JPH0661578A - Distribution reflection device, waveguide type fabry-pero 't optical wavelength filter using the same, and semiconductor laser - Google Patents

Distribution reflection device, waveguide type fabry-pero 't optical wavelength filter using the same, and semiconductor laser

Info

Publication number
JPH0661578A
JPH0661578A JP21516292A JP21516292A JPH0661578A JP H0661578 A JPH0661578 A JP H0661578A JP 21516292 A JP21516292 A JP 21516292A JP 21516292 A JP21516292 A JP 21516292A JP H0661578 A JPH0661578 A JP H0661578A
Authority
JP
Japan
Prior art keywords
wavelength
optical
waveguide
filter
fabry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21516292A
Other languages
Japanese (ja)
Other versions
JP2770898B2 (en
Inventor
Yuzo Yoshikuni
裕三 吉国
Fumiyoshi Kano
文良 狩野
Yuichi Tomori
裕一 東盛
Hiroyuki Ishii
啓之 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4215162A priority Critical patent/JP2770898B2/en
Publication of JPH0661578A publication Critical patent/JPH0661578A/en
Application granted granted Critical
Publication of JP2770898B2 publication Critical patent/JP2770898B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To provide a semiconductor laser which oscillates at a single wavelength by adopting a distribution reflector which shows high reflectance in a wide wavelength region and a waveguide type Fabry-Pero't optical wavelength filter wherein it is used. CONSTITUTION:When current is made to flow to active waveguide regions 101, 104, laser oscillation is generated transmitting wavelength of a Fabry-pero't optical wavelength filter inside resonator is adjusted by making current flow to wavelength adjustment electrodes 9b, 9c provided to filter regions 102, 103, and oscillation wavelength is changed. Transmitting characteristic of the filter regions 102, 103 has a sharp peak periodically; however, a peak interval differs due to a difference of resonator length. In a structure wherein two filters are connected in series, only light of a wavelength lambda, wherein transmitting wevelength of both filters coincides is transmitted and the laser oscillates. Therefore, when current is made to flow through the electrode 9c on the region 103, refraction factor in the region reduces, transmitting wavelength shifts to the side of short wavelength and oscillation wavelength moves to lambda2, operational wavelength can be changed and a narrow band filter and a semiconductor laser can be acquired.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信分野での光波長
(周波数)多重通信システムや光計測用等で重要な、分
布反射器を用いた導波型ファブリ・ペロー光波長フィル
タ及び半導体レーザに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waveguide type Fabry-Perot optical wavelength filter using a distributed reflector and a semiconductor, which are important for optical wavelength (frequency) multiplex communication systems and optical measurement in the optical communication field. It concerns lasers.

【0002】[0002]

【従来の技術】将来の通信情報量増大に対して、波長が
異なる複数の信号光を多重化し1本の光ファイバで伝送
する、光波長(周波数)多重通信システムの研究が行わ
れている。上記光波長多重通信システムでは、波長領域
で多重化された複数の信号光のなかから特定波長の信号
光だけを選択する、光波長フィルタが重要な構成部品で
ある。光波長フィルタとしては、2枚の反射鏡が平行に
一定間隔で対向し、その間の多重干渉によって鋭い共振
特性を示すファブリ・ペロー干渉計型フィルタが多く用
いられている。光通信システムでは、光ファイバや半導
体レーザ等の導波型光部品と組合わせて用いるため、上
記導波型部品との光学的結合が容易にできる導波型のフ
ァブリ・ペローフィルタが研究されている。上記ファブ
リ・ペローフィルタでは高反射率の反射鏡を必要とする
ため、これまでには導波路の両端面に高反射膜を蒸着し
た構造が報告されている。
2. Description of the Related Art In order to increase the amount of communication information in the future, research has been conducted on an optical wavelength (frequency) multiplex communication system that multiplexes a plurality of signal lights having different wavelengths and transmits them by one optical fiber. In the above-mentioned optical wavelength division multiplexing communication system, the optical wavelength filter is an important component for selecting only the signal light of a specific wavelength from the plurality of signal lights multiplexed in the wavelength region. As an optical wavelength filter, a Fabry-Perot interferometer type filter is often used in which two reflecting mirrors face each other in parallel at a constant interval and show sharp resonance characteristics due to multiple interference therebetween. In an optical communication system, since it is used in combination with a waveguide type optical component such as an optical fiber or a semiconductor laser, a waveguide type Fabry-Perot filter that can be easily optically coupled with the above waveguide type component has been studied. There is. Since the Fabry-Perot filter requires a high-reflectance mirror, a structure in which a high-reflection film is vapor-deposited on both end faces of the waveguide has been reported so far.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の構造では導波路を切断しなければならないため、製
造が難しく、また他の導波路との接続が困難で、接続損
失が大きいという欠点があった。導波路を切断せずに高
い反射率が得られるものとしては、導波路上に周期的な
凹凸を刻んだ分布反射器が知られているが、上記分布反
射器は従来狭い波長域でしか高反射率を示さないため、
波長フィルタ用としては適さなかった。
However, in the above-mentioned conventional structure, since the waveguide must be cut, it is difficult to manufacture, and it is difficult to connect to another waveguide, resulting in a large connection loss. It was As a material that can obtain high reflectance without cutting the waveguide, a distributed reflector in which periodic unevenness is formed on the waveguide is known, but the distributed reflector is conventionally high only in a narrow wavelength range. Since it does not show reflectance,
It was not suitable for wavelength filters.

【0004】本発明は、広い波長域で高反射率を示す分
布反射器を得て、ファブリ・ペロー光波長フィルタを形
成するとともに、半導体レーザを得ることを目的とす
る。
It is an object of the present invention to obtain a distributed reflector exhibiting a high reflectance in a wide wavelength range to form a Fabry-Perot optical wavelength filter and a semiconductor laser.

【0005】[0005]

【課題を解決するための手段】上記目的は、基板上に、
該基板より光学的屈折率が大きい光導波路層と、該光導
波路層より屈折率が小さい光閉じ込め層をそれぞれ1層
以上含む光導波路で、該光導波路を形成する1層以上の
層に、周期的な凹凸の形成または周期的な組成の変化を
形成することにより、上記光導波路の等価屈折率を周期
的に変化させて回折格子を形成し、上記周期からBra
ggの回折条件で決定される波長をもつ光に対し反射作
用をもつ分布反射器において、上記凹凸の1周期の長さ
を導波方向に対し連続的または断続的に変化させるか、
あるいは1周期の長さが微小な違いを有する位相シフト
を少なくとも1個所以上配置することにより、上記回折
格子のBragg波長を空間的に変化させ、広い波長範
囲で高反射が得られるようにした分布反射器を、回折格
子を含まない平坦な光導波路の両側に形成し、分布反射
器間のファブリ・ペロー干渉により光透過率が鋭い共振
特性を示す導波型ファブリ・ペロー光波長フィルタを得
るとともに、上記フィルタを共振器内部に1個以上含む
ことにより、単一波長で発振する半導体レーザを得て達
成される。
The above-mentioned object is to provide a substrate,
An optical waveguide including an optical waveguide layer having an optical refractive index larger than that of the substrate and at least one optical confinement layer having a refractive index smaller than that of the optical waveguide layer. By forming periodical unevenness or periodical compositional change, the equivalent refractive index of the optical waveguide is periodically changed to form a diffraction grating.
In a distributed reflector having a reflecting action for light having a wavelength determined by the diffraction condition of gg, the length of one period of the unevenness is continuously or intermittently changed in the waveguide direction,
Alternatively, by arranging at least one phase shift having a minute difference in the length of one period, the Bragg wavelength of the diffraction grating is spatially changed so that high reflection can be obtained in a wide wavelength range. Forming reflectors on both sides of a flat optical waveguide that does not include a diffraction grating, and obtaining a waveguide type Fabry-Perot optical wavelength filter that exhibits sharp resonance characteristics due to Fabry-Perot interference between distributed reflectors. By including one or more of the above filters inside the resonator, a semiconductor laser that oscillates at a single wavelength is obtained.

【0006】[0006]

【作用】本発明では、回折格子のピッチが連続的または
断続的に変化する回折格子を作成し、広い波長範囲で高
反射率を示す分布反射器とし、これを用いてファブリ・
ペロー型フィルタを構成する。図5(a)〜(c)は本
発明に基づく回折格子の例を示すが、これらはいずれも
光導波路構造になっており、例えば図の左側端面から入
射した光は導波路中を伝搬し右側端面から出射する。光
の波長が回折格子の反射波長に一致している場合には、
入射光の一部または全部が上記回折格子により反射さ
れ、左側の端面から出射する。図において、(a)は回
折格子のピッチを連続的に変化させた例であり、ピッチ
は左端の0.238μmから右端の0.247μmまで
直線的に増加している。また、(b)はピッチを断続的
に変化させた例であり、ピッチは左端の0.238μm
から右端の0.247μmまで0.001μm刻みで階
段状に増加している。さらに、(c)は位相シフトを複
数形成して等価的にピッチを変化させた例であり、ピッ
チは0.242μmで一定であるが、回折格子の左側で
は1周期の長さが短いプラスの位相シフトが、右側では
1周期の長さが長いマイナスの位相シフトが数個所に形
成されており、位相シフトの間隔が両端に向って中心か
らの距離に逆比例して狭くなっている。
In the present invention, a diffraction grating in which the pitch of the diffraction grating changes continuously or intermittently is prepared as a distributed reflector exhibiting a high reflectance in a wide wavelength range.
Configure a Perot-type filter. 5A to 5C show examples of the diffraction grating according to the present invention, all of which have an optical waveguide structure. For example, light incident from the left end face of the figure propagates in the waveguide. Emit from the right end face. If the wavelength of the light matches the reflection wavelength of the diffraction grating,
Part or all of the incident light is reflected by the diffraction grating and emitted from the left end face. In the figure, (a) is an example in which the pitch of the diffraction grating is continuously changed, and the pitch linearly increases from 0.238 μm at the left end to 0.247 μm at the right end. Further, (b) is an example in which the pitch is intermittently changed, and the pitch is 0.238 μm at the left end.
To 0.247 μm at the right end from 0.001 μm in steps of 0.001 μm. Further, (c) is an example in which a plurality of phase shifts are formed and the pitch is equivalently changed. The pitch is constant at 0.242 μm, but one cycle length is short on the left side of the diffraction grating. Regarding the phase shift, on the right side, negative phase shifts having a long one cycle are formed at several places, and the intervals of the phase shifts are narrowed toward both ends in inverse proportion to the distance from the center.

【0007】図6は、上記図5(b)に示す例につい
て、回折格子の反射率を光の波長の関数として示した計
算例である。回折格子の長さは140μm、導波路の実
行屈折率(neq)は3.2025である。通常の回折格
子ではピッチΛに対して、反射率のピーク波長はλ=2
eqΛで与えられる。本発明による回折格子も中心のピ
ッチ0.242μmから上記の式で計算される1.55
μmを中心として高反射率を示すが、通常の回折格子に
比べ高反射率を示す帯域幅が大幅に広がっている。波長
1.52μmから1.58μmの間で80%以上の反射
率になっており、良好な反射特性を示している。図6に
示す例では帯域幅が半値全幅で約0.08μmであり、
同一条件における通常の回折格子の帯域が約0.001
μmであるのに対して、約8倍に広がっている。
FIG. 6 is a calculation example showing the reflectance of the diffraction grating as a function of the wavelength of light in the example shown in FIG. 5 (b). The length of the diffraction grating is 140 μm, and the effective refractive index (n eq ) of the waveguide is 3.2025. In a normal diffraction grating, the peak wavelength of the reflectance is λ = 2 with respect to the pitch Λ.
It is given by n eq Λ. The diffraction grating according to the present invention is also calculated from the center pitch of 0.242 μm by the above formula to be 1.55.
Although it exhibits a high reflectance centering on μm, the bandwidth exhibiting a high reflectance is significantly wider than that of an ordinary diffraction grating. The reflectance is 80% or more in the wavelength range of 1.52 μm to 1.58 μm, indicating good reflection characteristics. In the example shown in FIG. 6, the bandwidth is about 0.08 μm in full width at half maximum,
The band of a normal diffraction grating under the same conditions is about 0.001
While it is μm, it spreads about 8 times.

【0008】[0008]

【実施例】つぎに本発明の実施例を図面とともに説明す
る。図1は本発明による導波型ファブリ・ペロー光波長
フィルタを示す第1実施例図、図2は上記ファブリ・ペ
ロー光波長フィルタの透過特性を示す図、図3は本発明
による半導体レーザを示す第2実施例図、図4は上記半
導体レーザの動作原理を示す図で、(a)はフィルタ1
02領域の透過特性、(b)はフィルタ103領域の透
過特性を示す図である。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a first embodiment showing a waveguide type Fabry-Perot optical wavelength filter according to the present invention, FIG. 2 is a diagram showing transmission characteristics of the Fabry-Perot optical wavelength filter, and FIG. 3 is a semiconductor laser according to the present invention. Second Embodiment FIG. 4 and FIG. 4 are views showing the operation principle of the semiconductor laser, and FIG.
2 is a diagram showing the transmission characteristics of the area 02, and FIG. 7B is a diagram showing the transmission characteristics of the area of the filter 103.

【0009】図1に示す第1実施例は請求項1に記載し
た本発明の分布反射器を用いる導波型ファブリ・ペロー
光波長フィルタである。(a)は上記光波長フィルタの
構造図、(b)は回折格子を示す図である。図1(a)
において、1はn型InP基板、3はバンドギャップ波
長が1.3μmのInGaAsP非活性導波路層、4は
p型InPクラッド層、5はp(+)型InGaAsP
キャップ層、6はp型InP電流ブロック層、7はn型
InP電流ブロック層、8はn型電極、9はp型電極、
10は前項に記載した本発明による分布反射器に基づく
回折格子である。上記回折格子10は前項に記したよう
に140μmの長さであり、この回折格子が平坦な導波
路11の両側に形成されている。上記平坦な導波路11
の長さは10μmである。
The first embodiment shown in FIG. 1 is a waveguide type Fabry-Perot optical wavelength filter using the distributed reflector of the present invention described in claim 1. (A) is a structural diagram of the optical wavelength filter, and (b) is a diagram showing a diffraction grating. Figure 1 (a)
1, 1 is an n-type InP substrate, 3 is an InGaAsP inactive waveguide layer having a bandgap wavelength of 1.3 μm, 4 is a p-type InP cladding layer, and 5 is a p (+)-type InGaAsP
Cap layer 6, 6 p-type InP current blocking layer, 7 n-type InP current blocking layer, 8 n-type electrode, 9 p-type electrode,
Reference numeral 10 is a diffraction grating based on the distributed reflector according to the present invention described in the preceding paragraph. The diffraction grating 10 has a length of 140 μm as described in the previous section, and the diffraction grating is formed on both sides of the flat waveguide 11. The flat waveguide 11
Has a length of 10 μm.

【0010】上記第1実施例の導波型ファブリ・ペロー
光波長フィルタの作製方法を簡単に説明する。最初に有
機金属気相エピタキシャル成長法を用いて、n型InP
基板1上に非活性導波路層3を作製する。その後、上記
非活性導波路層3の表面に塗布したレジストに、電子ビ
ーム露光法を用いてピッチが変調された回折格子のパタ
ンを転写し、該転写パタンをマスクとしてエッチングを
行い回折格子10を形成する。この時の転写パタンの一
部に回折格子が無い部分を形成しておき、同時に上記平
坦な導波路11を形成する。つぎに、横モードを制御す
るためにストライプ状に導波路を加工し、再度有機金属
気相エピタキシャル成長法を用いて、p型InP電流ブ
ロック層6、n型InP電流ブロック層7、p型InP
クラッド層4およびp(+)型InGaAsPキャップ
層5を順次作製する。その後、p型電極8およびn型電
極9を形成する。
A method of manufacturing the waveguide type Fabry-Perot optical wavelength filter of the first embodiment will be briefly described. First, n-type InP is formed by using a metalorganic vapor phase epitaxial growth method.
The inactive waveguide layer 3 is formed on the substrate 1. After that, the pattern of the diffraction grating whose pitch is modulated is transferred to the resist coated on the surface of the inactive waveguide layer 3 by using the electron beam exposure method, and the diffraction pattern 10 is etched by using the transferred pattern as a mask to form the diffraction grating 10. Form. A part without a diffraction grating is formed in a part of the transfer pattern at this time, and at the same time, the flat waveguide 11 is formed. Next, the waveguide is processed in a stripe shape to control the transverse mode, and the p-type InP current blocking layer 6, the n-type InP current blocking layer 7, and the p-type InP are again formed by using the metalorganic vapor phase epitaxial growth method.
The clad layer 4 and the p (+) type InGaAsP cap layer 5 are sequentially manufactured. Then, the p-type electrode 8 and the n-type electrode 9 are formed.

【0011】上記平坦な導波路11の両側に設けた回折
格子は、図1(b)に示すようにピッチΛを断続的変化
させて分布反射器を形成し、前項に示したように1.5
2μm〜1.58μmの波長範囲で高反射率となるの
で、入射光は両側の分布反射器の間で多重反射を受けて
回折格子10の間を往復し、いわゆるファブリ・ペロー
共振を起こす。図2にファブリ・ペロー共振器の透過特
性を示す。透過特性は約2.5nm(0.0025μ
m)間隔で鋭いピークをもっており、各ピークは半値
0.1nm以下の急峻なフィルタ特性を示す。このフィ
ルタは光導波路を切断せずに構成できるため、多段に接
続することが容易であり、また、半導体レーザや光増幅
器、導波路型光検出器などと容易に集積化できる。さら
に、透過率ピークの波長間隔、中心波長は導波路の長さ
により容易に設定でき、また本実施例では、電極からの
電流注入して生じる屈折率変化により微調整ができる。
The diffraction gratings provided on both sides of the flat waveguide 11 form a distributed reflector by intermittently changing the pitch Λ as shown in FIG. 1 (b). 5
Since the reflectance is high in the wavelength range of 2 μm to 1.58 μm, the incident light undergoes multiple reflection between the distributed reflectors on both sides and reciprocates between the diffraction gratings 10 to cause so-called Fabry-Perot resonance. Figure 2 shows the transmission characteristics of the Fabry-Perot resonator. Transmission characteristics are about 2.5nm (0.0025μ
m) has sharp peaks at intervals, and each peak exhibits steep filter characteristics with a half value of 0.1 nm or less. Since this filter can be configured without cutting the optical waveguide, it can be easily connected in multiple stages and can be easily integrated with a semiconductor laser, an optical amplifier, a waveguide type photodetector, or the like. Furthermore, the wavelength interval of the transmittance peak and the central wavelength can be easily set by the length of the waveguide, and in this embodiment, fine adjustment can be performed by the change in the refractive index caused by the current injection from the electrode.

【0012】ピーク間隔が異なるファブリ・ペロー光波
長フィルタを多段に接続することにより、図2のピーク
の中から1本だけ選択することができ、1.52μm〜
1.58μmの間で0.1nm以下の帯域幅のフィルタ
を構成することができる。
By connecting Fabry-Perot optical wavelength filters having different peak intervals in multiple stages, only one can be selected from the peaks shown in FIG.
A filter having a bandwidth of 0.1 nm or less between 1.58 μm can be formed.

【0013】図3に本発明の第2実施例として請求項3
に基づく半導体レーザの構造を示す。図3において、1
はn型InP基板、2はバンドギャップ波長が1.55
μmのInGaAsP活性層、3はバンドギャップ波長
が1.3μmのInGaAsP光閉じ込め層、4はp型
InPクラッド層、5はp(+)InGaAsPキャッ
プ層、6はp型InP電流ブロック層、7はn型InP
電流ブロック層、8はn型電極、9aは活性導波領域1
01、104上に設けたp型電極、9b、9cはファブ
リ・ペローフィルタ領域102、103上に設けたp型
電極である。領域102のファブリ・ペローフィルタは
本発明の分布反射器を用いた第1実施例に示すフィルタ
と同じであり、領域103は第1実施例のフィルタで中
央の平坦導波路部が10μmから20μmに拡大したも
のである。
FIG. 3 shows a second embodiment of the present invention as claimed in claim 3.
2 shows the structure of a semiconductor laser based on In FIG. 3, 1
Is an n-type InP substrate, 2 has a bandgap wavelength of 1.55
μm InGaAsP active layer, 3 InGaAsP optical confinement layer with bandgap wavelength of 1.3 μm, 4 p-type InP clad layer, 5 p (+) InGaAsP cap layer, 6 p-type InP current blocking layer, 7 n-type InP
Current blocking layer, 8 is n-type electrode, 9a is active waveguide region 1
P-type electrodes provided on 01 and 104, and 9b and 9c are p-type electrodes provided on the Fabry-Perot filter regions 102 and 103. The Fabry-Perot filter in the region 102 is the same as the filter shown in the first embodiment using the distributed reflector of the present invention, and the region 103 is the filter of the first embodiment in which the central flat waveguide portion is changed from 10 μm to 20 μm. It is an enlarged version.

【0014】上記実施例に示した波長掃引機能付き半導
体レーザの作製方法を簡単に説明する。最初に有機金属
気相エピタキシャル成長法を用いて、n型InP基板1
上に活性層2と光閉じ込め層3を作製する。その後、光
学露光とエッチングを用いて上記活性層2の一部を除去
し、除去した部分に上記実施例と同様にしてファブリ・
ペローフィルタ領域102、103を形成する。そして
横モードを制御するためにストライプ状に導波路を加工
し、再度有機金属気相エピタキシャル成長法を用いて、
p型InP電流ブロック層6、n型InP電流ブロック
層7、p型InPクラッド層4およびp(+)型InG
aAsPキャップ層5を順次作製する。その後、p型電
極9a〜9cおよびn型電極8を形成し、さらに、上記
p型電極9a、9b、9cをそれぞれ互いに電気的に分
離するために、それら各領域の結合部分の上方のp型電
極およびp(+)型InGaAsPキャップ層5を除去
する。
A method of manufacturing the semiconductor laser with the wavelength sweeping function shown in the above embodiment will be briefly described. First, the n-type InP substrate 1 is formed by using the metalorganic vapor phase epitaxial growth method.
The active layer 2 and the light confinement layer 3 are formed on top. After that, a part of the active layer 2 is removed by using optical exposure and etching, and the removed portion is subjected to the same process as in the above embodiment.
The Perot filter regions 102 and 103 are formed. Then, in order to control the transverse mode, the waveguide is processed into a stripe shape, and again using the metalorganic vapor phase epitaxial growth method,
p-type InP current blocking layer 6, n-type InP current blocking layer 7, p-type InP cladding layer 4 and p (+)-type InG
The aAsP cap layer 5 is sequentially manufactured. After that, the p-type electrodes 9a to 9c and the n-type electrode 8 are formed, and further, in order to electrically separate the p-type electrodes 9a, 9b, and 9c from each other, the p-type electrode above the coupling portion of each region is formed. The electrode and the p (+) type InGaAsP cap layer 5 are removed.

【0015】上記構成の半導体レーザでは、活性導波領
域101、104に電流を流すことによってレーザ発振
が生じ、発振波長は共振器内部に構成されたファブリ・
ペロー光波長フィルタの透過波長によって決定される。
フィルタの透過波長をフィルタ領域102および103
に設けた波長調整電極9b、9cに電流を流すことによ
って調整し、発振波長を変化させることができる。
In the semiconductor laser having the above-described structure, laser oscillation is generated by passing a current through the active waveguide regions 101 and 104, and the oscillation wavelength is the Fabry-
It is determined by the transmission wavelength of the Perot light wavelength filter.
The transmission wavelength of the filter is set to the filter regions 102 and 103.
The oscillation wavelength can be changed by applying a current to the wavelength adjusting electrodes 9b and 9c provided on the.

【0016】図4は上記半導体レーザの動作原理を示
し、(a)はフィルタ領域102の透過特性、(b)は
フィルタ領域103の透過特性を示している。フィルタ
領域102、103の透過特性はともに周期的に鋭いピ
ークをもつが、共振器長の違いにより、ピーク間隔はそ
れぞれ2.5nm、2.4nmと異なっている。そのた
め、2つのフィルタを直列に接続した図3の構造では、
両方のフィルタの透過波長が一致する波長(λ1)の光
だけが透過し、この波長でレーザは発振する。この状態
で103上の電極9cに電流を流すとこの領域の屈折率
が減少し、領域103の透過波長は短波長側にシフト
し、図中破線で示した位置に移る。そのため、波長λ1
でのフィルタ透過率は減少し、発振波長はλ2に移動す
る。このように波長調整電極9b、9cの一方に電流を
流すことにより、約2.5nm間隔で発振波長を大きく
変化させることができる。一方、電極9b、9cに同時
に電流を流した場合には、2つのフィルタの透過波長は
同時に短波長側にシフトし、発振波長をλ1の周辺で微
調整することができる。
FIG. 4 shows the operating principle of the semiconductor laser, wherein (a) shows the transmission characteristics of the filter region 102 and (b) shows the transmission characteristics of the filter region 103. The transmission characteristics of the filter regions 102 and 103 both have sharp peaks periodically, but the peak intervals are 2.5 nm and 2.4 nm, respectively, due to the difference in resonator length. Therefore, in the structure of FIG. 3 in which two filters are connected in series,
Only light of a wavelength (λ 1 ) where the transmission wavelengths of both filters match is transmitted, and the laser oscillates at this wavelength. When a current is applied to the electrode 9c on 103 in this state, the refractive index of this region decreases, and the transmission wavelength of the region 103 shifts to the short wavelength side and moves to the position shown by the broken line in the figure. Therefore, the wavelength λ 1
The filter transmittance at is decreased and the oscillation wavelength is moved to λ 2 . As described above, by supplying a current to one of the wavelength adjusting electrodes 9b and 9c, the oscillation wavelength can be largely changed at intervals of about 2.5 nm. On the other hand, when currents are simultaneously applied to the electrodes 9b and 9c, the transmission wavelengths of the two filters are simultaneously shifted to the short wavelength side, and the oscillation wavelength can be finely adjusted around λ 1 .

【0017】[0017]

【発明の効果】上記のように本発明による分布反射器と
それを用いた導波型ファブリ・ペロー光波長フィルタ
は、基板上に、該基板より光学的屈折率が大きい光導波
路層と、該光導波路層より屈折率が小さい光閉じ込め層
をそれぞれ1層以上含む光導波路で、該光導波路を形成
する1層以上の層に、周期的な凹凸の形成または周期的
な組成の変化を形成することにより、上記光導波路の等
価屈折率を周期的に変化させて回折格子を形成し、上記
周期からBraggの回折条件で決定される波長をもつ
光に対し反射作用をもつ分布反射器において、上記凹凸
の1周期の長さを導波方向に対し連続的または断続的に
変化させるか、あるいは1周期の長さが微小な違いを有
する位相シフトを少なくとも1個所以上に配置すること
により、上記回折格子のBragg波長を空間的に変化
させた分布反射器を、回折格子を含まない平坦な光導波
路の両側に形成し、分布反射器間のファブリ・ペロー干
渉により導波型ファブリ・ペロー光波長フィルタを得る
とともに、上記フィルタを共振器内部に1個以上設けて
半導体レーザを構成するものであるから、光通信で利用
される1.55μm帯全体にわたり動作波長が変化で
き、狭帯域フィルタおよび半導体レーザを得ることがで
きる。
As described above, the distributed reflector according to the present invention and the waveguide type Fabry-Perot optical wavelength filter using the distributed reflector include an optical waveguide layer having an optical refractive index larger than that of the substrate, An optical waveguide including at least one optical confinement layer having a refractive index smaller than that of the optical waveguide layer, wherein periodical unevenness is formed or a periodic composition change is formed in one or more layers forming the optical waveguide. Thus, the equivalent refractive index of the optical waveguide is periodically changed to form a diffraction grating, and in the distributed reflector having the reflecting action for the light having the wavelength determined by the Bragg diffraction condition from the above period, By changing the length of one cycle of the unevenness continuously or intermittently in the waveguide direction, or by arranging at least one phase shift having a minute difference in the length of one cycle, the above diffraction Case Distributed reflectors with spatially varying Bragg wavelength are formed on both sides of a flat optical waveguide that does not include a diffraction grating, and a waveguide type Fabry-Perot optical wavelength filter is created by Fabry-Perot interference between the distributed reflectors. In addition, since one or more of the above filters are provided inside the resonator to form a semiconductor laser, the operating wavelength can be changed over the entire 1.55 μm band used in optical communication, and a narrow band filter and a semiconductor laser can be obtained. Obtainable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による導波型ファブリ・ペロー光波長フ
ィルタを示す第1実施例図であり、(a)は上記フィル
タの構造図、(b)は回折格子を示す図である。
1A and 1B are diagrams of a first embodiment showing a waveguide type Fabry-Perot optical wavelength filter according to the present invention, FIG. 1A is a structural diagram of the filter, and FIG. 1B is a diagram showing a diffraction grating.

【図2】上記ファブリ・ペロー光波長フィルタの透過特
性を示す図である。
FIG. 2 is a diagram showing transmission characteristics of the Fabry-Perot optical wavelength filter.

【図3】本発明による半導体レーザを示す第2実施例図
である。
FIG. 3 is a second embodiment diagram showing a semiconductor laser according to the present invention.

【図4】上記半導体レーザの動作原理を示す図で、
(a)はフィルタ領域102の透過特性、(b)はフィ
ルタ領域103の透過特性を示す図である。
FIG. 4 is a diagram showing the operating principle of the semiconductor laser,
9A is a diagram showing a transmission characteristic of the filter region 102, and FIG. 9B is a diagram showing a transmission characteristic of the filter region 103.

【図5】本発明による分布反射器の概念を示す図であ
る。
FIG. 5 is a diagram showing the concept of a distributed reflector according to the present invention.

【図6】上記図5(b)に示した分布反射器の反射特性
を示す図である。
FIG. 6 is a diagram showing reflection characteristics of the distributed reflector shown in FIG. 5 (b).

【符号の説明】[Explanation of symbols]

1 基板 2 光導波路層 3 光閉じ込め層 10 回折格子 11 回折格子を含まない平坦な光導波路 1 substrate 2 optical waveguide layer 3 optical confinement layer 10 diffraction grating 11 flat optical waveguide not including diffraction grating

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 啓之 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroyuki Ishii 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板上に、該基板より光学的屈折率が大き
い光導波路層と、該光導波路層より屈折率が小さい光閉
じ込め層をそれぞれ1層以上含む光導波路で、該光導波
路を形成する1層以上の層に、周期的な凹凸の形成また
は周期的な組成の変化を形成することにより、上記光導
波路の等価屈折率を周期的に変化させて回折格子を形成
し、上記周期からBraggの回折条件で決定される波
長をもつ光に対し反射作用をもつ分布反射器において、
上記凹凸の1周期の長さを導波方向に対し連続的または
断続的に変化させるか、あるいは1周期の長さが微小な
違いを有する位相シフトを少なくとも1個所以上配置す
ることにより、上記回折格子のBragg波長を空間的
に変化させ、広い波長範囲で高反射が得られることを特
徴とする分布反射器。
1. An optical waveguide is formed on a substrate by an optical waveguide including an optical waveguide layer having an optical refractive index larger than that of the substrate and one or more optical confinement layers having a refractive index smaller than that of the optical waveguide layer. By forming periodic unevenness or periodic composition change in one or more layers, the equivalent refractive index of the optical waveguide is periodically changed to form a diffraction grating. In a distributed reflector having a reflection effect on light having a wavelength determined by Bragg's diffraction condition,
By changing the length of one cycle of the irregularities continuously or intermittently in the waveguide direction, or by arranging at least one phase shift having a minute difference in the length of one cycle, the diffraction A distributed reflector characterized in that the Bragg wavelength of a grating is spatially changed to obtain high reflection in a wide wavelength range.
【請求項2】上記請求項1に記載した分布反射器が、回
折格子を含まない平坦な光導波路の両側に形成され、両
側の分布反射器間のファブリ・ペロー干渉により、光透
過率が鋭い共振特性を示すことを特徴とする導波型ファ
ブリ・ペロー光波長フィルタ。
2. The distributed reflector according to claim 1 is formed on both sides of a flat optical waveguide that does not include a diffraction grating, and the light transmittance is sharp due to Fabry-Perot interference between the distributed reflectors on both sides. A waveguide type Fabry-Perot optical wavelength filter characterized by exhibiting resonance characteristics.
【請求項3】上記請求項2に記載した導波型ファブリ・
ペロー光波長フィルタを、共振器内部に1個以上含み、
上記光波長フィルタの波長選択性により単一波長で発振
することを特徴とする半導体レーザ。
3. The waveguide type fabric according to claim 2,
Including one or more Perot optical wavelength filters inside the resonator,
A semiconductor laser which oscillates at a single wavelength due to the wavelength selectivity of the optical wavelength filter.
JP4215162A 1992-08-12 1992-08-12 Tunable semiconductor laser Expired - Lifetime JP2770898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4215162A JP2770898B2 (en) 1992-08-12 1992-08-12 Tunable semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4215162A JP2770898B2 (en) 1992-08-12 1992-08-12 Tunable semiconductor laser

Publications (2)

Publication Number Publication Date
JPH0661578A true JPH0661578A (en) 1994-03-04
JP2770898B2 JP2770898B2 (en) 1998-07-02

Family

ID=16667683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4215162A Expired - Lifetime JP2770898B2 (en) 1992-08-12 1992-08-12 Tunable semiconductor laser

Country Status (1)

Country Link
JP (1) JP2770898B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019516A (en) * 2004-07-01 2006-01-19 Fujitsu Ltd Tunable laser and its control method
US7564565B2 (en) 2003-09-26 2009-07-21 School Juridical Person Kitasato Institute Wavelength-tunable light generator and optical coherence tomography device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101513A (en) * 1987-10-14 1989-04-19 Nec Corp Variable wavelength filter
JPH0225087A (en) * 1988-07-13 1990-01-26 Agency Of Ind Science & Technol Semiconductor laser device
JPH02174181A (en) * 1988-12-26 1990-07-05 Nippon Telegr & Teleph Corp <Ntt> Distributed reflection type semiconductor laser with wavelength control function
JPH03150890A (en) * 1989-11-08 1991-06-27 Hitachi Ltd Semiconductor laser for coherent communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101513A (en) * 1987-10-14 1989-04-19 Nec Corp Variable wavelength filter
JPH0225087A (en) * 1988-07-13 1990-01-26 Agency Of Ind Science & Technol Semiconductor laser device
JPH02174181A (en) * 1988-12-26 1990-07-05 Nippon Telegr & Teleph Corp <Ntt> Distributed reflection type semiconductor laser with wavelength control function
JPH03150890A (en) * 1989-11-08 1991-06-27 Hitachi Ltd Semiconductor laser for coherent communication

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7564565B2 (en) 2003-09-26 2009-07-21 School Juridical Person Kitasato Institute Wavelength-tunable light generator and optical coherence tomography device
US7732784B2 (en) 2003-09-26 2010-06-08 School Juridical Person Kitasato Institute Wavelength-tunable light generator and optical coherence tomography device
JP2006019516A (en) * 2004-07-01 2006-01-19 Fujitsu Ltd Tunable laser and its control method

Also Published As

Publication number Publication date
JP2770898B2 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
US8155161B2 (en) Semiconductor laser
US8005123B2 (en) Wavelength tunable laser
JP2011253930A (en) Semiconductor optical device
JPS62128587A (en) Semiconductor laser
JP3237733B2 (en) Semiconductor laser
JP5001239B2 (en) Semiconductor tunable laser
JP3220259B2 (en) Laser device
KR100626270B1 (en) Widely Tunable Coupled-Ring Reflector Laser Diode
JP2947142B2 (en) Tunable semiconductor laser
JP2011086714A (en) Wavelength tunable laser
JPH09270568A (en) Multiple wavelength oscillation laser
JPH08334796A (en) Optical wavelength conversion integrating element
JP2770898B2 (en) Tunable semiconductor laser
JPH10261837A (en) Polarization-modulatable semiconductor laser having ring resonator, method for using it, and optical communication system using it
JPH06313818A (en) Light reflector
JPH03195076A (en) External resonator type variable wavelength semiconductor laser
JP2690840B2 (en) Distributed light reflector and wavelength tunable semiconductor laser using the same
JP2770900B2 (en) Distributed reflector and tunable semiconductor laser using the same
JP2000223774A (en) Wavelength-variable light source
JP2894285B2 (en) Distributed feedback semiconductor laser and method of manufacturing the same
JP2009252905A (en) Semiconductor light-emitting element and semiconductor light source
JP3814495B2 (en) Tunable mode-locked laser
JPH06120613A (en) Complex short resonator reflection semiconductor laser
JPH07118568B2 (en) Distributed feedback semiconductor laser
JPH0661571A (en) Distribution light reflection device and semiconductor laser using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100417

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100417

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110417

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 15