JPH0669586A - Distributed reflector and variable wavelength semiconductor laser using the same - Google Patents
Distributed reflector and variable wavelength semiconductor laser using the sameInfo
- Publication number
- JPH0669586A JPH0669586A JP21769392A JP21769392A JPH0669586A JP H0669586 A JPH0669586 A JP H0669586A JP 21769392 A JP21769392 A JP 21769392A JP 21769392 A JP21769392 A JP 21769392A JP H0669586 A JPH0669586 A JP H0669586A
- Authority
- JP
- Japan
- Prior art keywords
- diffraction grating
- wavelength
- layer
- semiconductor laser
- distributed reflector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、光通信分野での光波長
(周波数)多重通信システムにおける送信用光源や、同
期検波用可同調光源および光計測用光源に好適な、波長
可変半導体レーザに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength tunable semiconductor laser suitable as a transmission light source, a tunable light source for synchronous detection and a light source for optical measurement in an optical wavelength (frequency) multiplex communication system in the field of optical communications. It is a thing.
【0002】[0002]
【従来の技術】将来の通信情報量の増大に対して、光波
長(周波数)多重通信システムの研究が行われている
が、送信用光源及び同期検波用可同調光源として広範囲
な波長掃引機能が要求されており、また、光計測の分野
からも広域波長帯をカバーする可変波長光源の実現が望
まれている。可変波長光源としては、電流注入により簡
単に波長を掃引できる分布反射型・分布帰還型半導体レ
ーザが数多く研究されている。波長掃引機能付き分布反
射型半導体レーザの実現例として、図5にその構造断面
図を示す(例えば東盛らによるエレクトロニクス・レタ
ーズ(ElectronicsLetters)24巻24号、1481〜
1482頁、1988年参照)。図5において、2は活
性導波路層、3は非活性導波路層、10は回折格子、1
01は活性領域、102及び103はそれぞれ前側及び
後側の分布反射領域を示す。2. Description of the Related Art In response to an increase in the amount of communication information in the future, research on an optical wavelength (frequency) multiplex communication system has been conducted, but a wide range of wavelength sweeping functions as a transmission light source and a tunable light source for synchronous detection have been proposed. There is a demand, and also from the field of optical measurement, realization of a variable wavelength light source that covers a wide wavelength band is desired. As a variable wavelength light source, a number of distributed reflection type / distributed feedback type semiconductor lasers that can easily sweep the wavelength by current injection have been studied. As an example of the realization of a distributed reflection type semiconductor laser with a wavelength sweeping function, a structural sectional view thereof is shown in FIG. 5 (for example, Electronics Letters Vol. 24, No. 24, 1481 by Tomori et al.
See page 1482, 1988). In FIG. 5, 2 is an active waveguide layer, 3 is an inactive waveguide layer, 10 is a diffraction grating, and 1
Reference numeral 01 indicates an active region, and 102 and 103 indicate front and rear distributed reflection regions, respectively.
【0003】[0003]
【発明が解決しようとする課題】しかしながら上記従来
技術においては、分布反射器領域における回折格子のピ
ッチは単一であるため、λ=2Λneq(Λ:回折格子の
ピッチ、neq:等価屈折率)で決まるブラッグ波長λ近
傍の発振波長は、導波路の等価屈折率neqの電気的な等
価屈折率変化量Δneqで決まっていた。したがって、通
常電流注入による半導体の最大屈折率変化量Δn/nは
1%程度であるため、上記従来例に示した分布反射型半
導体レーザの波長掃引幅は100Å程度にとどまり、光
波長多重通信システム用光源としては不十分であるとい
う問題があった。However, in the above prior art, since the pitch of the diffraction grating in the distributed reflector region is single, λ = 2Λn eq (Λ: pitch of the diffraction grating, n eq : equivalent refractive index ), The oscillation wavelength near the Bragg wavelength λ is determined by the electrical equivalent refractive index change Δn eq of the waveguide equivalent refractive index n eq . Therefore, since the maximum refractive index change Δn / n of the semiconductor due to the normal current injection is about 1%, the wavelength sweep width of the distributed Bragg reflector semiconductor laser shown in the above-mentioned conventional example is limited to about 100Å, and the wavelength division multiplexing optical communication system. There was a problem that it was insufficient as a light source for use.
【0004】本発明の目的は上記問題を解決し、非活性
導波路領域の等価屈折率変化量Δneqが従来と同程度
(約1%)でも、活性導波路領域の利得帯域幅(約10
00Å)にわたって広帯域波長掃引が可能な波長可変半
導体レーザを得ることである。The object of the present invention is to solve the above-mentioned problems, and even if the equivalent refractive index change amount Δn eq in the non-active waveguide region is about the same as the conventional one (about 1%), the gain bandwidth of the active waveguide region (about 10%).
It is to obtain a wavelength tunable semiconductor laser capable of sweeping a broadband wavelength over 00 Å).
【0005】[0005]
【課題を解決するための手段】上記目的は、基板上に、
該基板より光学的屈折率が大きい光導波路層と、該光導
波路層より屈折率が小さい光閉じ込め層をそれぞれ1層
以上含む光導波路で、該光導波路を形成する1層以上の
層に、周期的な凹凸の形成または周期的な組成の変化を
形成することにより、上記光導波路の等価屈折率を周期
的に変化させて回折格子を形成し、上記回折格子の周期
からBraggの回折条件で決定される波長をもつ光に
対して反射作用を行う分布反射器において、一定領域の
なかに回折格子の1周期の長さが微小に異なる位相シフ
トが、少なくとも1個所以上存在し、上記位相シフトを
含む回折格子が、上記領域の長さを周期として少なくと
も2周期以上連続して、周期的に形成された分布反射器
を用いた波長可変半導体レーザによって達成される。The above-mentioned object is to provide a substrate,
An optical waveguide including an optical waveguide layer having an optical refractive index larger than that of the substrate and at least one optical confinement layer having a refractive index smaller than that of the optical waveguide layer. By forming periodic unevenness or periodical compositional change, the equivalent refractive index of the optical waveguide is periodically changed to form a diffraction grating, and the diffraction grating period determines the Bragg diffraction condition from the cycle of the diffraction grating. In a distributed reflector that reflects light having a specified wavelength, there is at least one phase shift in which the length of one period of the diffraction grating is slightly different within a certain region. The included diffraction grating is achieved by a wavelength tunable semiconductor laser using a distributed reflector that is periodically formed with a length of the above region as a period and at least two periods or more continuously.
【0006】[0006]
【作用】上記目的を達成するために、回折格子のピッチ
を連続的または断続的に変化し、上記のピッチ変化が回
折格子のピッチより十分長い周期で繰り返し形成した回
折格子を、活性導波路領域の両わきにもつ分布反射構造
の半導体レーザが提案されている(東盛他:特願平4−
49425号)。この方法による分布反射型レーザの構
成例を図6(a)に示す。この例の分布反射型半導体レ
ーザでは、前及び後の非活性導波路領域に102および
103に回折格子10aおよび10bが形成されてい
て、前側の非活性導波路領域に形成される回折格子10
aは図6(b)に示すようにピッチがΛaからΛbまで連
続的に変化する領域が、周期Mf(ただしMf>Λa、
Λb)で繰り返し形成されており、同様に後側の非活性
導波路領域に形成される回折格子10bは、ピッチがΛ
a′からΛb′まで連続的に変化領域が周期Mr(ただし
Mr>Λa′、Λb′)で繰り返し形成されている。前側
の分布反射器の反射特性は図7(a)に示すように、波
長λa=2Λaneqから波長λb=2Λbneqまでの間に波
長間隔Δλf=λ0 2/2neqMf(λ0=neq(Λa+
Λb))で周期的に反射ピークをもつ特性になる。そこ
で、便宜的にこの反射ピーク点の波長をλ1〜λnとす
る。同様に、後側の分布反射器の反射特性は、図7
(b)に示す波長λa′=2Λa′neqから波長λb′=
2Λb′neqまでの間に波長間隔Δλr=λ0 2/2neqM
rで周期的に反射ピークλ1′〜λk′をもつ特性にな
る。ここで、前後の分布反射領域の回折格子のピッチ変
調の周期Mf及びMrはそれぞれ異なっている。そこで、
上記前及び後側の分布反射領域の屈折率をそれぞれ電気
的に独立に制御すると、λ1〜λnのうちの1波長λ
i(i=1−n)にλ1′〜λk′のうちの1つを同調さ
せて、そのλi近傍だけでレーザ発振させることができ
る。図7(c)および(d)は、λ1とλ2との発振例、
すなわちiが1及び2の場合を示したものである。この
ように本方法による分布反射型半導体レーザでは、回折
格子を有する前側の非活性導波路領域に形成された電極
に、それぞれ独立に電流を流すかまたは電圧を加えるこ
とによって発振波長を制御するものであり、回折格子の
反射ピーク間の大きな波長跳びを利用して、波長可変範
囲を大幅に拡大できる。In order to achieve the above-mentioned object, the pitch of the diffraction grating is continuously or intermittently changed, and the diffraction grating is repeatedly formed at a period sufficiently longer than the pitch of the diffraction grating. A semiconductor laser having a distributed reflection structure on both sides of the arm has been proposed (Azumamori et al .: Japanese Patent Application No. 4-
49425). An example of the structure of a distributed Bragg reflector laser manufactured by this method is shown in FIG. In the distributed Bragg reflector semiconductor laser of this example, the diffraction gratings 10a and 10b are formed in the front and rear inactive waveguide regions 102 and 103, respectively, and the diffraction grating 10 formed in the front inactive waveguide region is formed.
In a, as shown in FIG. 6B, a region in which the pitch continuously changes from Λ a to Λ b has a period M f (where M f > Λ a ,
The diffraction grating 10b, which is repeatedly formed by Λ b ), and which is similarly formed in the inactive waveguide region on the rear side, has a pitch Λ.
continuously changing region 'from lambda b' a until the period M r (provided that M r> Λ a ', Λ b') are repeatedly formed in. As shown in FIG. 7A, the reflection characteristic of the front distributed reflector has a wavelength interval Δλ f = λ 0 2 / 2n between the wavelength λ a = 2Λ a n eq and the wavelength λ b = 2Λ b n eq. eq M f (λ 0 = n eq (Λ a +
Λ b )) has a characteristic with periodic reflection peaks. Therefore, for convenience, the wavelengths of the reflection peak points are set to λ 1 to λ n . Similarly, the reflection characteristic of the rear distributed reflector is shown in FIG.
From the wavelength λ a ′ = 2Λ a ′ n eq shown in (b), the wavelength λ b ′ =
Wavelength interval Δλ r = λ 0 2 / 2n eq M up to 2Λ b ′ n eq
At r , the characteristic becomes periodically having reflection peaks λ 1 ′ to λ k ′. Here, the pitch modulation periods M f and M r of the diffraction gratings in the front and rear distributed reflection regions are different from each other. Therefore,
When the refractive indices of the front and rear distributed reflection regions are electrically controlled independently, one wavelength λ out of λ 1 to λ n.
One of λ 1 ′ to λ k ′ can be tuned to i (i = 1-n) and laser oscillation can be performed only in the vicinity of λ i . 7C and 7D show examples of oscillation of λ 1 and λ 2 ,
That is, the case where i is 1 and 2 is shown. As described above, in the distributed Bragg reflector semiconductor laser according to the present method, the oscillation wavelength is controlled by independently flowing a current or applying a voltage to the electrodes formed in the front inactive waveguide region having the diffraction grating. Therefore, the large wavelength jump between the reflection peaks of the diffraction grating can be utilized to greatly expand the variable wavelength range.
【0007】しかしながら、上記方法では回折格子のピ
ッチをÅ単位で細かく、しかも数100μmの長さにわ
たり正確に描画しなければならない。現在このような回
折格子を形成できるのは、電子ビーム露光方式による微
細加工法だけであるが、この方法でも極めて長い露光時
間を必要とし量産技術としては問題があった。However, in the above method, it is necessary to make the pitch of the diffraction grating fine in units of Å and to accurately draw over a length of several 100 μm. At present, such a diffraction grating can be formed only by a fine processing method using an electron beam exposure method, but this method also requires an extremely long exposure time, which is a problem in mass production technology.
【0008】本発明は、上記発明と同等の効果を均一ピ
ッチの回折格子で実現するものであり、電子ビーム露光
における露光時間の大幅な短縮および干渉露光等の量産
性が優れた加工技術の使用を可能にし、上記方法に比べ
大幅に低コストで広帯域波長可変半導体レーザの作製を
可能にするものである。The present invention realizes the same effect as that of the above-mentioned invention with a diffraction grating having a uniform pitch, and uses a processing technique which is excellent in mass productivity such as a significantly shortened exposure time in electron beam exposure and interference exposure. This makes it possible to fabricate a broadband wavelength tunable semiconductor laser at a significantly lower cost than the above method.
【0009】本発明による回折格子の構成の一例を図8
(a)に示す。回折格子はある長さMfを単位として周
期的な繰り返し構造になっている。図8(b)に繰り返
しの単位領域構成を示す。回折格子は一定の繰り返しピ
ッチΛaで形成されているが、回折格子の数か所で、ピ
ッチが他の部分に比べて長いかまたは短い格子が刻まれ
ている。この部分の前後で回折格子の位相は−あるいは
+にシフトしており、位相制御領域になっている。
(b)のp及びmで示した部分でそれぞれ+および−の
位相シフトする。A、B、Cで示した部分の回折格子の
拡大図を図8(c)に示す。A部では回折格子が一定ピ
ッチで形成されている。B部では中央部にピッチが小さ
い格子が1周期だけ形成され、この点から回折格子のピ
ーク位置はAに比べて前方にシフトしている。この位相
シフトによって回折格子には位相変調がかかり、等価的
に回折格子のピッチが短くなったのと同様な効果が得ら
れる。C部では中央にピッチが大きい回折格子が同期形
成され、上記B部とは逆にピーク位置が後方にシフトし
ている。このため、回折格子はピッチが等価的に長くな
った効果を与える。位相シフトが挿入される間隔は図8
(b)に示すように位置によって変化しており、また中
央部を境に左側で+の位相シフト、右側で−の位相シフ
トになっているため、等価的には回折格子のピッチが少
しづつ長くなったのと同様な効果を与えている。FIG. 8 shows an example of the structure of the diffraction grating according to the present invention.
It shows in (a). The diffraction grating has a periodic repeating structure with a certain length M f as a unit. FIG. 8B shows a repeating unit area structure. The diffraction grating is formed with a constant repeating pitch Λ a , but in some places of the diffraction grating, a grating whose pitch is longer or shorter than that of other portions is engraved. The phase of the diffraction grating is shifted to − or + before and after this portion, which is a phase control region.
Phase shifts of + and-in the portions indicated by p and m in (b), respectively. An enlarged view of the diffraction grating of the portions indicated by A, B, and C is shown in FIG. 8 (c). In part A, the diffraction grating is formed at a constant pitch. In part B, a grating having a small pitch is formed in the central part for only one period, and from this point, the peak position of the diffraction grating is shifted forward as compared with A. Due to this phase shift, the diffraction grating undergoes phase modulation, and equivalently the same effect as when the pitch of the diffraction grating is shortened is obtained. A diffraction grating having a large pitch is synchronously formed in the center of the C portion, and the peak position is shifted backward, contrary to the B portion. Therefore, the diffraction grating provides the effect that the pitch becomes equivalently long. The interval at which the phase shift is inserted is shown in FIG.
As shown in (b), it changes depending on the position, and the + phase shift is on the left side and the − phase shift is on the right side with respect to the center part. Therefore, equivalently, the pitch of the diffraction grating gradually increases. It gives the same effect as the longer one.
【0010】図9は各単位領域でのn番目の回折格子の
ピーク位置をnに対して描いたものであり、実線で示し
たのが図9における回折格子、破線で示したのが本発に
基づく図 に示す回折格子の場合である。回折格子のピ
ッチが一定の場合には、ピークの位置がnに対して直線
的に増加する。図6に示す回折格子ではピッチが連続的
に減少しているため、曲線の傾きは次第にゆるやかにな
り全体としては放物線を描く。一方、図8に示す回折格
子では、ピッチが一定であるため傾きが一定の直線にな
るが、位相シフトの部分で不連続に変化し、全体として
図6の回折格子の場合の曲線を直線近似する形になる。
したがって、位相シフトの大きさおよび位相シフトを入
れる間隔を十分小さくすれば、上記実線と破線とはほぼ
一致し、図8の回折格子は図6の回折格子と同様の特性
を示すことがわかる。本発明に基づく図8の回折格子は
ピッチが一定であるため、図6の回折格子に比べてずっ
と容易に形成でき、しかも図6の回折格子と同様な効果
があり、分布反射あるいは分布帰還型半導体レーザの分
布反射器として用いれば、波長可変範囲の大幅な拡大が
可能である。FIG. 9 shows the peak position of the n-th diffraction grating in each unit area with respect to n. The solid line shows the diffraction grating in FIG. 9, and the broken line shows the original one. This is the case of the diffraction grating shown in the figure based on. When the pitch of the diffraction grating is constant, the peak position increases linearly with respect to n. In the diffraction grating shown in FIG. 6, since the pitch is continuously reduced, the slope of the curve gradually becomes gentle and the parabola is drawn as a whole. On the other hand, in the diffraction grating shown in FIG. 8, since the pitch is constant, the inclination becomes a straight line, but it changes discontinuously in the phase shift portion, and the curve in the case of the diffraction grating in FIG. 6 is linearly approximated as a whole. It becomes a form to do.
Therefore, it can be seen that if the magnitude of the phase shift and the interval for inserting the phase shift are made sufficiently small, the solid line and the broken line substantially coincide with each other, and the diffraction grating of FIG. 8 exhibits the same characteristics as the diffraction grating of FIG. Since the diffraction grating of FIG. 8 according to the present invention has a constant pitch, it can be formed much more easily than the diffraction grating of FIG. 6 and has the same effect as the diffraction grating of FIG. If it is used as a distributed reflector of a semiconductor laser, the wavelength variable range can be greatly expanded.
【0011】[0011]
【実施例】つぎに本発明の実施例を図面とともに説明す
る。図1は本発明の第1実施例として分布反射器を示す
図で、(a)は外観図、(b)1単位を構成するユニッ
トを示す図、(c)は各ユニットの構成を示す図、
(d)は光透過特性を示す図である。図1(a)におい
て、1はn型InP基板、3はバンドギャップ波長が
1.3μmのInGaAsP非活性導波路層、4はp型
InPクラッド層、10は位相シフト領域を周期的に含
んだ回折格子である。5はエッチングによって形成され
た装荷型導波路であり、これにより等価屈折率約3.2
の光導波路を形成している。回折格子は2380Åの一
定ピッチで形成されており、33.36μmを周期とし
て位相シフトを含んだ構造が周期的に20周期繰り返さ
れ、全長約666μmの回折格子を形成している。図1
(b)は33.36μmの繰り返しの単位を拡大したも
のであり、1単位は17のユニットで構成されている。
各ユニットは(c)に示す3種類のユニットで形成され
ている。Nnと記したユニットはピッチが2380Åが
n周期で構成される。Mnと記した部分では最初の回折
格子のピッチが1904Åになっており、これにより回
折格子の位相がシフトしている。2番目以降の回折格子
は2380Åであり全体でn周期の回折格子を含む。P
nと記したユニットは先頭のピッチが2856Åになっ
ている。図1(d)は(a)に示す分布反射器の光透過
特性を光波長に対して測定した結果である。光透過率は
1から光反射率を引いたものにほぼ等しく、上記測定か
ら反射特性を見積ることができる。透過率は約100Å
間隔で大幅に低下しており、100Å間隔で反射率のピ
ークが現われていることが判る。上記特性は図6(b)
に示した回折格子の反射特性と同様であり、本発明の分
布反射器の構成によって同様の特性が得られていること
が判る。Embodiments of the present invention will now be described with reference to the drawings. 1A and 1B are diagrams showing a distributed reflector as a first embodiment of the present invention. FIG. 1A is an external view, FIG. 1B is a diagram showing a unit constituting one unit, and FIG. 1C is a diagram showing the configuration of each unit. ,
(D) is a figure which shows a light transmission characteristic. In FIG. 1 (a), 1 is an n-type InP substrate, 3 is an InGaAsP inactive waveguide layer having a bandgap wavelength of 1.3 μm, 4 is a p-type InP cladding layer, and 10 includes a phase shift region periodically. It is a diffraction grating. Reference numeral 5 is a loaded waveguide formed by etching, which has an equivalent refractive index of about 3.2.
Forming an optical waveguide. The diffraction grating is formed at a constant pitch of 2380 Å, and the structure including the phase shift is periodically repeated 20 cycles with a period of 33.36 μm to form a diffraction grating with a total length of about 666 μm. Figure 1
(B) is an enlargement of a repeating unit of 33.36 μm, and one unit is composed of 17 units.
Each unit is formed of three types of units shown in (c). The unit denoted by Nn has a pitch of 2380Å with n cycles. In the portion marked Mn, the pitch of the first diffraction grating is 1904Å, and the phase of the diffraction grating is shifted by this. The second and subsequent diffraction gratings are 2380Å, which includes a total of n periods of diffraction gratings. P
The pitch of the head of the unit marked n is 2856Å. FIG. 1D shows the results of measuring the light transmission characteristics of the distributed reflector shown in FIG. The light transmittance is almost equal to 1 minus the light reflectance, and the reflection characteristics can be estimated from the above measurement. Transmittance is about 100Å
It can be seen that the peaks of reflectance appear at intervals of 100 Å, with a significant decrease at intervals. The above characteristics are shown in FIG.
It can be seen that the reflection characteristic is similar to that of the diffraction grating shown in (3), and that similar characteristics are obtained by the configuration of the distributed reflector of the present invention.
【0012】図2に本発明の第2実施例として波長掃引
機能付き分布反射型半導体レーザを示す。図2におい
て、(a)は平面図、(b)は上記平面図に示すA−
A′断面図、(c)は上記平面図に示すB−B′断面
図、(d)は回折格子の単位構成を示す図である。図2
において、1はn型InP基板、2はバンドギャップ波
長が1.55μmのInGaAsP活性導波路層、3は
バンドギャップ波長が1.3μmのInGaAsP非活
性導波路層、4はp型InPクラッド層、5はp(+)
型InGaAsPキャップ層、6はp型InP電流ブロ
ック層、7はn型InP電流ブロック層、8はn型電
極、9aは活性領域101に設けたp型電極、9bは前
側の分布反射器領域102に設けたp型電極、9cは後
側の分布反射器領域103に設けたp型電極、10aは
位相シフトを含む回折格子の領域が周期Mfで繰り返し
形成された部分、10bは位相シフトを含む回折格子の
領域が周期Mrで繰り返し形成された部分、11は上記
活性導波路層2と非活性導波路層3との結合部分であ
る。上記回折格子10aは第1実施例と同一の構成で3
3.36μmの位相シフトを含む回折格子が20周期で
約670μmの回折格子を形成している。回折格子10
bの構成は(d)に示すとおりで、35.7μmの位相
シフトを含む回折格子が20周期で約710μmの回折
格子を形成している。FIG. 2 shows a distributed reflection type semiconductor laser having a wavelength sweeping function as a second embodiment of the present invention. In FIG. 2, (a) is a plan view and (b) is A- shown in the above plan view.
FIG. 6A is a sectional view taken along the line A ′, FIG. 7C is a sectional view taken along the line BB ′ shown in the plan view, and FIG. Figure 2
1, 1 is an n-type InP substrate, 2 is an InGaAsP active waveguide layer having a bandgap wavelength of 1.55 μm, 3 is an InGaAsP inactive waveguide layer having a bandgap wavelength of 1.3 μm, 4 is a p-type InP clad layer, 5 is p (+)
-Type InGaAsP cap layer, 6 is a p-type InP current blocking layer, 7 is an n-type InP current blocking layer, 8 is an n-type electrode, 9a is a p-type electrode provided in the active region 101, and 9b is a front distributed reflector region 102. , A p-type electrode 9c is a p-type electrode provided in the rear distributed reflector region 103, a portion 10a is a portion in which a region of a diffraction grating including a phase shift is repeatedly formed with a period M f , and a reference numeral 10b is a phase shift. Reference numeral 11 denotes a coupling portion between the active waveguide layer 2 and the non-active waveguide layer 3 in which the region of the diffraction grating including is repeatedly formed with the period M r . The diffraction grating 10a has the same structure as that of the first embodiment.
A diffraction grating including a phase shift of 3.36 μm forms a diffraction grating of about 670 μm in 20 cycles. Diffraction grating 10
The structure of b is as shown in (d), and a diffraction grating including a phase shift of 35.7 μm forms a diffraction grating of about 710 μm in 20 cycles.
【0013】上記波長掃引機能付き分布反射型半導体レ
ーザの作製方法を簡単に説明する。最初に有機金属気相
エピタキシャル成長法を用いて、n型InP基板1上に
活性導波路層2と非活性導波路層3とを作製する。その
後、上記非活性導波路層3の表面に塗布したレジスト
に、電子ビーム露光法によりピッチが変調された回折格
子のパタンを転写し、該転写パタンをマスクとしてエッ
チングを行い10a及び10bの回折格子を形成する。
そして、横モードを制御するためにストライプ状に導波
路を加工し、再度有機金属気相エピタキシャル成長法を
用いて、p型InP電流ブロック層6、n型InP電流
ブロック層7、p型InPクラッド層4およびp(+)
型InGaAsPキャップ層5を順次積層したのち、p
型電極9a、9b、9cおよびn型電極8を形成し、さ
らに活性領域101に設けたp型電極9aと、回折格子
が形成された部分10a及び10bを有する分布反射器
領域102及び103に設けたp型電極9b、9cと
を、それぞれ互いに電気的に分離するために、それらの
結合部分の上方のp型電極とp(+)型InGaAsP
キャップ層5とを除去する。A method of manufacturing the distributed reflection type semiconductor laser having the wavelength sweeping function will be briefly described. First, the active waveguide layer 2 and the inactive waveguide layer 3 are formed on the n-type InP substrate 1 by using the metal organic vapor phase epitaxial growth method. After that, the pattern of the diffraction grating whose pitch is modulated by the electron beam exposure method is transferred to the resist applied on the surface of the inactive waveguide layer 3, and the transfer pattern is used as a mask for etching to perform diffraction gratings 10a and 10b. To form.
Then, the waveguide is processed in a stripe shape to control the transverse mode, and the p-type InP current blocking layer 6, the n-type InP current blocking layer 7, and the p-type InP cladding layer are again formed by using the metalorganic vapor phase epitaxial growth method. 4 and p (+)
Type InGaAsP cap layer 5 is sequentially laminated, and then p
Forming the p-type electrodes 9a, 9b, 9c and the n-type electrode 8, and further providing in the distributed reflector regions 102 and 103 having the p-type electrode 9a provided in the active region 101 and the portions 10a and 10b in which the diffraction grating is formed. In order to electrically separate the p-type electrodes 9b and 9c from each other, the p-type electrode and the p (+)-type InGaAsP above the coupling portion thereof are electrically separated from each other.
The cap layer 5 is removed.
【0014】上記半導体レーザの回折格子では、10a
の部分で位相シフトを含む回折格子構造の繰り返し周期
が33.36μm、10bの部分では35.7μmで繰
り返し形成されている。In the diffraction grating of the above semiconductor laser, 10a
The repetition period of the diffraction grating structure including the phase shift is 33.36 μm in the portion (3) and 35.7 μm in the portion 10b.
【0015】上記構成の分布反射型半導体レーザでは活
性領域101に電流を流すことによってレーザ発振が生
じ、分布反射器領域102及び103、あるいは位相調
整領域にそれぞれ独立に電流を流したり、電圧を印加す
ることによって発振波長を変化させることができる。上
記活性領域101に一定電流を流し、前後の分布反射器
領域102及び103に設けた電極のうちの9bには電
流を流さない状態で、分布反射器領域103に設けた電
極9cに流す電流を変化させたときの、発振波長の変化
の様子を図8に示す。上記半導体レーザでは図2に示す
ように、分布反射器領域103に電流を流すことによっ
て、発振波長が1.500μmから1.600μmまで
約100Åおきに変化させることができる。また、上記
状態において、電極9bと9cに流す電流の差を調整し
て約100Åおきに変化する発振波長のうちの1つの波
長を選択し、両電極9b、9cに流す電流の差を一定に
したままで、両電極の電流を同時に増減することによ
り、発振波長を微調整することが可能である。電極9b
と9cに流す電流を同時に変化させたときの発振波長の
変化の様子を図10に実線で示す。図示のように本半導
体レーザでは、電極9bと9cとに同時に電流を流すこ
とによって、波長跳びを起しながら発振波長を100Å
程度変化させることができる。p型電極9b、9cに流
す電流を上記手順によって調整することにより、発振波
長の粗調整、微調整を行い、1000Åの波長範囲にわ
たって任意の発振波長を選択することが可能になる。In the distributed Bragg reflector semiconductor laser having the above-described structure, laser oscillation is generated by passing a current through the active region 101, and the distributed reflector regions 102 and 103 or the phase adjusting region are independently fed with a current or a voltage is applied. By doing so, the oscillation wavelength can be changed. A current is applied to the electrode 9c provided in the distributed reflector region 103 while a constant current is applied to the active region 101 and no current is applied to 9b of the electrodes provided in the front and rear distributed reflector regions 102 and 103. FIG. 8 shows how the oscillation wavelength changes when the oscillation wavelength is changed. In the above semiconductor laser, as shown in FIG. 2, by passing a current through the distributed reflector region 103, the oscillation wavelength can be changed from 1.500 μm to 1.600 μm at intervals of about 100 Å. Further, in the above state, the difference between the currents flowing through the electrodes 9b and 9c is adjusted to select one of the oscillation wavelengths that changes every approximately 100 Å, and the difference between the currents flowing through the electrodes 9b and 9c is made constant. It is possible to finely adjust the oscillation wavelength by simultaneously increasing or decreasing the currents of both electrodes while keeping the same condition. Electrode 9b
The solid line in FIG. 10 shows how the oscillation wavelength changes when the currents flowing in the channels 9 and 9c are simultaneously changed. As shown in the figure, in the present semiconductor laser, current is caused to flow through the electrodes 9b and 9c at the same time so that the oscillation wavelength is 100 Å while causing a wavelength jump.
The degree can be changed. By adjusting the current flowing through the p-type electrodes 9b and 9c according to the above procedure, it is possible to perform rough adjustment and fine adjustment of the oscillation wavelength and select an arbitrary oscillation wavelength over the wavelength range of 1000Å.
【0016】本実施例では、平坦な透明導波路で形成さ
れ電流注入によって回折格子からの反射光の位相を調整
する、いわゆる位相調整領域を設けていないが、本実施
例の活性領域101と分布帰還領域102または103
の間に、位相調整領域を付加すればより細かい波長調整
が可能になる。In this embodiment, there is no so-called phase adjustment region for adjusting the phase of the reflected light from the diffraction grating by current injection formed by a flat transparent waveguide, but it is distributed with the active region 101 of this embodiment. Return area 102 or 103
If a phase adjustment region is added in between, finer wavelength adjustment becomes possible.
【0017】本発明による波長掃引機能付き分布帰還型
半導体レーザを第3実施例として図3に示す。図4にお
ける(a)は上記分布帰還型半導体レーザの平面図、
(b)は上記平面図に示すA−A′断面図、(c)は上
記平面図に示すB−B′断面図である。図において、1
はn型InP基板、2はバンドギャップ波長が1.55
μmのInGaAsP活性導波路層、3はバンドギャッ
プ波長が1.3μmのInGaAsP非活性導波路層、
4はp型InPクラッド層、5はp(+)型InGaA
sPキャップ層、6はp型InP電流ブロック層、7は
n型InP電流ブロック層、8はn型電極、9d、9e
は前側の分布帰還領域102′に設けた1組の櫛型p電
極、9f、9gは後側の分布帰還領域103′に設けた
1組の櫛型p電極、10aは位相シフトを含む回折格子
の領域が周期Mfで繰り返し形成された部分、10bは
位相シフトを含む回折格子の領域が周期Mrで繰り返し
形成された部分である。A distributed feedback semiconductor laser with a wavelength sweeping function according to the present invention is shown in FIG. 3 as a third embodiment. 4A is a plan view of the distributed feedback semiconductor laser,
(B) is a sectional view taken along the line AA 'shown in the above plan view, and (c) is a sectional view taken along the line BB' shown in the above plan view. In the figure, 1
Is an n-type InP substrate, 2 has a bandgap wavelength of 1.55
μm InGaAsP active waveguide layer, 3 is an InGaAsP inactive waveguide layer having a bandgap wavelength of 1.3 μm,
4 is a p-type InP clad layer, 5 is a p (+)-type InGaA
sP cap layer, 6 p-type InP current blocking layer, 7 n-type InP current blocking layer, 8 n-type electrode, 9d, 9e
Is a pair of comb-shaped p electrodes provided in the front distributed feedback region 102 ', 9f and 9g is a pair of comb-shaped p electrodes provided in the rear distributed feedback region 103', and 10a is a diffraction grating including a phase shift The region 10b is repeatedly formed with the period M f , and 10b is the region repeatedly formed with the period M r of the diffraction grating region including the phase shift.
【0018】上記半導体レーザの作製方法を簡単に説明
する。最初に有機金属気相エピタキシャル成長法を用い
て、n型InP基板1上に活性層2と光閉じ込め層3を
作製する。その後、光閉じ込め層3の表面に塗布したレ
ジストに、電子ビーム露光法によりピッチが変調された
回折格子のパタンを転写し、該転写パタンをマスクとし
てエッチングを行い10a及び10bの回折格子を形成
する。つぎに、横モードを制御するためにストライプ状
に導波路を加工し、再度有機金属気相エピタキシャル成
長法を用いて、p型InP電流ブロック層6、n型In
P電流ブロック層7、p型InPクラッド層4及びp
(+)型InGaAsPキャップ層5を順次作製する。
その後、p型電極9d、9e、9f、9g及びn型電極
8を形成し、さらに、回折格子が形成された部分10a
及び10bを有する分布帰還領域102′及び103′
に設けられた櫛型p電極9d、9e、9f、9gとをそ
れぞれ互いに電気的に分離するために、それらの結合部
の上方のp型電極及びp(+)型InGaAsPキャッ
プ層5を除去する。A method of manufacturing the above semiconductor laser will be briefly described. First, the active layer 2 and the optical confinement layer 3 are formed on the n-type InP substrate 1 by using the metal organic vapor phase epitaxial growth method. After that, the pattern of the diffraction grating whose pitch is modulated by the electron beam exposure method is transferred to the resist applied on the surface of the light confinement layer 3, and the transfer pattern is used as a mask to perform etching to form the diffraction gratings 10a and 10b. . Next, the waveguide is processed into a stripe shape to control the transverse mode, and the p-type InP current blocking layer 6 and the n-type In are again formed by using the metalorganic vapor phase epitaxial growth method.
P current blocking layer 7, p-type InP cladding layer 4 and p
The (+) type InGaAsP cap layer 5 is sequentially manufactured.
After that, the p-type electrodes 9d, 9e, 9f, 9g and the n-type electrode 8 are formed, and further, the portion 10a in which the diffraction grating is formed.
And distributed feedback regions 102 'and 103' with 10b
In order to electrically separate the comb-shaped p-electrodes 9d, 9e, 9f, 9g provided in the respective parts from each other, the p-type electrode and the p (+)-type InGaAsP cap layer 5 above the coupling part are removed. .
【0019】本実施例の波長掃引機能付き分布反射型半
導体レーザにおける回折格子では、10aの部分で位相
シフトを含む回折格子構造の繰り返し周期が33.36
μm、10bの部分では35.7μmで繰り返し形成さ
れている。In the diffraction grating in the distributed Bragg reflector semiconductor laser with the wavelength sweeping function of this embodiment, the repetition period of the diffraction grating structure including the phase shift in the portion 10a is 33.36.
The portions of 3 μm and 10 b are repeatedly formed with a thickness of 35.7 μm.
【0020】上記構成の分布帰還型半導体レーザでは、
分布帰還領域102′、103′に電流を流すことによ
ってレーザ発振が生じ、1組の櫛型p電極9dと9e、
または9fと9g間の電流の比を調整することでキャリ
ア密度の空間的な分布を作り屈折率を変化させ、これに
よって発振波長を調整することができる。前後の分布帰
還領域102′及び103′に設けた櫛型電極のうちの
9d、9e、9fに一定電流を流してレーザ発振を起し
た状態で、上記分布帰還領域103′に設けた櫛型p電
極9gに流す電流を変化させたときの、発振波長の変化
は図2と同様になり、1.500μmから1.600μ
mまで100Å間隔で発振波長を変えることができる。In the distributed feedback semiconductor laser having the above structure,
Laser oscillation is generated by passing a current through the distributed feedback regions 102 'and 103', and a pair of comb-shaped p electrodes 9d and 9e,
Alternatively, by adjusting the ratio of currents between 9f and 9g, a spatial distribution of carrier density is created and the refractive index is changed, whereby the oscillation wavelength can be adjusted. The comb-shaped p provided in the distributed feedback region 103 'in a state where a constant current is applied to 9d, 9e, 9f of the comb-shaped electrodes provided in the front and rear distributed feedback regions 102' and 103 'to cause laser oscillation. The change in the oscillation wavelength when the current flowing through the electrode 9g is changed is the same as that in FIG. 2, and the change from 1.500 μm to 1.600 μm
The oscillation wavelength can be changed at intervals of 100Å up to m.
【0021】また、櫛型p電極9d、9e、9f、9g
に流す電流値を同時に変化させることにより、図10の
実線及び破線で示すような波長の微調整も可能である。
このように本実施例の分布帰還型半導体レーザでは、p
型電極9d〜9gに流す電流を上記手順で調整すること
によって、発振波長の粗調整、微調整を行い、1000
Åの波長範囲にわたって任意の発振波長を選択すること
が可能になる。Also, the comb-shaped p electrodes 9d, 9e, 9f, 9g.
It is also possible to finely adjust the wavelength as shown by the solid line and the broken line in FIG.
Thus, in the distributed feedback semiconductor laser of this embodiment, p
By adjusting the current flowing through the mold electrodes 9d to 9g by the above procedure, the oscillation wavelength is roughly adjusted and finely adjusted to 1000
It becomes possible to select any oscillation wavelength over the wavelength range of Å.
【0022】本発明の第4実施例として図4に波長掃引
機能付き分布帰還型半導体レーザの他の例を示す。図に
おいて、(a)は上記半導体レーザの平面図、(b)は
上記平面図におけるA−A′断面図、(c)は上記平面
図におけるB−B′断面図である。図において、1′は
p型InP基板、2はバンドギャップ波長が1.55μ
mのInGaAsP活性層、3はバンドギャップ波長が
1.3μmのInGaAsP光閉じ込め層、4はp型I
nPクラッド層、5はp(+)型InGaAsPキャッ
プ層、6はp型InP電流ブロック層、7はn型InP
電流ブロック層、8′はp型電極、9dは前側の分布帰
還領域102′に設けたp型波長制御用電極、9fは後
側の分布帰還領域103′に設けたp型波長制御用電
極、9hはn型半導体上に形成された共通n電極、10
aは位相シフトを含む回折格子の領域が周期Mfで繰り
返し形成された部分、10bは位相シフトを含む回折格
子の領域が周期Mrで繰り返し形成された部分、12は
n型InP導電層である。As a fourth embodiment of the present invention, FIG. 4 shows another example of the distributed feedback semiconductor laser with wavelength sweeping function. In the figure, (a) is a plan view of the semiconductor laser, (b) is a sectional view taken along the line AA 'in the plan view, and (c) is a sectional view taken along the line BB' in the plan view. In the figure, 1'is a p-type InP substrate, 2 is a bandgap wavelength of 1.55μ.
m InGaAsP active layer, 3 is an InGaAsP optical confinement layer with a bandgap wavelength of 1.3 μm, and 4 is p-type I
nP clad layer, 5 p (+) type InGaAsP cap layer, 6 p type InP current blocking layer, 7 n type InP
A current blocking layer, 8'is a p-type electrode, 9d is a p-type wavelength controlling electrode provided in the front distributed feedback region 102 ', 9f is a p-type wavelength controlling electrode provided in the rear distributed feedback region 103', 9h is a common n electrode formed on the n-type semiconductor, 10
a is a portion in which the region of the diffraction grating including the phase shift is repeatedly formed with the period M f , 10b is a portion in which the region of the diffraction grating including the phase shift is repeatedly formed with the period M r , and 12 is an n-type InP conductive layer is there.
【0023】上記半導体レーザの作製方法を簡単に説明
する。最初に有機金属気相エピタキシャル成長法を用い
て、p型InP基板1′上に活性層2、n型InP導電
層12、光閉じ込め層3を作製する。その後、上記光閉
じ込め層3の表面に塗布したレジストに、電子ビーム露
光法によりピッチが変調された回折格子のパタンを転写
し、該転写パタンをマスクにしてエッチングを行い10
a及び10bの回折格子を形成する。つぎに横モードを
制御するためにストライプ状に導波路を加工し、再度有
機金属気相エピタキシャル成長法を用いて、n型InP
電流ブロック層7、p型InP電流ブロック層6、p型
InPクラッド層4及びp(+)型InGaAsPキャ
ップ層5を順次作成する。その後、p型InP電流ブロ
ック層6の一部をエッチングにより除去し、n型InP
電流ブロック層7を露出させ、その上にn型共通電極9
hを形成する。つぎにp型電極9d、9fを形成し、さ
らに回折格子が形成された部分10a及び10bを有す
る分布帰還領域102′及び103′に設けたp型電極
9d、9fをそれぞれ互いに電気的に分離するために、
それらの中間部分をp(+)型InGaAsPキャップ
層5まで除去する。本実施例の波長掃引機能付き分布帰
還型半導体レーザにおける回折格子では、10aの部分
では位相シフトを含む回折格子構造の繰り返し周期が3
3.36μm、10bの部分では35.7μmで繰り返
し形成されている。A method of manufacturing the above semiconductor laser will be briefly described. First, the active layer 2, the n-type InP conductive layer 12, and the optical confinement layer 3 are formed on the p-type InP substrate 1'by using the metal organic vapor phase epitaxial growth method. After that, the pattern of the diffraction grating having the pitch modulated by the electron beam exposure method is transferred to the resist applied on the surface of the light confinement layer 3, and the transfer pattern is used as a mask for etching.
Form the diffraction gratings a and 10b. Next, the waveguide is processed into a stripe shape in order to control the transverse mode, and n-type InP is again formed by using the metalorganic vapor phase epitaxial growth method.
The current blocking layer 7, the p-type InP current blocking layer 6, the p-type InP cladding layer 4, and the p (+)-type InGaAsP cap layer 5 are sequentially formed. After that, a part of the p-type InP current block layer 6 is removed by etching, and the n-type InP is removed.
The current blocking layer 7 is exposed, and the n-type common electrode 9 is formed thereon.
form h. Next, the p-type electrodes 9d and 9f are formed, and the p-type electrodes 9d and 9f provided in the distributed feedback regions 102 'and 103' having the portions 10a and 10b in which the diffraction grating is formed are electrically isolated from each other. for,
The middle portion thereof is removed up to the p (+) type InGaAsP cap layer 5. In the diffraction grating in the distributed feedback semiconductor laser with the wavelength sweep function of the present embodiment, the repetition period of the diffraction grating structure including the phase shift is 3 in the portion 10a.
The portions of 3.36 μm and 10b are repeatedly formed with a thickness of 35.7 μm.
【0024】上記構成の分布帰還型半導体レーザでは、
基板側p型電極8′とn型共通電極9hとの間に電流を
流すことにより、活性層2にキャリアが注入され、それ
によってもたらされた光学利得によって分布帰還領域1
02′、103′により決定される波長で発振する。分
布帰還領域102′、103′の屈折率は、p電極9
d、9fと共通電極9hとの間の電流による該当領域へ
のキャリア注入によって変化するから、p電極9d、9
fへの電流注入によって発振波長を制御することができ
る。In the distributed feedback semiconductor laser having the above structure,
Carriers are injected into the active layer 2 by causing a current to flow between the substrate-side p-type electrode 8'and the n-type common electrode 9h, and the distributed feedback region 1 is caused by the optical gain produced thereby.
It oscillates at a wavelength determined by 02 'and 103'. The refractive index of the distributed feedback regions 102 'and 103' is determined by the p-electrode 9
Since it is changed by the carrier injection into the corresponding region by the current between d and 9f and the common electrode 9h, the p electrodes 9d and 9f
The oscillation wavelength can be controlled by injecting a current into f.
【0025】基板側n電極に一定電流を流してレーザ発
振を起した状態で、分布帰還領域103′に設けた電極
9fに流す電流を変化させたときの発振波長の変化は図
2の第2実施例と同様になり1.500μmから1.6
00μmまでの100Å間隔で発振波長を変えることが
できる。A change in the oscillation wavelength when the current flowing through the electrode 9f provided in the distributed feedback region 103 'is changed in the state where a constant current is passed through the n-electrode on the substrate side to cause laser oscillation. Same as the embodiment, but from 1.500 μm to 1.6
It is possible to change the oscillation wavelength at 100Å intervals up to 00 μm.
【0026】また、電極9d、9fに流す電流値を同時
に変化させることにより、図3の実線及び破線で示すよ
うな波長の微調整も可能である。このように本実施例の
分布帰還型半導体レーザでは、p型電極9d、9fに流
す電流を上記手順で調整することによって、発振波長の
粗調整、微調整を行い、1000Åの波長範囲にわたっ
て任意の発振波長を選択することが可能になる。Further, by simultaneously changing the values of the currents flowing through the electrodes 9d and 9f, the wavelength can be finely adjusted as shown by the solid line and the broken line in FIG. As described above, in the distributed feedback semiconductor laser according to the present embodiment, the oscillation wavelength is roughly adjusted and finely adjusted by adjusting the currents flowing through the p-type electrodes 9d and 9f according to the above-described procedure. It becomes possible to select the oscillation wavelength.
【0027】[0027]
【発明の効果】上記のように本発明による分布反射器及
びそれを用いた波長可変半導体レーザは、基板上に、該
基板より光学的屈折率が大きい光導波路層と、該光導波
路層より屈折率が小さい光閉じ込め層をそれぞれ1層以
上含む光導波路で、該光導波路を形成する1層以上の層
に、周期的な凹凸の形成または周期的な組成の変化を形
成することにより、上記光導波路の等価屈折率を周期的
に変化させて回折格子を形成し、上記回折格子の周期か
らBraggの回折条件で決定される波長の光に対して
反射作用をもつ分布反射器において、一定長さの領域の
なかに回折格子の1周期の長さが微小に異なる位相シフ
トが少なくとも1個所以上存在し、上記位相シフトを含
む回折格子が、上記領域の長さを周期として少なくとも
2周期以上連続して周期的に形成された分布反射器を用
いて波長可変半導体レーザを構成したことにより、活性
導波路層の利得帯域幅にわたって、広帯域の波長掃引が
制御性よく行える波長可変半導体レーザを得ることがで
きるとともに、上記分布反射器は波長フィルタとして用
いることができる。As described above, the distributed reflector according to the present invention and the wavelength tunable semiconductor laser using the same are provided on a substrate, an optical waveguide layer having an optical refractive index larger than that of the substrate, and a refractive index greater than that of the optical waveguide layer. In the optical waveguide including one or more optical confinement layers each having a small ratio, the above-mentioned optical waveguide is formed by forming periodic unevenness or periodic composition change in one or more layers forming the optical waveguide. A diffraction grating is formed by periodically changing the equivalent refractive index of the waveguide, and a fixed length is obtained in a distributed reflector having a reflection action for light having a wavelength determined by the Bragg diffraction condition from the diffraction grating cycle. There is at least one phase shift in which the length of one period of the diffraction grating is slightly different, and the diffraction grating including the phase shift is continuous for at least two periods with the length of the region as the period. By configuring the wavelength tunable semiconductor laser using the distributed reflectors formed periodically, it is possible to obtain the wavelength tunable semiconductor laser in which the wavelength sweep over a wide band can be controlled with good control over the gain bandwidth of the active waveguide layer. At the same time, the distributed reflector can be used as a wavelength filter.
【図1】本発明の第1実施例である分布反射器を示す図
で、(a)は外観図、(b)は回折格子の1単位を構成
するユニットを示す図、(c)は各ユニットの構成を示
す図、(d)は光透過特性を示す図である。1A and 1B are diagrams showing a distributed reflector that is a first embodiment of the present invention, in which FIG. 1A is an external view, FIG. 1B is a diagram showing a unit constituting one unit of a diffraction grating, and FIG. The figure which shows the structure of a unit, (d) is a figure which shows a light transmission characteristic.
【図2】本発明の第2実施例である波長掃引機能付き分
布反射型半導体レーザを示す図で、(a)は平面図、
(b)は上記平面図に示すA−A′断面図、(c)は上
記平面図に示すB−B′断面図、(d)は回折格子のユ
ニット構成を示す図である。FIG. 2 is a diagram showing a distributed reflection type semiconductor laser with a wavelength sweeping function, which is a second embodiment of the present invention, in which (a) is a plan view,
(B) is a sectional view taken along the line AA 'shown in the above plan view, (c) is a sectional view taken along the line BB' shown in the above plan view, and (d) is a diagram showing a unit configuration of the diffraction grating.
【図3】本発明の第3実施例である波長掃引機能付き分
布帰還型半導体レーザを示す図で、(a)は上記半導体
レーザの平面図、(b)は上記平面図に示すA−A′断
面図、(c)は上記平面図に示すB−B′断面図であ
る。3A and 3B are diagrams showing a distributed feedback semiconductor laser with a wavelength sweeping function, which is a third embodiment of the present invention, in which FIG. 3A is a plan view of the semiconductor laser, and FIG. ′ Is a sectional view, and (c) is a BB ′ sectional view shown in the above plan view.
【図4】本発明の第4実施例である波長掃引機能付き分
布帰還型半導体レーザを示す図で、(a)は上記半導体
レーザの平面図、(b)は上記平面図に示すA−A′断
面図、(c)は上記平面図に示すB−B′断面図であ
る。FIG. 4 is a diagram showing a distributed feedback semiconductor laser with a wavelength sweeping function according to a fourth embodiment of the present invention, (a) is a plan view of the semiconductor laser, and (b) is AA shown in the plan view. ′ Is a sectional view, and (c) is a BB ′ sectional view shown in the above plan view.
【図5】従来の分布反射型半導体レーザの断面図であ
る。FIG. 5 is a sectional view of a conventional distributed Bragg reflector semiconductor laser.
【図6】参考文献記載の分布反射型半導体レーザを示す
図で、(a)は構造図、(b)は回折格子の概念を示す
図である。6A and 6B are diagrams showing a distributed Bragg reflector semiconductor laser described in a reference document, where FIG. 6A is a structural diagram and FIG. 6B is a diagram showing a concept of a diffraction grating.
【図7】従来の分布反射型半導体レーザによる発振波長
設定方法を示す図で、(a)は前側分布反射器領域の反
射ピーク、(b)は後側分布反射器領域の反射ピーク、
(c)はλ1の発振例、(d)はλ2の発振例をそれぞれ
示す図である。FIG. 7 is a diagram showing a method of setting an oscillation wavelength by a conventional distributed Bragg reflector semiconductor laser, where (a) is a reflection peak in the front distributed reflector region, (b) is a reflective peak in the rear distributed reflector region,
(C) is a diagram showing an example of oscillation of λ 1 , and (d) is a diagram showing an example of oscillation of λ 2 .
【図8】本発明による分布反射器の概念図で、(a)は
回折格子の構成、(b)は繰り返し単位、(c)は上記
繰り返し単位における回折格子をそれぞれ示す図であ
る。8A and 8B are conceptual diagrams of a distributed reflector according to the present invention, FIG. 8A is a diagram showing a structure of a diffraction grating, FIG. 8B is a repeating unit, and FIG. 8C is a diagram showing a diffraction grating in the repeating unit.
【図9】本発明における作用の説明図である。FIG. 9 is an explanatory diagram of an operation in the present invention.
【図10】本発明における発振波長の調整の様子を示す
図で、(a)は粗調整を示す図、(b)は微調整を示す
図である。10A and 10B are diagrams showing how the oscillation wavelength is adjusted in the present invention, where FIG. 10A is a diagram showing rough adjustment and FIG. 10B is a diagram showing fine adjustment.
1、1′ 基板 2 活性導波路層、活性層 3 非活性導波路層、光閉じ込め層 10 回折格子 10a 回折格子領域が周期Mfで形成された部分 10b 回折格子領域が周期Mrで形成された部分1, 1'Substrate 2 Active waveguide layer, active layer 3 Inactive waveguide layer, optical confinement layer 10 Diffraction grating 10a Diffraction grating region is formed with period M f 10b Diffraction grating region is formed with period M r Part
───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 啓之 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroyuki Ishii 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation
Claims (5)
い光導波路層と、該光導波路層より屈折率が小さい光閉
じ込め層をそれぞれ1層以上含む光導波路で、該光導波
路を形成する1層以上の層に、周期的な凹凸の形成また
は周期的な組成の変化を形成することにより、上記光導
波路の等価屈折率を周期的に変化させて回折格子を形成
し、上記回折格子の周期からBraggの回折条件で決
定される波長をもつ光に対して反射作用を行う分布反射
器において、一定長さの領域のなかに回折格子の1周期
の長さが微小に異なる位相シフトが、少なくとも1個所
以上存在し、上記位相シフトを含む回折格子が、上記領
域の長さを周期として少なくとも2周期以上連続して、
周期的に形成されていることを特徴とする分布反射器。1. An optical waveguide is formed on a substrate by an optical waveguide including an optical waveguide layer having an optical refractive index larger than that of the substrate and one or more optical confinement layers having a refractive index smaller than that of the optical waveguide layer. By forming periodical unevenness or periodical compositional change in one or more layers, the equivalent refractive index of the optical waveguide is periodically changed to form a diffraction grating. In a distributed reflector that reflects light having a wavelength determined by Bragg's diffraction condition from the period of, the phase shift in which the length of one period of the diffraction grating is slightly different is within a region of constant length. , There is at least one place, and the diffraction grating including the phase shift is continuous for at least two periods with the length of the region as a period,
A distributed reflector characterized by being formed periodically.
とする請求項1記載の分布反射器。2. The distributed reflector according to claim 1, wherein the substrate is a semiconductor substrate.
導波路層と、該活性導波路層の前後少なくとも一方に、
上記活性導波路層に光学的に結合した非活性導波路層を
有し、非活性導波路領域の一部または全部に回折格子を
有する分布反射器を形成した波長可変半導体レーザにお
いて、上記分布反射器の少なくとも1つが、請求項1ま
たは2に記載した分布反射器で構成されていることを特
徴とする波長可変半導体レーザ。3. An active waveguide layer formed in a predetermined region of a semiconductor waveguide, and at least one of before and after the active waveguide layer,
A tunable semiconductor laser having a distributed reflector having a non-active waveguide layer optically coupled to the active waveguide layer and having a diffraction grating in a part or all of the non-active waveguide region, wherein the distributed reflection A tunable semiconductor laser, wherein at least one of the devices is constituted by the distributed reflector according to claim 1 or 2.
器を形成する半導体層のうち少なくとも1層が、上記分
布反射器が反射作用を行う波長帯の光に対して、光学利
得を有する活性導波路層により形成されており、上記活
性導波路層の光増幅作用によって、上記分布反射器の反
射波長の1つで発振することを特徴とする波長可変半導
体レーザ。4. At least one of the semiconductor layers forming the distributed reflector according to claim 1 or 2 has an optical gain with respect to light in a wavelength band in which the distributed reflector performs a reflecting action. A wavelength tunable semiconductor laser which is formed of an active waveguide layer and which oscillates at one of the reflection wavelengths of the distributed reflector due to the optical amplification action of the active waveguide layer.
ーザにおいて、発振光に対し透明で電流注入によるキャ
リア密度変化により屈折率を制御できる波長制御層を有
しており、上記波長制御層への電流注入により発振波長
を掃引することを特徴とする波長可変半導体レーザ。5. The wavelength tunable semiconductor laser according to claim 4, further comprising a wavelength control layer which is transparent to oscillated light and whose refractive index can be controlled by changing carrier density due to current injection. Tunable semiconductor laser characterized in that the oscillation wavelength is swept by current injection of
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21769392A JP2770900B2 (en) | 1992-08-17 | 1992-08-17 | Distributed reflector and tunable semiconductor laser using the same |
US08/026,451 US5325392A (en) | 1992-03-06 | 1993-03-03 | Distributed reflector and wavelength-tunable semiconductor laser |
DE69325118T DE69325118T2 (en) | 1992-03-06 | 1993-03-04 | Distributed reflector and semiconductor laser with tunable wavelength |
EP98102645A EP0847116B1 (en) | 1992-03-06 | 1993-03-04 | Distributed reflector and wavelength-tunable semiconductor laser |
DE69331533T DE69331533T2 (en) | 1992-03-06 | 1993-03-04 | Distributed reflector and semiconductor laser with tunable wavelength |
EP93103480A EP0559192B1 (en) | 1992-03-06 | 1993-03-04 | Distributed reflector and wavelength-tunable semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21769392A JP2770900B2 (en) | 1992-08-17 | 1992-08-17 | Distributed reflector and tunable semiconductor laser using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0669586A true JPH0669586A (en) | 1994-03-11 |
JP2770900B2 JP2770900B2 (en) | 1998-07-02 |
Family
ID=16708247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21769392A Expired - Lifetime JP2770900B2 (en) | 1992-03-06 | 1992-08-17 | Distributed reflector and tunable semiconductor laser using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2770900B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004241627A (en) * | 2003-02-06 | 2004-08-26 | Mitsubishi Electric Corp | Semiconductor laser, driving method of semiconductor laser and wavelength converting element |
JP2008227010A (en) * | 2007-03-09 | 2008-09-25 | Nec Corp | Light-source apparatus |
JP2016506075A (en) * | 2012-12-20 | 2016-02-25 | ファズ テクノロジー リミテッド | System and method for compensating frequency distortion and polarization-induced effects in optical systems |
-
1992
- 1992-08-17 JP JP21769392A patent/JP2770900B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004241627A (en) * | 2003-02-06 | 2004-08-26 | Mitsubishi Electric Corp | Semiconductor laser, driving method of semiconductor laser and wavelength converting element |
JP2008227010A (en) * | 2007-03-09 | 2008-09-25 | Nec Corp | Light-source apparatus |
JP2016506075A (en) * | 2012-12-20 | 2016-02-25 | ファズ テクノロジー リミテッド | System and method for compensating frequency distortion and polarization-induced effects in optical systems |
Also Published As
Publication number | Publication date |
---|---|
JP2770900B2 (en) | 1998-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5325392A (en) | Distributed reflector and wavelength-tunable semiconductor laser | |
US6594298B2 (en) | Multi-wavelength semiconductor laser array and method for fabricating the same | |
US5394429A (en) | Distributed-feedback laser with improved analog modulation distortion characteristics and method for fabricating the same | |
JP3237733B2 (en) | Semiconductor laser | |
EP0533485B1 (en) | Semiconductor device and method of making it | |
JPH11214793A (en) | Distributed feedback semiconductor laser | |
JP3847038B2 (en) | Optical semiconductor device and manufacturing method thereof | |
US5321716A (en) | Distributed Feedback semiconductor laser with controlled phase shift | |
KR100626270B1 (en) | Widely Tunable Coupled-Ring Reflector Laser Diode | |
EP0296066A2 (en) | An integrated laser device with refractive index modulator | |
JP2690840B2 (en) | Distributed light reflector and wavelength tunable semiconductor laser using the same | |
JPH0669586A (en) | Distributed reflector and variable wavelength semiconductor laser using the same | |
JPH06112570A (en) | Distributed bragg-reflection type semiconductor laser | |
JP2770897B2 (en) | Semiconductor distributed reflector and semiconductor laser using the same | |
JPH0653591A (en) | Element for converting optical frequency | |
JP2832920B2 (en) | Semiconductor laser with wavelength sweep function | |
JP2917950B2 (en) | Tunable semiconductor laser and method of manufacturing the same | |
JPH11150324A (en) | Semiconductor laser | |
JP2713445B2 (en) | Semiconductor laser device | |
JPH08274406A (en) | Distributed feedback semiconductor laser and its manufacture | |
JP2894285B2 (en) | Distributed feedback semiconductor laser and method of manufacturing the same | |
JPH06283802A (en) | Semiconductor laser device and fabrication thereof | |
KR100368323B1 (en) | Fabrication method of gain coupled single-mode semiconductor laser | |
JPH06283803A (en) | Semiconductor light emitting device | |
JP2770898B2 (en) | Tunable semiconductor laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090417 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090417 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100417 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100417 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110417 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120417 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130417 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130417 Year of fee payment: 15 |