JPH11150324A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH11150324A
JPH11150324A JP31726897A JP31726897A JPH11150324A JP H11150324 A JPH11150324 A JP H11150324A JP 31726897 A JP31726897 A JP 31726897A JP 31726897 A JP31726897 A JP 31726897A JP H11150324 A JPH11150324 A JP H11150324A
Authority
JP
Japan
Prior art keywords
temperature
semiconductor laser
diffraction grating
optical waveguide
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31726897A
Other languages
Japanese (ja)
Other versions
JP3166836B2 (en
Inventor
Yoshiharu Murotani
義治 室谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP31726897A priority Critical patent/JP3166836B2/en
Publication of JPH11150324A publication Critical patent/JPH11150324A/en
Application granted granted Critical
Publication of JP3166836B2 publication Critical patent/JP3166836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor laser of a structure, wherein temperature dependence of oscillation wavelength of the laser is reduced and the oscillation wavelength is stable to a temperature change. SOLUTION: Distributed reflectors having different temperature dependences of effective refractive index are formed on both sides on the front and rear of an active region 2 of a distributed reflection type semiconductor laser, and sample diffraction gratings 6 and 7 are respectively formed on these distributed reflectors. The ratio of the temperature gradient to a change in the refractive indexes of optical waveguides 4 and 5 on the front and rear of this active region 2 to the sample period of the diffraction gratings 6 and 7 contrives so as to become constant to constitute a vernier structure using the distributed reflectors formed on the front and rear of the above region 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体レーザに関す
るものであり、特に半導体レーザの発振波長を温度変化
に対して安定化させるためのものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser, and more particularly, to stabilizing an oscillation wavelength of a semiconductor laser against a change in temperature.

【0002】[0002]

【従来の技術】高速光通信用半導体レーザとして実用化
されている分布帰還型レーザ(DFB:distributed fe
edback laser diode)や分布反射型(DBR:distribu
ted Bragg reflector )などのブラッグ回折格子を有す
る半導体レーザは、導波路の等価屈折率と回折格子周期
により発振波長が決定される。しかしレーザを構成する
半導体の屈折率が温度依存性を有するために、素子温度
の上昇に伴いレーザの発振波長は約0.1nm/℃で長
波長側に変化する。そのために、特に波長の制御精度が
重要な波長多重伝送(WDM:wavelength division mu
ltiplexing)システム等においては、半導体レーザのペ
ルチェ素子による温度制御が不可欠になり、そのために
消費電力が増大し、デバイスが大型化していた。
2. Description of the Related Art Distributed feedback lasers (DFBs) which have been put to practical use as semiconductor lasers for high-speed optical communication.
edback laser diode) and distributed reflection type (DBR: distribute)
In a semiconductor laser having a Bragg diffraction grating such as a ted Bragg reflector, the oscillation wavelength is determined by the equivalent refractive index of the waveguide and the period of the diffraction grating. However, since the refractive index of the semiconductor constituting the laser has temperature dependence, the oscillation wavelength of the laser changes to a longer wavelength side at about 0.1 nm / ° C. as the element temperature rises. For this reason, wavelength division multiplexing transmission (WDM: wavelength division mu) in which wavelength control accuracy is particularly important.
In a ltiplexing system or the like, temperature control by a Peltier element of a semiconductor laser is indispensable, and therefore, power consumption is increased and the device is enlarged.

【0003】このようなレーザの発振波長の温度依存性
を低減させる方法としては、例えば特開昭60−558
8に示されるような、温度上昇に対して屈折率が下がる
負の温度依存性を有する物質や温度上昇によりレーザ共
振器の一部分が短くなるような物質を採用する方法が知
られている。また、例えば特開平9−92924に示さ
れるように温度に対して負の屈折率を有する誘電体等を
反射器に採用する方法が知られている。これらの方法で
は負の屈折率温度依存性を有する材料等を用いることに
より、レーザを構成する半導体材料の正の屈折率温度依
存性を補償し波長の安定化を図っている。
As a method of reducing the temperature dependence of the oscillation wavelength of such a laser, for example, Japanese Patent Application Laid-Open No. 60-558 discloses a method.
As shown in FIG. 8, there is known a method of using a material having a negative temperature dependency, in which the refractive index decreases with a rise in temperature, or a material in which a part of the laser resonator is shortened by the rise in temperature. Also, for example, as shown in JP-A-9-92924, a method is known in which a dielectric or the like having a negative refractive index with respect to temperature is used for a reflector. In these methods, a material having a negative temperature dependence of the refractive index is used, thereby compensating for the positive temperature dependence of the refractive index of the semiconductor material constituting the laser and stabilizing the wavelength.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
負の屈折率温度依存性を有する材料は、ポリスチレンや
PMMA等の有機材料やフッ化リチウム等の誘電体であ
るために、通常のレーザ作製工程を適用するのは必ずし
も容易でなく、また、レーザ特性の信頼性、長期安定性
についても、通常の半導体レーザと比較すると必ずしも
十分な結果が得られない。
However, the material having the negative temperature dependence of the refractive index is an organic material such as polystyrene or PMMA, or a dielectric such as lithium fluoride. Is not always easy to apply, and sufficient results are not always obtained with respect to reliability and long-term stability of laser characteristics as compared with ordinary semiconductor lasers.

【0005】本発明の目的は、通常の半導体レーザ作製
工程を用いて、発振波長の温度依存性が小さいレーザを
提供することにある。
An object of the present invention is to provide a laser having a small temperature dependence of an oscillation wavelength by using a normal semiconductor laser manufacturing process.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
種々検討の結果、屈折率の温度依存性が異なる複数の半
導体導波路を組み合わせることによる下記の発明に到達
した。 1.ブラッグ反射器を有する半導体レーザにおいて、等
価屈折率の温度依存性が異なる少なくとも二種類の光導
波路と、前記光導波路に設けられた複数の波長を反射す
る回折格子構造を有することを特徴とする半導体レー
ザ。 2.前記光導波路に設ける回折格子構造がサンプル回折
格子であることを特徴とする上記1に記載の半導体レー
ザ。 3.前記複数のサンプル回折格子を形成する光導波路に
おいて、少なくとも素子温度を変化させるときの平均温
度における光導波路の等価屈折率と回折格子周期との積
が一定であることおよび光導波路の屈折率変化の温度勾
配とサンプル回折格子のサンプル周期との逆比が一定で
あることを特徴とする上記1または2に記載の半導体レ
ーザ。 4.少なくとも活性領域と、活性領域の共振器方向両側
に等価屈折率の温度依存性が異なる受動領域と、前記受
動領域にサンプル回折格子とを有する分布反射型である
ことを特徴とする上記3に記載の半導体レーザ。 5.少なくとも前記サンプル回折格子を有する活性領域
と、前記サンプル回折格子を有する受動領域とを有する
ことを特徴とする上記3に記載の半導体レーザ。 6.前記光導波路の温度を制御するための電流注入によ
る加熱機構を有することを特徴とする上記4または5に
記載の半導体レーザ。
As a result of various studies to achieve the above object, the following invention has been achieved by combining a plurality of semiconductor waveguides having different temperature dependences of the refractive index. 1. A semiconductor laser having a Bragg reflector, comprising: a semiconductor laser having at least two types of optical waveguides having different temperature dependences of an equivalent refractive index and a diffraction grating structure provided in the optical waveguide and reflecting a plurality of wavelengths. laser. 2. 2. The semiconductor laser according to the above item 1, wherein the diffraction grating structure provided in the optical waveguide is a sample diffraction grating. 3. In the optical waveguide forming the plurality of sample diffraction gratings, the product of the equivalent refractive index of the optical waveguide and the diffraction grating period at an average temperature at least when the element temperature is changed is constant, and the change in the refractive index of the optical waveguide is constant. 3. The semiconductor laser according to the above 1 or 2, wherein the inverse ratio between the temperature gradient and the sample period of the sample diffraction grating is constant. 4. 4. A distributed reflection type having at least an active region, a passive region having a temperature dependency of an equivalent refractive index different on both sides of the active region in a resonator direction, and a sample diffraction grating in the passive region. Semiconductor laser. 5. 4. The semiconductor laser according to the item 3, wherein the semiconductor laser has at least an active region having the sample diffraction grating and a passive region having the sample diffraction grating. 6. 6. The semiconductor laser according to the above 4 or 5, further comprising a heating mechanism by current injection for controlling the temperature of the optical waveguide.

【0007】[0007]

【発明の実施の形態】先ず本発明の原理を図2を用いて
説明する。図2は後述する図1に示す分布反射型レーザ
の波長が安定化する理由を説明する図である。図中の
(a)から(d)は素子温度が0℃、20℃、50℃お
よび100℃における、素子前面側反射スペクトル2
2、および、素子後面側反射スペクトル23を横軸を波
長として模式的に示している。図2に示すように、素子
前面側反射スペクトル22の反射スペクトル間隔が、素
子後面側反射スペクトル23と比較して狭くなってお
り、素子前後の反射スペクトルがバーニア構造を構成し
ている。また、素子前面側波長温度勾配24は、素子後
面側温度勾配25に比べて小さくなっている。このよう
な構造の分布反射器を有するレーザは前後両方の反射ス
ペクトルが一致する波長でレーザ発振する。したがって
反射スペクトルの波長間隔は温度が変化した場合にもほ
とんど変化しないために、素子温度が変化した場合でも
発振波長21がほとんど変化しない構造になっている。
すなわち、二つのサンプル回折格子を形成する光導波路
において、素子温度を変化させるときの平均温度(50
℃)において反射スペクトルの中心波長が一致する(光
導波路の等価屈折率と回折格子周期との積が一致する)
構造とし、かつ、反射スペクトル変化の温度勾配(光導
波路の屈折率変化の温度勾配)と反射スペクトルの波長
間隔の比(サンプル回折格子のサンプル周期の逆比)が
一定にすることにより、温度変化に対する波長の変化を
補償する構造となっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the principle of the present invention will be described with reference to FIG. FIG. 2 is a diagram for explaining the reason why the wavelength of the distributed reflection laser shown in FIG. 1 described later is stabilized. (A) to (d) in the figure show the reflection spectrum 2 at the front side of the device when the device temperature is 0 ° C., 20 ° C., 50 ° C. and 100 ° C.
2, and the reflection spectrum 23 on the rear surface side of the element is schematically shown with the horizontal axis as the wavelength. As shown in FIG. 2, the reflection spectrum interval of the front-side reflection spectrum 22 is narrower than the rear-side reflection spectrum 23 of the element, and the reflection spectra before and after the element constitute a vernier structure. The wavelength gradient 24 on the front side of the element is smaller than the temperature gradient 25 on the rear side of the element. A laser having a distributed reflector having such a structure oscillates at a wavelength at which both front and rear reflection spectra match. Therefore, the wavelength interval of the reflection spectrum hardly changes even when the temperature changes, so that the oscillation wavelength 21 hardly changes even when the element temperature changes.
That is, in the optical waveguide forming the two sample diffraction gratings, the average temperature (50
(° C), the center wavelengths of the reflection spectra match (the product of the equivalent refractive index of the optical waveguide and the diffraction grating period matches)
The structure has a structure in which the temperature gradient of the change in the reflection spectrum (temperature gradient of the change in the refractive index of the optical waveguide) and the ratio of the wavelength interval of the reflection spectrum (the inverse ratio of the sample period of the sample diffraction grating) are constant. Is compensated for the change in the wavelength with respect to.

【0008】本発明はバンドギャップエネルギーの温度
依存性や屈折率の波長分散特性などによって、屈折率の
温度依存性が組成の違いにより異なること、あるいは、
受動領域の屈折率温度依存性が、温度上昇に伴って閾値
キャリヤ密度が増加し屈折率が低下する活性領域に比べ
て大きくなることを利用するものである。また本発明
は、通常レーザを使用する温度において、温度変化に対
して屈折率がほぼ直線的に変化することを利用するもの
である。
According to the present invention, the temperature dependence of the refractive index differs depending on the composition due to the temperature dependence of the band gap energy and the wavelength dispersion characteristics of the refractive index.
This is based on the fact that the temperature dependence of the refractive index of the passive region is larger than that of the active region in which the threshold carrier density increases as the temperature increases and the refractive index decreases. Further, the present invention utilizes the fact that the refractive index changes almost linearly with a temperature change at a temperature at which a laser is usually used.

【0009】[0009]

【実施例】次に本発明の実施例について図面を参照して
説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.

【0010】実施例1 図1は本発明の第1の実施例の構成を示す分布反射型レ
ーザの断面構造である。図1に示すようにn−InP基
板1上にMOVPE法により、発光波長のピークが1.
55μmとなる多重量子井戸(MQW)活性領域2およ
びp−InPクラッド層3を成長する。次に活性領域2
が長さ300μmとなるようにエッチングし、活性領域
2の共振器方向前および後両側に光導波路4および5
を、被覆率の異なるSiO2 マスクで導波路を挟んだ選
択MOVPE法によりInGaAsP層を成長する。光
導波路4および5の組成は、それぞれ素子前面側(光出
力側)では禁制帯幅が波長にして1.20μmに対応す
る組成(InGaAsP 1.20μm組成)、また素
子後面側では禁制帯幅が波長にして1.25μmに対応
する組成(InGaAsP 1.25μm組成)となる
ように作製する。
Embodiment 1 FIG. 1 is a cross-sectional structure of a distributed reflection laser showing the configuration of a first embodiment of the present invention. As shown in FIG. 1, the peak of the emission wavelength is 1. on the n-InP substrate 1 by the MOVPE method.
A multiple quantum well (MQW) active region 2 having a thickness of 55 μm and a p-InP cladding layer 3 are grown. Next, active area 2
Is etched so as to have a length of 300 μm, and the optical waveguides 4 and 5 are provided on both front and rear sides of the active region 2 in the resonator direction.
Is grown by a selective MOVPE method with a waveguide sandwiched between SiO 2 masks having different coverages. The compositions of the optical waveguides 4 and 5 are such that the forbidden band width corresponds to 1.20 μm in wavelength (InGaAsP 1.20 μm composition) on the front side (light output side) of the element, and the forbidden band width on the rear side of the element. It is manufactured so as to have a composition corresponding to a wavelength of 1.25 μm (InGaAsP 1.25 μm composition).

【0011】次にこの前後の光導波路に電子ビーム露光
法を用いて、素子前面側の660μmの光導波路に22
0μm間隔で20μmの領域に周期0.2400μmの
回折格子からなるサンプル回折格子6を作製し、後面側
の600μmの光導波路に200μm間隔で20μmの
領域に周期0.2405μmの回折格子からなるサンプ
ル回折格子7を作製する。
Next, an electron beam exposure method is applied to the front and rear optical waveguides to form a 660 μm optical waveguide on the front side of the device.
A sample diffraction grating 6 consisting of a diffraction grating having a period of 0.2400 μm is formed in a region of 20 μm at intervals of 0 μm, and a sample diffraction grating comprising a diffraction grating having a period of 0.2405 μm is formed in a region of 20 μm at intervals of 200 μm in a 600 μm optical waveguide on the rear surface side. A lattice 7 is produced.

【0012】この光導波路上にMOVPE法により、I
nPクラッド層8を成長した後に、通常のレーザ作製プ
ロセスに従って、ストライプ構造の光導波路を形成し、
MOVPE法を用いて電流ブロック層を再成長する。さ
らにn側電極9、p側電極10および素子前後両端面に
無反射コーティング12、13を施してレーザを作製す
る。
On this optical waveguide, the IV
After growing the nP cladding layer 8, an optical waveguide having a stripe structure is formed according to a normal laser fabrication process,
The current block layer is regrown using the MOVPE method. Further, anti-reflection coatings 12 and 13 are applied to the n-side electrode 9, the p-side electrode 10, and both front and rear end faces of the element, thereby producing a laser.

【0013】このように作製したレーザは、反射温度2
0℃において、素子前面側が波長1.5477μmを中
心に1.65nm間隔、素子後面側が波長1.5474
μmを中心に1.80nm間隔となっている。したがっ
て、20℃においては1.5510μmでバーニア構造
を構成する前後の反射スペクトルが一致してレーザ発振
する。
The laser manufactured in this manner has a reflection temperature of 2
At 0 ° C., the front side of the device is spaced at 1.65 nm centered on a wavelength of 1.5477 μm, and the rear side of the device is at a wavelength of 1.5474
The interval is 1.80 nm centering on μm. Therefore, at 20 ° C., the laser oscillates at 1.5510 μm in which the reflection spectra before and after forming the vernier structure coincide.

【0014】またそれぞれの分布反射器の温度依存性は
素子前面側で0.11nm/℃、素子後面側で0.12
nm/℃となっており、素子温度が7.5℃上昇する
と、反射スペクトルはそれぞれ0.825nmおよび
0.90nm長波長側に変化する。したがって、この場
合にも1.5510μmで反射スペクトルが一致するた
め、温度変化に対して発振モードが隣のモードに変化す
ることにより、発振波長の変化量が小さいレーザが実現
される。素子温度が0℃から100℃の間でこのような
発振特性を有しており、この温度範囲で発振波長の分布
は約1nm以下に安定化されている。
The temperature dependence of each distributed reflector is 0.11 nm / ° C. on the front side of the element and 0.12 nm / ° C. on the rear side of the element.
nm / ° C., and when the element temperature rises by 7.5 ° C., the reflection spectrum changes to the longer wavelength side of 0.825 nm and 0.90 nm, respectively. Therefore, also in this case, since the reflection spectrum is equal at 1.5510 μm, the oscillation mode changes to the adjacent mode with respect to the temperature change, thereby realizing a laser having a small change in the oscillation wavelength. The device has such oscillation characteristics when the element temperature is between 0 ° C. and 100 ° C., and in this temperature range, the distribution of the oscillation wavelength is stabilized to about 1 nm or less.

【0015】本実施例ではエッチングと再成長によりI
nGaAsP光導波路を作製したが、選択MOVPE法
を用いて活性領域の形成と同時に光導波路領域を形成す
ることも可能である。また本実施例では回折格子形成領
域に電極を形成しない構造としているが、InPクラッ
ド層8をp−InPクラッド層として、電極を形成する
ことも可能であり、この場合には回折格子形成領域に電
流を注入することにより発振波長の微調整が可能にな
る。さらに本実施例では光導波路にサンプル回折格子を
形成しているが、複数の波長を反射する反射スペクトル
を構成するものであればよく、位相シフト回折格子、周
期変調回折格子によってこのような反射スペクトルを構
成することも同様に可能である。
In this embodiment, etching and regrowth are performed to obtain I
Although the nGaAsP optical waveguide was manufactured, it is also possible to form the optical waveguide region simultaneously with the formation of the active region using the selective MOVPE method. In this embodiment, the electrode is not formed in the diffraction grating forming region. However, the electrode may be formed by using the InP cladding layer 8 as a p-InP cladding layer. In this case, the electrode is formed in the diffraction grating forming region. By injecting the current, the oscillation wavelength can be finely adjusted. Further, in this embodiment, the sample diffraction grating is formed in the optical waveguide. However, it is sufficient that a reflection spectrum reflecting a plurality of wavelengths is formed, and such a reflection spectrum is formed by a phase shift diffraction grating and a periodic modulation diffraction grating. Is similarly possible.

【0016】実施例2 図3は本発明の第2の実施例である半導体レーザの断面
構造を示している。図に示すようにn−InP基板1上
にSiO2 マスクを用いた選択MOVPE法により、多
重量子井戸(MQW)活性層2、光導波路5をそれぞれ
発光波長のピークが1.55μmおよび1.2μmとな
るように作製する。次に450μmの活性層2に150
μm間隔で30μmの領域に周期0.2400μmの回
折格子を、また、500μmの光導波路5に125μm
間隔で25μmの領域に周期0.2410μmの回折格
子からなるサンプル回折格子7を形成する。さらにこの
活性領域および光導波路上に、p−InPクラッド層3
およびInPクラッド層8を2回の成長で形成する。そ
の後、通常のレーザ作製プロセスに従って、電流ブロッ
ク層を有するストライプ構造の光導波路を形成し、n側
電極9、p側電極10および素子前後面に無反射コーテ
ィング12、13を形成してレーザを作製する。
Embodiment 2 FIG. 3 shows a sectional structure of a semiconductor laser according to a second embodiment of the present invention. As shown in the figure, a multiple quantum well (MQW) active layer 2 and an optical waveguide 5 are formed on an n-InP substrate 1 by a selective MOVPE method using a SiO 2 mask, and the emission wavelength peaks are 1.55 μm and 1.2 μm, respectively. It is manufactured so that Next, 150 μm is applied to the active layer 2 of 450 μm.
A diffraction grating having a period of 0.2400 μm is provided in a region of 30 μm at intervals of μm, and a 125 μm
A sample diffraction grating 7 composed of a diffraction grating having a period of 0.2410 μm is formed in an area of 25 μm at intervals. Further, a p-InP cladding layer 3 is formed on the active region and the optical waveguide.
And an InP cladding layer 8 are formed by two growths. Thereafter, an optical waveguide having a stripe structure having a current blocking layer is formed according to a normal laser manufacturing process, and antireflection coatings 12 and 13 are formed on the n-side electrode 9, the p-side electrode 10, and the front and rear surfaces of the element, thereby manufacturing a laser. I do.

【0017】このように作製したレーザの活性領域およ
び分布反射器領域における発振および反射スペクトルは
実施例1と同様にバーニア構造を構成し、温度依存性は
それぞれ0.10nm/℃および0.12nm/℃とな
っている。このレーザの発振波長は、素子温度を0℃か
ら100℃まで変化させたとき、実施例1と同じ原理で
周期的に変化し、その変化量の分布は0.5nm以下に
安定化されている。
The oscillation and reflection spectra of the laser thus manufactured in the active region and the distributed reflector region constitute a vernier structure as in the first embodiment, and the temperature dependence is 0.10 nm / ° C. and 0.12 nm / °, respectively. ° C. When the element temperature is changed from 0 ° C. to 100 ° C., the oscillation wavelength of this laser periodically changes according to the same principle as in the first embodiment, and the distribution of the change is stabilized to 0.5 nm or less. .

【0018】実施例3 図4は本発明の第3の実施例である半導体レーザの断面
構造を示している。第一の実施例とはチタンで形成した
集積型ヒータ14を集積している点のみが異なる。図5
は作製したレーザの集積型ヒータを動作させない場合の
発振波長の温度依存性を示している。温度上昇に伴い約
0.1nm/℃で波長が長波長側に連続的に変化し、温
度が約8℃変わるごとに発振モードがひとつ隣に変わ
り、発振波長が短波長側に非連続に移動する。0℃から
100℃までの温度範囲において、発振波長の分布は約
1nm以下に安定化されている。図6は集積ヒータに電
流を注入して動作させ、素子温度を微調整することによ
り発振波長を安定化させた場合を示している。ヒータ加
熱による温度変化量は8℃以下でよいために、最大約5
0mAの電流注入で図の●で示す発振波長が得られ、発
振波長の分布としては0.1nm以下に安定化される。
Embodiment 3 FIG. 4 shows a sectional structure of a semiconductor laser according to a third embodiment of the present invention. The only difference from the first embodiment is that an integrated heater 14 made of titanium is integrated. FIG.
Shows the temperature dependence of the oscillation wavelength when the integrated heater of the manufactured laser is not operated. As the temperature rises, the wavelength continuously changes to the long wavelength side at about 0.1 nm / ° C. Every time the temperature changes about 8 ° C, the oscillation mode changes to the next one, and the oscillation wavelength moves discontinuously to the short wavelength side. I do. In the temperature range from 0 ° C. to 100 ° C., the distribution of the oscillation wavelength is stabilized to about 1 nm or less. FIG. 6 shows a case where the integrated heater is operated by injecting a current, and the oscillation wavelength is stabilized by finely adjusting the element temperature. Since the amount of temperature change due to heater heating may be 8 ° C or less, a maximum of about 5
Oscillation wavelength indicated by ● in the figure is obtained by current injection of 0 mA, and the oscillation wavelength distribution is stabilized to 0.1 nm or less.

【0019】[0019]

【発明の効果】本発明による分布反射器を有するレーザ
構造によって、素子温度変化に対して発振波長を安定化
したレーザ素子が提供され、その結果レーザモジュール
のペルチェ素子等が不要になり、デバイスの小型化、低
コスト化が実現される。
According to the laser structure having the distributed reflector according to the present invention, a laser element whose oscillation wavelength is stabilized against a change in element temperature is provided. As a result, a Peltier element or the like of a laser module becomes unnecessary, and Downsizing and cost reduction are realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例である半導体レーザの断面図で
ある。
FIG. 1 is a sectional view of a semiconductor laser according to an embodiment of the present invention.

【図2】本発明の原理を示す図である。FIG. 2 is a diagram illustrating the principle of the present invention.

【図3】本発明の実施例である半導体レーザの断面図で
ある。
FIG. 3 is a cross-sectional view of a semiconductor laser according to an embodiment of the present invention.

【図4】本発明の実施例である半導体レーザの断面図で
ある。
FIG. 4 is a cross-sectional view of a semiconductor laser according to an embodiment of the present invention.

【図5】本発明のレーザ素子温度とレーザ発振波長との
関係の一例を示す図である。
FIG. 5 is a diagram illustrating an example of a relationship between a laser element temperature and a laser oscillation wavelength according to the present invention.

【図6】本発明のレーザ素子温度とレーザ発振波長との
関係の他の例を示す図である。
FIG. 6 is a diagram showing another example of the relationship between the laser element temperature and the laser oscillation wavelength of the present invention.

【符号の説明】[Explanation of symbols]

1 n−InP基板 2 活性領域 3 p−InPクラッド層 4、5 光導波路 6、7、11 サンプル回折格子(サンプルドグレー
ティング) 8 InPクラッド層 9 n側電極 10 p側電極 12 無反射コーティング(前面側) 13 無反射コーティング(後面側) 14 集積型ヒータ 21 発振波長 22 素子前面側の反射スペクトル 23 素子後面側の反射スペクトル 24 素子前面側の波長温度勾配 25 素子後面側の波長温度勾配
REFERENCE SIGNS LIST 1 n-InP substrate 2 active region 3 p-InP cladding layer 4, 5 optical waveguide 6, 7, 11 sample diffraction grating (sampled grating) 8 InP cladding layer 9 n-side electrode 10 p-side electrode 12 anti-reflection coating (front surface) 13) Anti-reflection coating (rear side) 14 Integrated heater 21 Oscillation wavelength 22 Reflection spectrum on front side of element 23 Reflection spectrum on rear side of element 24 Wavelength temperature gradient on front side of element 25 Wavelength temperature gradient on rear side of element

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ブラッグ反射器を有する半導体レーザに
おいて、等価屈折率の温度依存性が異なる少なくとも二
種類の光導波路と、前記光導波路に設けられた複数の波
長を反射する回折格子構造を有することを特徴とする半
導体レーザ。
1. A semiconductor laser having a Bragg reflector, comprising: at least two types of optical waveguides having different temperature dependences of equivalent refractive index; and a diffraction grating structure provided in the optical waveguide and reflecting a plurality of wavelengths. A semiconductor laser characterized by the above-mentioned.
【請求項2】 前記光導波路に設ける回折格子構造がサ
ンプル回折格子であることを特徴とする請求項1に記載
の半導体レーザ。
2. The semiconductor laser according to claim 1, wherein the diffraction grating structure provided in the optical waveguide is a sample diffraction grating.
【請求項3】 前記複数のサンプル回折格子を形成する
光導波路において、少なくとも素子温度を変化させると
きの平均温度における光導波路の等価屈折率と回折格子
周期との積が一定であることおよび光導波路の屈折率変
化の温度勾配とサンプル回折格子のサンプル周期との逆
比が一定であることを特徴とする請求項1または2に記
載の半導体レーザ。
3. The optical waveguide forming the plurality of sample diffraction gratings, wherein a product of an equivalent refractive index of the optical waveguide and a diffraction grating period at least at an average temperature when an element temperature is changed is constant. 3. The semiconductor laser according to claim 1, wherein a reciprocal ratio between the temperature gradient of the refractive index change and the sample period of the sample diffraction grating is constant.
【請求項4】 少なくとも活性領域と、活性領域の共振
器方向両側に等価屈折率の温度依存性が異なる受動領域
と、前記受動領域にサンプル回折格子とを有する分布反
射型であることを特徴とする請求項3に記載の半導体レ
ーザ。
4. A distributed reflection type having at least an active region, a passive region having a temperature dependency of an equivalent refractive index different on both sides of the active region in a resonator direction, and a sample diffraction grating in the passive region. The semiconductor laser according to claim 3.
【請求項5】 少なくとも前記サンプル回折格子を有す
る活性領域と、前記サンプル回折格子を有する受動領域
とを有することを特徴とする請求項3に記載の半導体レ
ーザ。
5. The semiconductor laser according to claim 3, comprising at least an active region having the sample diffraction grating and a passive region having the sample diffraction grating.
【請求項6】 前記光導波路の温度を制御するための電
流注入による加熱機構を有することを特徴とする請求項
4または5に記載の半導体レーザ。
6. The semiconductor laser according to claim 4, further comprising a heating mechanism for controlling a temperature of said optical waveguide by current injection.
JP31726897A 1997-11-18 1997-11-18 Semiconductor laser Expired - Fee Related JP3166836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31726897A JP3166836B2 (en) 1997-11-18 1997-11-18 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31726897A JP3166836B2 (en) 1997-11-18 1997-11-18 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPH11150324A true JPH11150324A (en) 1999-06-02
JP3166836B2 JP3166836B2 (en) 2001-05-14

Family

ID=18086351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31726897A Expired - Fee Related JP3166836B2 (en) 1997-11-18 1997-11-18 Semiconductor laser

Country Status (1)

Country Link
JP (1) JP3166836B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326418A (en) * 2000-05-16 2001-11-22 Yokogawa Electric Corp Semiconductor laser beam source and modulation method therefor
JP2001333047A (en) * 2000-05-24 2001-11-30 Nippon Telegr & Teleph Corp <Ntt> Optical transmission system
WO2001094998A2 (en) * 2000-06-05 2001-12-13 Lightchip, Inc. Temperature-compensated bulk diffraction grating for wavelenght division multiplexer (wdm)
DE10254190A1 (en) * 2002-11-20 2004-06-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Infrared semiconductor laser
WO2005031320A1 (en) * 2003-09-26 2005-04-07 The Kitasato Gakuen Foundation Variable-wavelength light generator and light interference tomograph
EP1804349A1 (en) * 2005-12-27 2007-07-04 Eudyna Devices Inc. Sampled grating laser diode with DFB and DBR incorporating phase shifts
JP2007273883A (en) * 2006-03-31 2007-10-18 Eudyna Devices Inc Optical semiconductor element and device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326418A (en) * 2000-05-16 2001-11-22 Yokogawa Electric Corp Semiconductor laser beam source and modulation method therefor
JP2001333047A (en) * 2000-05-24 2001-11-30 Nippon Telegr & Teleph Corp <Ntt> Optical transmission system
WO2001094998A2 (en) * 2000-06-05 2001-12-13 Lightchip, Inc. Temperature-compensated bulk diffraction grating for wavelenght division multiplexer (wdm)
WO2001094998A3 (en) * 2000-06-05 2003-03-13 Lightchip Inc Temperature-compensated bulk diffraction grating for wavelenght division multiplexer (wdm)
DE10254190B4 (en) * 2002-11-20 2005-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Infrared semiconductor laser
DE10254190A1 (en) * 2002-11-20 2004-06-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Infrared semiconductor laser
WO2005031320A1 (en) * 2003-09-26 2005-04-07 The Kitasato Gakuen Foundation Variable-wavelength light generator and light interference tomograph
US7564565B2 (en) 2003-09-26 2009-07-21 School Juridical Person Kitasato Institute Wavelength-tunable light generator and optical coherence tomography device
US7732784B2 (en) 2003-09-26 2010-06-08 School Juridical Person Kitasato Institute Wavelength-tunable light generator and optical coherence tomography device
EP1804349A1 (en) * 2005-12-27 2007-07-04 Eudyna Devices Inc. Sampled grating laser diode with DFB and DBR incorporating phase shifts
US7620093B2 (en) 2005-12-27 2009-11-17 Eudyna Devices Inc. Laser device, laser module, semiconductor laser and fabrication method of semiconductor laser
US8304267B2 (en) 2005-12-27 2012-11-06 Eudyna Devices Inc. Laser device, laser module, semiconductor laser and fabrication method of semiconductor laser
JP2007273883A (en) * 2006-03-31 2007-10-18 Eudyna Devices Inc Optical semiconductor element and device

Also Published As

Publication number Publication date
JP3166836B2 (en) 2001-05-14

Similar Documents

Publication Publication Date Title
EP0836255B1 (en) Laser diode array and fabrication method thereof
JP3611593B2 (en) Method for fabricating semiconductor optical device
WO2009116140A1 (en) Optical semiconductor element and its manufacturing method
WO2016206570A1 (en) Distributed feedback laser with short cavity length
JPH06204610A (en) Semiconductor laser and manufacture thereof
JPH07326820A (en) Variable wavelength semiconductor laser device
KR100519922B1 (en) self-mode locked multisection semiconductor laser diode
JP3141854B2 (en) Method for manufacturing optical semiconductor device
JP2003046190A (en) Semiconductor laser
JP2001036192A (en) Distribution feedback type semiconductor laser and manufacture thereof
JP3086767B2 (en) Laser element
US20040086012A1 (en) Coherent light source and method for driving the same
JP2017204601A (en) Semiconductor laser
Ishii et al. Narrow spectral linewidth under wavelength tuning in thermally tunable super-structure-grating (SSG) DBR lasers
JP2003289169A (en) Semiconductor laser
JP3166836B2 (en) Semiconductor laser
JP2002084033A (en) Distributed feedback semiconductor laser
KR20130003913A (en) Distributed feedback laser diode having asymmetric coupling coefficient and manufacturing method thereof
JP2013219192A (en) Semiconductor laser
JPH06152059A (en) Semiconductor optical integrated element
JP2763090B2 (en) Semiconductor laser device, manufacturing method thereof, and crystal growth method
US6734464B2 (en) Hetero-junction laser diode
JPH11163456A (en) Semiconductor laser
JPS60178685A (en) Single-axial mode semiconductor laser device
US20240047941A1 (en) Wavelength Tunable Optical Transmitter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080309

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090309

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100309

LAPS Cancellation because of no payment of annual fees