変化させた回折格子が周期的に設
けられた分布反射鏡を有する光周波数変換素子を提案す
る。
In order to achieve the above object, the present invention provides, in claim 1, an optical frequency conversion element having a saturable absorption region in an active region, a pitch on one optical output side. We propose an optical frequency conversion element that has a distributed reflector in which a diffraction grating with gradually changing is periodically provided.

【0006】また、請求項2では、請求項1記載の光周
波数変換素子において、前記分布反射鏡は、前記ピッチ
を徐々に変化させた回折格子の設置周期が異なる、少な
くとも2つ以上の領域を有すると共に、その全ての領域
に独立にバイアス電流を印加できる構造を有する光周波
数変換素子を提案する。
According to a second aspect, in the optical frequency conversion element according to the first aspect, the distributed Bragg reflector includes at least two or more regions in which the pitches of the diffraction gratings having different pitches are different. We propose an optical frequency conversion device having a structure that has a bias current independently applied to all the regions.

【0007】さらに、請求項3では、請求項2記載の光
周波数変換素子において、位相調整領域を有する光周波
数変換素子を提案する。
Furthermore, claim 3 proposes an optical frequency conversion element according to claim 2 which has a phase adjustment region.

【0008】[0008]

【作用】本発明の請求項1によれば、一方の光出力側に
備わる分布反射鏡には、ピッチを徐々に変化させた回折
格子が周期的に設けられ、該回折格子によって回折され
ると周期的に反射率の高い波長が現れ、これら反射率の
高い複数の波長の光が出力される。
According to claim 1 of the present invention, the distributed reflecting mirror provided on one light output side is periodically provided with a diffraction grating whose pitch is gradually changed, and is diffracted by the diffraction grating. A wavelength having a high reflectance appears periodically, and light having a plurality of wavelengths having a high reflectance is output.

【0009】また、請求項2によれば、徐々に回折格子
のピッチを変化させた領域(以下、超回折格子領域と称
する)を有する光導波路の反射率の波長依存性には、周
期的に反射率の高い波長が現れる。例えば2つの超周期
回折格子領域を設け、該超周期回折格子領域のぞれぞれ
における前記回折格子の設置周期を異ならせることによ
り、前記周期的に反射率の高い波長が現れる周期を僅か
にずらしておくと、前記超周期回折格子領域の一つに電
流を注入して、屈折率を変化させた際に回折格子領域の
最も反射率の高い波長が広い波長範囲に亙って掃引され
る。
According to the second aspect, the wavelength dependence of the reflectance of the optical waveguide having a region in which the pitch of the diffraction grating is gradually changed (hereinafter, referred to as a super-diffraction grating region) is periodic. A wavelength with high reflectance appears. For example, two super-periodic diffraction grating regions are provided, and the installation periods of the diffraction gratings in the respective super-periodic diffraction grating regions are made different, so that the period in which the wavelength with the high reflectance is periodically appears is slightly reduced. If shifted, current is injected into one of the super-periodic diffraction grating regions, and when the refractive index is changed, the wavelength with the highest reflectance of the diffraction grating region is swept over a wide wavelength range. .

【0010】さらに、請求項3によれば、位相調整領域
が設けられ、該位相調整領域に電流が注入されるとキャ
リア密度が増加し、屈折率が低下される。これにより、
光が感じるキャビティの長さが変えられる。
Further, according to claim 3, the phase adjusting region is provided, and when a current is injected into the phase adjusting region, the carrier density is increased and the refractive index is lowered. This allows
The length of the cavity that the light feels can be changed.

【0011】[0011]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図1は本発明の第1の実施例を示す構成図
である。図において、前述した従来例と同一構成部分は
同一符号をもって表す。即ち、11は利得領域、12は
過飽和吸収領域、14,15は徐々に回折格子のピッチ
を変化させた領域を周期的に配置してなる超周期回折格
子32を有する光導波路領域である。利得領域11及び
可飽和吸収領域12からなる活性領域10の片側に、光
導波路領域14、及びこの光導波路領域14とは周期を
若干異ならさせた超周期回折格子32を有する光導波路
領域15が形成され、これらが集積されてDBRレーザ
構造を有する光周波数変換素子が構成されている。さら
に、これらの各領域11,12,14,15には電極2
1,22,24,25,27によって個別にバイアス電
流を印加できるようになっている。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a block diagram showing a first embodiment of the present invention. In the figure, the same components as those in the conventional example described above are represented by the same reference numerals. That is, 11 is a gain region, 12 is a saturable absorption region, and 14 and 15 are optical waveguide regions having a super-periodic diffraction grating 32 in which regions in which the pitch of the diffraction grating is gradually changed are periodically arranged. An optical waveguide region 14 and an optical waveguide region 15 having a super-periodic diffraction grating 32 having a period slightly different from that of the optical waveguide region 14 are formed on one side of the active region 10 composed of the gain region 11 and the saturable absorption region 12. Then, these are integrated to form an optical frequency conversion element having a DBR laser structure. Further, the electrodes 2 are provided in these respective areas 11, 12, 14, 15.
Bias currents can be individually applied by 1, 22, 24, 25, and 27.

【0012】前述の構成よりなる第1の実施例による光
周波数の変換動作原理は、従来素子と同様に、可飽和吸
収領域12の光吸収損失を外部注入光により減少させる
ことにより、素子を発振にいたらしめることにより光周
波数の変換を行っている。即ち、活性領域10中に存在
する利得領域11にはバイアス電流を注入することによ
り、利得領域11はある程度の利得を持つが、しかし可
飽和吸収領域12中での光に対する吸収損失のために素
子が発振しない状態に設定しておく。この状態の素子に
外部から信号光を注入し、可飽和吸収領域12の吸収損
失を低減することにより素子内部での全損失が活性領域
における利得と釣り合う状態になり素子が発振を開始す
るのである。(例えば、H. Kawaguchi et al., Jourana
l of Quantum Electronics, vol. 24. No.11, pp.2153-
2159,1988)また、本発明による光周波数変換素子の変換
光波長掃引の動作原理は、次に説明する通りである。即
ち、光導波路領域14,15に形成された超周期回折格
子のピッチ変化の様子は図4に示すものであり、回折格
子のピッチがΛb からΛaまで連続に変化する領域が周
期Λで周期的に存在している。図において、横軸は距離
を表し、縦軸は回折格子のグレーティングピッチを表し
ている。
The optical frequency conversion operation principle according to the first embodiment having the above-described structure is similar to that of the conventional element, in that the optical absorption loss of the saturable absorption region 12 is reduced by the external injection light to oscillate the element. The optical frequency is converted by immersing yourself in the room. That is, by injecting a bias current into the gain region 11 existing in the active region 10, the gain region 11 has a certain amount of gain, but due to the absorption loss of light in the saturable absorption region 12, the device is lost. Is set not to oscillate. By injecting signal light into the device in this state from the outside and reducing the absorption loss in the saturable absorption region 12, the total loss inside the device becomes balanced with the gain in the active region, and the device starts oscillation. . (For example, H. Kawaguchi et al., Jourana
l of Quantum Electronics, vol. 24.No.11, pp.2153-
(2159, 1988) Further, the operating principle of the converted light wavelength sweep of the optical frequency conversion element according to the present invention is as described below. That is, the state of the pitch change of the super-periodic diffraction grating formed in the optical waveguide regions 14 and 15 is shown in FIG. 4, and the region where the pitch of the diffraction grating continuously changes from Λb to Λa is periodic with the period Λ. Exists in. In the figure, the horizontal axis represents the distance and the vertical axis represents the grating pitch of the diffraction grating.

【0013】ここで、図4に示すように回折格子のピッ
チを変化させた超周期回折格子構造を設置した光導波路
領域14,15の反射率の波長依存性を模式的に示すと
図5のようになる。図において、横軸は波長を、また縦
軸は反射率をそれぞれ表すと共に、図5の(a) は、例え
ば光導波路領域14の超周期回折格子領域の反射率の波
長依存性を示し、図5の(b) は光導波路領域15の超周
期回折格子領域の反射率の波長依存性を示している。こ
のように、2つの光導波路領域14,15で、高反射率
を示す波長の周期をわずかにずらしておく。例えば、光
導波路領域15での高反射率波長周期は9.5nmに設
定され、光導波路領域14の高反射率波長周期10nm
と若干異なるように設定されている。
Here, the wavelength dependence of the reflectance of the optical waveguide regions 14 and 15 provided with the super-periodic diffraction grating structure in which the pitch of the diffraction grating is changed as shown in FIG. 4 is schematically shown in FIG. Like In the figure, the horizontal axis represents the wavelength and the vertical axis represents the reflectance, and (a) of FIG. 5 shows the wavelength dependency of the reflectance of the super-period diffraction grating region of the optical waveguide region 14, for example. (B) of 5 indicates the wavelength dependence of the reflectance of the super-periodic diffraction grating region of the optical waveguide region 15. In this way, the two optical waveguide regions 14 and 15 are slightly shifted in the cycle of wavelengths exhibiting high reflectance. For example, the high reflectance wavelength period in the optical waveguide region 15 is set to 9.5 nm, and the high reflectance wavelength period in the optical waveguide region 14 is 10 nm.
Is set to be slightly different from.

【0014】また、図中のWは電流注入で屈折率を変化
させたときに変化させることのできる最大波長変化範囲
を示している。ここでは、例えば、電流注入は図5(b)
に示す光導波路領域15に行うものとする。まず、光導
波路領域15に電流を注入しない場合には、最も長波側
にある反射率ピークの波長が光導波路領域14の反射率
ピーク波長と一致し、この波長での反射率が最大とな
り、結果としてこの波長で変換光が発振することとな
る。次に、光導波路領域15に電流を注入することによ
り、光導波路領域15の屈折率は減少し、結果として反
射率ピーク波長は周期をほぼ一定に保ったまま短波長側
へシフトする。このため、まず、光導波路領域15の最
も長波側に存在していた高反射率ピーク波長と一致し、
この波長で変換光が発振を行うようになる。
Further, W in the figure indicates the maximum wavelength change range that can be changed when the refractive index is changed by current injection. Here, for example, the current injection is shown in FIG.
The optical waveguide region 15 shown in FIG. First, when no current is injected into the optical waveguide region 15, the wavelength of the reflectance peak on the longest wavelength side matches the reflectance peak wavelength of the optical waveguide region 14, and the reflectance at this wavelength becomes maximum. As a result, the converted light oscillates at this wavelength. Next, by injecting a current into the optical waveguide region 15, the refractive index of the optical waveguide region 15 decreases, and as a result, the reflectance peak wavelength shifts to the short wavelength side while keeping the period substantially constant. Therefore, first, it coincides with the high reflectance peak wavelength existing on the longest wavelength side of the optical waveguide region 15,
The converted light oscillates at this wavelength.

【0015】光導波路領域15への電流注入量を増加す
るに従って、光導波路領域14と光導波路領域15で高
反射率変化に起因する波長変化量Wに比べ、飛躍的に広
い範囲で反射率の最も高くなる波長を掃引することが可
能となる。
As the amount of current injected into the optical waveguide region 15 is increased, the reflectivity of the optical waveguide region 14 and the optical waveguide region 15 is remarkably wider than the wavelength change amount W caused by the high reflectivity change. It becomes possible to sweep the highest wavelength.

【0016】このように、2個以上の超周期回折格子領
域をDBRレーザ構造光周波数変換素子の回折格子領域
に形成し、その1つの超周期回折格子領域へ電流注入を
行うことにより広い波長範囲にわたり回折格子導波路の
最も反射率の高い波長を掃引することが可能となり、光
周波数変換素子の変換光波長を広い範囲で掃引すること
ができる。
As described above, two or more super-periodic diffraction grating regions are formed in the diffraction grating region of the DBR laser structure optical frequency conversion element, and a current is injected into one of the super-periodic diffraction grating regions to widen the wavelength range. It is possible to sweep the wavelength with the highest reflectance of the diffraction grating waveguide over the entire wavelength range, and it is possible to sweep the converted light wavelength of the optical frequency conversion element in a wide range.

【0017】光導波路領域15に電流を注入した場合の
結果を図6に示す。図において、横軸は注入電流を表
し、縦軸は変換光波長を表している。この場合、波長の
とびを伴いながら、変換光の全波長掃引幅として100
nmの値を得ることができ、従来素子の波長掃引幅3n
mに比べて飛躍的に広い範囲で変換光波長を掃引するこ
とが可能となった。
FIG. 6 shows the result when a current is injected into the optical waveguide region 15. In the figure, the horizontal axis represents the injection current and the vertical axis represents the converted light wavelength. In this case, the full-wavelength sweep width of the converted light is 100 with a wavelength jump.
nm value can be obtained, and the wavelength sweep width of the conventional device is 3n
It has become possible to sweep the converted light wavelength in a dramatically wider range than m.

【0018】図7は、本発明による光周波数変換素子の
第2の実施例を示す構成図である。図において、前述し
た第1の実施例と同一構成部分は同一符号を持って表し
その説明を省略する。また、第1の実施例と第2の実施
例との相違点は、第2の実施例においは第1の実施例の
可飽和吸収領域12と光導波路領域14との間に位相調
整領域16を設けた点にある。この位相調整領域16
は、電流を注入してキャリヤ密度を増加させることによ
って屈折率を下げ、そのために光の感ずるキャビティの
長さを変化させる作用を有するものである。この位相調
整領域16へ電流を注入することにより、第1の実施例
に示した光周波数変換素子からの変換光波長をさらに微
調整することができ、図8に示すように、第1の実施例
では変換光波長のとびを示していた波長領域において、
変換光波長の若干の波長掃引が可能となった。
FIG. 7 is a block diagram showing a second embodiment of the optical frequency conversion element according to the present invention. In the figure, the same components as those of the first embodiment described above are designated by the same reference numerals and the description thereof will be omitted. Further, the difference between the first embodiment and the second embodiment is that in the second embodiment, the phase adjustment region 16 is provided between the saturable absorption region 12 and the optical waveguide region 14 of the first embodiment. There is a point. This phase adjustment area 16
Has a function of lowering the refractive index by injecting an electric current to increase the carrier density, thereby changing the length of the cavity that the light feels. By injecting a current into this phase adjustment region 16, the wavelength of the converted light from the optical frequency conversion element shown in the first embodiment can be further finely adjusted, and as shown in FIG. In the example, in the wavelength range where the jump of the converted light wavelength was shown,
It has become possible to slightly sweep the converted light wavelength.

【0019】尚、第1及び第2の実施例では、超周期回
折格子を有する光導波路領域を2つ並べたが、これに限
定されることはなく、3つ以上設けても同様の効果を得
ることができることは言うまでもないことである。
In the first and second embodiments, two optical waveguide regions having a super-periodic diffraction grating are arranged, but the number of optical waveguide regions is not limited to this, and the same effect can be obtained by providing three or more optical waveguide regions. It goes without saying that you can get it.

【0020】また、超周期回折格子を有する光導波路領
域を1つだけ設けた場合には、入力された信号光の波長
を同時に複数種の波長に変換して出力できることは容易
に理解できるであろう。
Further, when only one optical waveguide region having a super-periodic diffraction grating is provided, it can be easily understood that the wavelength of the input signal light can be simultaneously converted into plural kinds of wavelengths and outputted. Let's do it.

【0021】[0021]

【発明の効果】以上説明したように本発明の請求項1に
よれば、一方の光出力側に備わる分布反射鏡には、ピッ
チを徐々に変化させた回折格子が周期的に設けられてい
るため、周期的に反射率の高い波長が現れ、これら反射
率の高い複数の波長の光が出力されるので、広い範囲で
光周波数変換光の波長を掃引できると共に、入力光の波
長を同時に複数種の波長に変換して出力することができ
る。
As described above, according to the first aspect of the present invention, the distributed reflecting mirror provided on one light output side is periodically provided with a diffraction grating whose pitch is gradually changed. Therefore, wavelengths with high reflectance appear periodically, and light with multiple wavelengths with high reflectance is output.Therefore, the wavelength of optical frequency conversion light can be swept in a wide range, and the wavelengths of input light can be changed simultaneously. It can be converted into the wavelength of the seed and output.

【0022】また、請求項2によれば、徐々に回折格子
のピッチを変化させた領域を周期的に配置した超周期回
折格子領域を少なくとも2つ以上形成し、その領域にお
いては互いの周期構造の周期をわずかにずらした構造と
しているため、超周期回折格子領域の一つに電流を注入
することにより屈折率を変化させた際に回折格子領域の
最も反射率の高い波長が広い波長範囲に亙って掃引され
るので、光周波数変換素子からの変換光の波長を従来型
素子に比べて、飛躍的に広い波長範囲に亙って掃引する
ことができる。
According to a second aspect of the present invention, at least two super-periodic diffraction grating regions are formed in which regions in which the pitch of the diffraction grating is gradually changed are periodically arranged, and the periodic structure is formed in each region. Since the structure has a slightly shifted period, when the refractive index is changed by injecting a current into one of the super-periodic diffraction grating regions, the wavelength with the highest reflectance in the diffraction grating region is in the wide wavelength range. Since it is swept over, the wavelength of the converted light from the optical frequency conversion element can be swept over a significantly wider wavelength range than that of the conventional element.

【0023】さらに、請求項3によれば、上記の効果に
加えて、位相調整領域に電流が注入されるとキャリア密
度が増加し、屈折率が低下されるため、光が感じるキャ
ビティの長さが変えられるので、変換光波長のとびを示
していた波長領域においても、変換光波長の若干の波長
掃引が可能となり、変換光波長をさらに微調整すること
ができるという非常に優れた効果を奏するものである。
Further, according to claim 3, in addition to the above effect, when the current is injected into the phase adjustment region, the carrier density increases and the refractive index decreases, so that the length of the cavity that the light feels is increased. Since it can be changed, even in the wavelength region where the spread of the converted light wavelength is shown, it is possible to slightly sweep the converted light wavelength, and it is possible to further finely adjust the converted light wavelength, which is a very excellent effect. It is a thing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例による光周波数変換素子
を示す構成図
FIG. 1 is a configuration diagram showing an optical frequency conversion element according to a first embodiment of the present invention.

【図2】DBRレーザ構造を有する従来の光周波数変換
素子を示す構成図
FIG. 2 is a configuration diagram showing a conventional optical frequency conversion device having a DBR laser structure.

【図3】多電極DFBレーザ構造を有する従来の光周波
数変換素子を示す構成図
FIG. 3 is a configuration diagram showing a conventional optical frequency conversion element having a multi-electrode DFB laser structure.

【図4】超周期回折格子のピッチを表す図FIG. 4 is a diagram showing a pitch of a super-periodic diffraction grating.

【図5】超周期回折格子光導波路の反射率の波長依存性
を示す図
FIG. 5 is a diagram showing wavelength dependence of reflectance of a super-periodic diffraction grating optical waveguide.

【図6】本発明の第1の実施例による光周波数変換素子
の変換光波長掃引特性を示す図
FIG. 6 is a diagram showing a converted light wavelength sweep characteristic of the optical frequency conversion element according to the first embodiment of the present invention.

【図7】本発明の第2の実施例による光周波数変換素子
を示す構成図
FIG. 7 is a configuration diagram showing an optical frequency conversion element according to a second embodiment of the present invention.

【図8】本発明の第2の実施例による光周波数変換素子
の変換光波長掃引特性を示す図
FIG. 8 is a diagram showing a converted light wavelength sweep characteristic of the optical frequency conversion element according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…活性領域、11…利得領域、12…可飽和吸収領
域、13…回折格子型光導波路領域(DBR領域)、1
4,15…光導波路領域、16…位相調整領域、21…
利得領域電流注入電極、22…可飽和吸収領域電流注入
電極、23…DBR領域電流注入電極、24,25…光
導波路領域電流注入電極、26…位相調整領域電流注入
電極、27…基盤側電極、31…回折格子、32…超周
期回折格子。
10 ... Active region, 11 ... Gain region, 12 ... Saturable absorption region, 13 ... Diffraction grating type optical waveguide region (DBR region), 1
4, 15 ... Optical waveguide region, 16 ... Phase adjustment region, 21 ...
Gain region current injection electrode, 22 ... Saturable absorption region current injection electrode, 23 ... DBR region current injection electrode, 24, 25 ... Optical waveguide region current injection electrode, 26 ... Phase adjustment region current injection electrode, 27 ... Board side electrode, 31 ... Diffraction grating, 32 ... Super periodic diffraction grating.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉国 裕三 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yuzo Yoshikuni 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 活性領域中に可飽和吸収領域を有する光
周波数変換素子において、 一方の光出力側に、ピッチを徐々に変化させた回折格子
が周期的に設けられた分布反射鏡を有する、 ことを特徴とする光周波数変換素子。
1. An optical frequency conversion device having a saturable absorption region in an active region, which has, on one light output side, a distributed reflector in which a diffraction grating whose pitch is gradually changed is periodically provided. An optical frequency conversion element characterized by the above.
【請求項2】 前記分布反射鏡は、前記ピッチを徐々に
変化させた回折格子の設置周期が異なる、少なくとも2
つ以上の領域を有すると共に、その全ての領域に独立に
バイアス電流を印加できる構造を有することを特徴とす
る請求項1記載の光周波数変換素子。
2. The distributed Bragg reflector has at least 2 different installation periods of the diffraction grating with the pitch gradually changed.
The optical frequency conversion element according to claim 1, wherein the optical frequency conversion element has at least one region and has a structure capable of independently applying a bias current to all the regions.
【請求項3】 位相調整領域を有することを特徴とする
請求項2記載の光周波数変換素子。
3. The optical frequency conversion element according to claim 2, which has a phase adjustment region.
JP32421592A 1992-12-03 1992-12-03 Light frequency converter element Pending JPH06175169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32421592A JPH06175169A (en) 1992-12-03 1992-12-03 Light frequency converter element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32421592A JPH06175169A (en) 1992-12-03 1992-12-03 Light frequency converter element

Publications (1)

Publication Number Publication Date
JPH06175169A true JPH06175169A (en) 1994-06-24

Family

ID=18163333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32421592A Pending JPH06175169A (en) 1992-12-03 1992-12-03 Light frequency converter element

Country Status (1)

Country Link
JP (1) JPH06175169A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001320127A (en) * 2000-05-02 2001-11-16 Sumitomo Electric Ind Ltd Semiconductor laser
JP4690521B2 (en) * 1999-05-17 2011-06-01 アイメック Integrated semiconductor device tunable over a wide range of wavelengths and method for semiconductor devices tunable over a wide range of wavelengths
US8705583B2 (en) 2009-04-17 2014-04-22 Fujitsu Limited Semiconductor laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4690521B2 (en) * 1999-05-17 2011-06-01 アイメック Integrated semiconductor device tunable over a wide range of wavelengths and method for semiconductor devices tunable over a wide range of wavelengths
JP2001320127A (en) * 2000-05-02 2001-11-16 Sumitomo Electric Ind Ltd Semiconductor laser
US8705583B2 (en) 2009-04-17 2014-04-22 Fujitsu Limited Semiconductor laser

Similar Documents

Publication Publication Date Title
US7643532B2 (en) Manufacturable sampled grating mirrors
US7826508B2 (en) Bragg grating structure
US7145923B2 (en) Tuneable laser
CA2137596C (en) Alternating grating tunable dbr laser
JP3962014B2 (en) Extraction grating distributed feedback tunable semiconductor laser coupled to extraction grating Bragg reflector
US6590924B2 (en) Mirror and cavity designs for sampled grating distributed bragg reflector lasers
US6141370A (en) Superimposed grating WDM tunable lasers
US20040228384A1 (en) Widely tunable sampled-grating distributed feedback laser diode
KR0138860B1 (en) Semiconductor laser with super structure grating distributed bragg reflector
JP3237733B2 (en) Semiconductor laser
US7106778B2 (en) Tuneable laser
JP2005513803A (en) Phase shift surface emitting DFB laser structure with gain grating or absorption grating
JPH06175169A (en) Light frequency converter element
Ward et al. Realization of phase grating comb reflectors and their application to widely tunable DBR lasers
Rigole et al. State of the art: widely tunable lasers
JPH0653591A (en) Element for converting optical frequency
JPH0817262B2 (en) Single wavelength oscillation semiconductor laser device
JP2690840B2 (en) Distributed light reflector and wavelength tunable semiconductor laser using the same
JPH0669586A (en) Distributed reflector and variable wavelength semiconductor laser using the same
Bozorgui et al. Chirped grating DBR lasers using bent waveguides
JPH0661571A (en) Distribution light reflection device and semiconductor laser using the same
JP2010238890A (en) Semiconductor pulse laser
Dai et al. Proposal of high-yield widely-tunable DBR lasers with equivalent-chirp grating reflectors