JPH03185887A - External resonator type semiconductor laser oscillator - Google Patents

External resonator type semiconductor laser oscillator

Info

Publication number
JPH03185887A
JPH03185887A JP32383589A JP32383589A JPH03185887A JP H03185887 A JPH03185887 A JP H03185887A JP 32383589 A JP32383589 A JP 32383589A JP 32383589 A JP32383589 A JP 32383589A JP H03185887 A JPH03185887 A JP H03185887A
Authority
JP
Japan
Prior art keywords
light
semiconductor laser
diffraction grating
angle
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32383589A
Other languages
Japanese (ja)
Inventor
Naoto Kitabayashi
北林 直人
Yoji Azuma
陽二 東
Kenichi Nakagawa
賢一 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP32383589A priority Critical patent/JPH03185887A/en
Publication of JPH03185887A publication Critical patent/JPH03185887A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the direction of output light from being changed by a method wherein the title oscillator is provided with an external resonator, in which primary diffracted light of a wavelength selected by an angle to be set by a diffraction grating is made to feedback to a semiconductor laser to perform a narrowing of a spectral width, light reflected by a plane reflecting mirror is led out as the 0-order light of the diffraction grating and the output light is always outputted in a constant direction. CONSTITUTION:An external resonator is formed between a semiconductor laser 1B and a diffraction grating 3 via a plane reflecting mirror 4A and an oscillation spectral width is narrowed here. A grating surface 5 of the grating 3 and a reflective surface of a plane reflecting mirror 4B are fixed at an angle theta1 and even if the grating 3 is rotated in the directions shown by arrows, an angle that 0-order light reflected by the mirror 4B forms with incident light to the grating 3 is constant. In such a way, the 0-order light reflected totally by the mirror 4B is incident to a plane reflecting mirror 4C, but as the mirrors 4A and 4C are fixed in such a way that the reflective surfaces of both of the mirrors 4A and 4c make an angle theta2, the direction of output light 8 which is emitted from the mirror 4C is not changed and is constant even if the grating 3 is rotated in the directions shown by the arrows.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、回折格子を用いた外部共振器型半導体レー
ザ発振器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to an external cavity type semiconductor laser oscillator using a diffraction grating.

[従来の技術] 半導体レーザ発振器は、気体、固体などのレーザ発振器
に比べると非常に小さくでき、ボンピングが電流であり
、その取り扱いが容易で、且つ効率が良いなどの特徴を
有し、光フアイバ通信、光情報処理、光計測など、広い
分野において実用化されている。
[Prior Art] Semiconductor laser oscillators have characteristics such as being extremely small compared to gas or solid-state laser oscillators, using current for pumping, easy handling, and high efficiency. It has been put into practical use in a wide range of fields, including communications, optical information processing, and optical measurement.

然しなから半導体レーザ発振器は、気体、固体などのレ
ーザ発振器に比べると、光のコヒーレンス性が悪く、そ
の向上を図る必要性から発振スペクトル幅の狭窄化を行
っている。
However, semiconductor laser oscillators have poor optical coherence compared to gas or solid state laser oscillators, and the oscillation spectrum width is narrowed in order to improve the coherence of light.

発振スペクトル幅の狭窄化を行う方法としては、電気的
なフィードバックにより負帰還制御を施す方法と、半導
体レーザの外に反射鏡などで形成した外部共振器を設け
る方法とがあが、外部共振器を設ける方がより簡便で、
その実現は容易である。
There are two methods for narrowing the oscillation spectrum width: one is to perform negative feedback control using electrical feedback, and the other is to provide an external resonator formed by a reflector or the like outside the semiconductor laser. It is easier to set up
This is easy to achieve.

上記のような外部共振器を設けた半導体レーザ発振器(
以下、これを外部共振器型半導体レーザ発振器という)
には、その反射鏡を平面反射鏡だけで構成したものと、
回折格子を用いたものとがある。そして回折格子を用い
たものは、スペクトル幅の狭窄化だけでなく発振波長の
掃引(可変)を行うことができる利点を有す。
A semiconductor laser oscillator equipped with an external cavity as described above (
(Hereinafter, this will be referred to as an external cavity type semiconductor laser oscillator)
In this case, the reflector consists of only a flat reflector, and
Some use diffraction gratings. The device using a diffraction grating has the advantage of not only narrowing the spectral width but also sweeping (variable) the oscillation wavelength.

第2図は、従来の回折格子を用いた外部共振器型半導体
レーザ発振器の構成を示す図で、図において(1A)は
両端面からレーザ光を放出する開放型パッケージにマウ
ントされた半導体レーザく以下、これを半導体レーザ(
1A〉と略記する) 、(2)はコリメートレンズ、(
3)は回折格子、<6)は半導体レーザ(IA〉からの
レーザ光、(7)は回折格子(3)からの1次回折光、
(8)は出力光を示す。 次に動作について説明する。
Figure 2 shows the configuration of a conventional external cavity type semiconductor laser oscillator using a diffraction grating. In the figure, (1A) is a semiconductor laser oscillator mounted in an open package that emits laser light from both end faces. Below, we will refer to this as a semiconductor laser (
(abbreviated as 1A〉), (2) is a collimating lens, (
3) is the diffraction grating, <6) is the laser beam from the semiconductor laser (IA>), (7) is the first-order diffracted light from the diffraction grating (3),
(8) shows the output light. Next, the operation will be explained.

半導体レーザ(LA)の一方の端面(a)から放出され
たレーザ光(6)は、コリメートレンズ(2)により平
行光となり、回折格子(3)へ入射する。そして回折格
子(3)で各波長に応じた回折角で回折され、回折格子
り3)で設定された角度により選択された波長の1次回
折光(7〉が半導体レーザ(1A)へ帰還する。
Laser light (6) emitted from one end face (a) of the semiconductor laser (LA) is turned into parallel light by a collimating lens (2), and is incident on a diffraction grating (3). Then, it is diffracted by the diffraction grating (3) at a diffraction angle corresponding to each wavelength, and the first-order diffracted light (7>) of the wavelength selected by the angle set by the diffraction grating (3) returns to the semiconductor laser (1A).

この半導体レーザ(IA〉と回折格子(3)との間で形
成された外部共振器の共振器長は、半導体レーザ(IA
)チップ自身の共振器長に比べはるかに長いため、レー
ザ共振器損失は小さくなり、選択された波長を中心波長
としたスペクトル幅の狭窄化が可能となる。
The resonator length of the external cavity formed between this semiconductor laser (IA) and the diffraction grating (3) is
) Since the resonator length is much longer than the resonator length of the chip itself, the laser resonator loss is small and the spectral width can be narrowed around the selected wavelength as the center wavelength.

そして半導体レーザ単独の場合よりコヒーレンス性の高
い出力光(8〉を発振させ、端面(b)から出力する。
Then, an output light (8>) with higher coherence than in the case of a semiconductor laser alone is oscillated and output from the end face (b).

また回折格子(3)を図面矢印に示す方向に回動させる
ことにより、半導体レーザ(IA)に帰還する光の波長
を変えて、波長掃引く変化)を行うことができる。
Furthermore, by rotating the diffraction grating (3) in the direction shown by the arrow in the drawing, the wavelength of the light that returns to the semiconductor laser (IA) can be changed to perform a wavelength sweeping change.

[発明が解決しようとする課題] 上記のような従来の外部共振器型半導体レーザ発振器は
以上のように構成されているので、使用される半導体レ
ーザは両端面からレーザ光を放出する、いわゆる開放型
半導体レーザを用いる必要がある。
[Problems to be Solved by the Invention] Since the conventional external cavity type semiconductor laser oscillator as described above is configured as described above, the semiconductor laser used is a so-called open type semiconductor laser that emits laser light from both end faces. It is necessary to use a type semiconductor laser.

然しながら開放型半導体レーザはその種類が少なく、市
販されている汎用型半導体レーザのほとんどは、カンタ
イブ等と呼ばれるパッケージに納められた片端面のみか
ら光を放出するタイプであるため、汎用品をそのまま流
用することができず、装置が高価になり、且つ発振波長
帯や光出力などが限定されたものとなってしまう。
However, there are only a few types of open-type semiconductor lasers, and most of the general-purpose semiconductor lasers on the market are of the type that emit light only from one end face, which is housed in a package called a cantaib, so it is difficult to use general-purpose semiconductor lasers as they are. Therefore, the device becomes expensive and the oscillation wavelength band, optical output, etc. are limited.

また両端面から光を放出する開放型半導体レーザは、チ
ップが直接外気に晒されることになるので、気密封止を
せずにそのまま使用すると寿命が極端に短く、且つマウ
ント部の電極とチップを結ぶ金線などが全て露出してい
るので、その取り扱いが不便になる等の問題点があった
In addition, with open semiconductor lasers that emit light from both end faces, the chip is directly exposed to the outside air, so if used as is without hermetically sealing, the lifespan will be extremely short, and the electrodes and chip on the mount will be damaged. Since all the gold wires used to connect the wires were exposed, there were problems such as making it inconvenient to handle them.

この発明はかかる課題を解決するためになされたもので
、簡単な構成により汎用品として市販されている半導体
レーザをそのまま流用することができ、波長掃引のため
回折格子を回動させても出力光の方向が変化することの
ない外部共振器型半導体レーザ発振器さ!得ることを目
的としている。
This invention was made to solve this problem, and has a simple configuration that allows general-purpose commercially available semiconductor lasers to be used as they are, and even when the diffraction grating is rotated for wavelength sweeping, the output light remains It is an external cavity type semiconductor laser oscillator whose direction does not change! The purpose is to obtain.

[課題を解決するための手段] この発明にかかる外部共振器型半導体レーザ発振器は、
回折格子と複数枚の平面反射鏡とを適当に組み合わせて
配設することにより、回折格子で設定される角度により
選択された波長の1次回折光を半導体レーザへ帰還させ
、レーザ光のスペクトル幅の狭窄化を行い、狭窄化され
たレーザ光を回折格子の0次光として取り出し、その方
向を常に一定方向に出力する外部共振器を備えることと
したものである。
[Means for Solving the Problems] An external cavity type semiconductor laser oscillator according to the present invention includes:
By arranging a diffraction grating and a plurality of plane reflecting mirrors in an appropriate combination, the first-order diffracted light of the wavelength selected by the angle set by the diffraction grating is returned to the semiconductor laser, and the spectral width of the laser light is The device is equipped with an external resonator that performs constriction, extracts the constricted laser beam as zero-order light of a diffraction grating, and outputs the constricted laser beam in a constant direction.

[作用] この発明においては、上記のような外部共振器を備える
こととしたので、市販されている汎用型半導体レーザを
そのまま流用することが可能となる。
[Function] Since the present invention includes the external resonator as described above, it is possible to use a commercially available general-purpose semiconductor laser as is.

[実施例] 以下、この発明の実施例を図面について説明する。第1
図はこの発明の一実施例を示す図で、図において(1B
)は片端面のみからレーザ光を放出するカンタイブ等と
呼ばれるパッケージに納められた汎用型の半導体レーザ
(以下、これを半導体レーザ(1B)と略記する)。(
2)はコリメートレンズ、(3)は回折格子、(4A)
、(4B)、(4C)はそれぞれ平面反射鏡、(5〉は
回折格子(3)の格子面、(6)は半導体レーザ(1B
)からのレーザ光、(7)は回折格子(3)からの1次
回折光、(8)は出力光である。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure shows an embodiment of the present invention, and in the figure (1B
) is a general-purpose semiconductor laser (hereinafter abbreviated as semiconductor laser (1B)) that is housed in a package called a cantaib or the like that emits laser light from only one end face. (
2) is a collimating lens, (3) is a diffraction grating, (4A)
, (4B) and (4C) are plane reflecting mirrors, (5> is the grating plane of the diffraction grating (3), and (6) is the semiconductor laser (1B).
), (7) is the first-order diffracted light from the diffraction grating (3), and (8) is the output light.

なお回折格子〈3)には、その回折次数の少ないもの、
例えば溝にブレーズ角(blaze angle)を施
したブレーズ格子(エシェレット(echelette
)格子)が望ましい。
Note that the diffraction grating <3) has a small number of diffraction orders,
For example, a blazed lattice (echelette) in which the grooves have a blaze angle
) lattice) is preferable.

次に動作について説明する。半導体レーザ(1B)から
放出されたレーザ光(6)はコリメートレンズ(2)に
より平行光となり、平面反射鏡(4A〉に入射し、ここ
で全反射されて回折格子(3)へ入射する。
Next, the operation will be explained. The laser beam (6) emitted from the semiconductor laser (1B) is turned into parallel light by the collimating lens (2), enters the plane reflecting mirror (4A>), is totally reflected there, and enters the diffraction grating (3).

そして回折格子(3)で各波長に応じた回折角で回折さ
れ、回折格子(3)で設定された角度により選択された
波長の1次回折光(7)が、入射光<6)の経路を逆行
して半導体レーザ(1B)に帰還する。すなわち平面反
射鏡(4A)を介して半導体レーザ〈1B)と回折格子
(3)との間で外部共振器が形成され、ここで発振スペ
クトル幅の狭窄化が行われる。
Then, it is diffracted by the diffraction grating (3) at a diffraction angle corresponding to each wavelength, and the first-order diffracted light (7) of the wavelength selected by the angle set by the diffraction grating (3) follows the path of the incident light <6). It goes backwards and returns to the semiconductor laser (1B). That is, an external resonator is formed between the semiconductor laser (1B) and the diffraction grating (3) via the plane reflecting mirror (4A), and the oscillation spectrum width is narrowed here.

スペクトル幅の狭窄化が行われた光は、回折格子(3)
から0次光として平面反射鏡(4B)に入射され、ここ
で全反射される。
The light whose spectral width has been narrowed is passed through the diffraction grating (3)
The light enters the plane reflecting mirror (4B) as zero-order light, and is totally reflected there.

回折格子(3)の格子面(5)と平面反射鏡(4B)の
反射面とは、角度θ1で固定されており、図面矢印の方
向に回折格子〈3)が回動しても、平面反射鏡(4B)
で反射された0次光と、回折格子(3)への入射光との
成す角度は、θ1×2で一定となる。
The grating surface (5) of the diffraction grating (3) and the reflective surface of the plane reflecting mirror (4B) are fixed at an angle θ1, so even if the diffraction grating (3) rotates in the direction of the arrow in the drawing, Reflector (4B)
The angle formed by the zero-order light reflected by the diffraction grating (3) and the incident light on the diffraction grating (3) is constant at θ1×2.

特にθ1=90”とすれば、90°×2=180°とな
り、互いに平行となる。
In particular, if θ1=90'', then 90°×2=180°, which means they are parallel to each other.

このようにして平面反射鏡(4B)で全反射された0次
光は、平面反射鏡(4C)に入射されるが、平面反射鏡
(4A)と平面反射鏡(4C)とは、その両方の反射面
が角度θ2になるように固定されているため、回折格子
(3)を図面矢印に示す方向で回動させても、平面反射
鏡(4C)から出射する出力光(8)の方向は変化せず
一定となる。
The 0th order light totally reflected by the plane reflector (4B) in this way is incident on the plane reflector (4C), but both the plane reflector (4A) and the plane reflector (4C) Since the reflecting surface of is fixed at an angle of θ2, even if the diffraction grating (3) is rotated in the direction shown by the arrow in the drawing, the direction of the output light (8) emitted from the plane reflector (4C) will change. does not change and remains constant.

特に、θ1=90°、θ2=270°とすることにより
、半導体レーザ(1B)からのレーザ光の光軸と出力光
(8)の光軸とを一致させることができる。
In particular, by setting θ1=90° and θ2=270°, the optical axis of the laser beam from the semiconductor laser (1B) and the optical axis of the output light (8) can be made to coincide.

従って、半導体レーザ(1B〉に帰還する光の波長を変
えて波長掃引を行うために、回折格子(3)を回動させ
ても、最終的に取り出される出力光(8〉の方向は常に
一定となり、出力光(8〉が動くといった問題を解消す
ることができる。
Therefore, even if the diffraction grating (3) is rotated to perform wavelength sweeping by changing the wavelength of the light that returns to the semiconductor laser (1B), the direction of the final output light (8) is always constant. Therefore, the problem that the output light (8) moves can be solved.

[発明の効果] この発明は以上説明したように、市販されている汎用型
半導体レーザを使用することができるので、装置を安価
に構成することができ、発振波長帯や光出力などの条件
を種々選択でき、多種多様の高コヒーレンス光を得るこ
とができるという効果がある。
[Effects of the Invention] As explained above, the present invention allows use of commercially available general-purpose semiconductor lasers, so the device can be constructed at low cost, and conditions such as oscillation wavelength band and optical output can be adjusted. The effect is that various selections can be made and a wide variety of high coherence light can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す図、第2図は従来の
装置の構成を示す図。 (1B〉は汎用型半導体レーザ、(2)はコリメートレ
ンズ、(3)は回折格子、(4A)、(4B)、(4C
)はそれぞれ平面反射鏡、(5)は格子面、(6)は半
導体レーザからの光、(7〉は1次回折光、り8〉は出
力光。 なお、各図中同一符号は同−又は相当部分を示すもの1
する 1B=汎用型半導体レーデ 2:コリメートレンズ 3:回折格子 4A、4B、4C:平面反射鏡 5:格子面 6:半導体レーザからのレーデ光 7・1次回折光 8:出力光 第 図
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing the configuration of a conventional device. (1B> is a general-purpose semiconductor laser, (2) is a collimating lens, (3) is a diffraction grating, (4A), (4B), (4C)
) are plane reflecting mirrors, (5) are lattice surfaces, (6) are light from a semiconductor laser, (7〉 is first-order diffracted light, and 8〉 is output light. In addition, the same symbols in each figure are the same - or Showing the corresponding part 1
1B = General-purpose semiconductor laser 2: Collimating lens 3: Diffraction grating 4A, 4B, 4C: Plane reflecting mirror 5: Grating surface 6: Rade light from semiconductor laser 7/1st-order diffracted light 8: Output light Diagram

Claims (1)

【特許請求の範囲】 半導体レーザから放出されるレーザ光を平行光として回
折格子に入射させ、この回折格子の設定角度により選択
された波長の1次回折光を上記半導体レーザへ帰還させ
て発振スペクトル幅の狭窄化を行う外部共振器を有する
外部共振器型半導体レーザ発振器において、 半導体レーザ(1B)からのレーザ光を平行光として入
射し、所定の反射角で全反射させる第1の平面反射鏡(
4A)、 この第1の平面反射鏡(4A)で反射された平行光が入
射し、その設定角度により選択された波長の1次回折光
を上記平行光の光路を逆行させて上記半導体レーザ(1
B)へ帰還させ、発振スペクトル幅の狭窄化を行い、ス
ペクトル幅の狭窄化が行われたレーザ光を上記半導体レ
ーザ(1B)から再び放出させ、上記平行光として入射
し、その0次光を所定の回折角で回折するように設定さ
れた回折格子(3)、 この回折格子(3)の格子面(5)に対し角度θ1に設
定された反射面を有し、回折格子(3)からの0次光を
入射して全反射させる第2の平面反射鏡(4B)、 上記第1の平面反射鏡(4A)に対し角度θ2に設定さ
れた反射面を有し、上記第2の平面反射鏡(4B)で反
射された0次光を全反射させる第3の平面反射鏡(4C
)、 上記回折格子(3)を上記第2の平面反射鏡(4B)と
共に回動し、上記回折格子(3)へ入射する上記平行光
の入射角を変化する手段を備え、 上記角度θ1およびθ2を適当に調整することにより上
記回折格子(3)を回動させても上記第3の平面反射鏡
(4C)から出力するスペクトル幅が狭窄化された出力
光(6)の方向を常に一定にしたことを特徴とする外部
共振器型半導体レーザ発振器。
[Claims] Laser light emitted from a semiconductor laser is made incident on a diffraction grating as parallel light, and the first-order diffracted light of a wavelength selected by the set angle of the diffraction grating is returned to the semiconductor laser to determine the oscillation spectrum width. In an external cavity type semiconductor laser oscillator having an external cavity that performs constriction, a first plane reflecting mirror (
4A), the parallel light reflected by this first plane reflecting mirror (4A) is incident, and the first-order diffracted light of the wavelength selected by the set angle is made to travel backwards in the optical path of the parallel light, and is reflected by the semiconductor laser (1).
B), the oscillation spectrum width is narrowed, and the laser light with the narrowed spectrum width is emitted again from the semiconductor laser (1B) and enters as the parallel light, and its zero-order light is A diffraction grating (3) is set to diffract at a predetermined diffraction angle, and a reflection surface is set at an angle θ1 to the grating plane (5) of this diffraction grating (3). a second plane reflecting mirror (4B) that totally reflects the zero-order light incident thereon; a second plane reflecting mirror (4B) having a reflecting surface set at an angle θ2 with respect to the first plane reflecting mirror (4A); A third plane reflector (4C) that totally reflects the 0th order light reflected by the reflector (4B)
), comprising means for rotating the diffraction grating (3) together with the second plane reflecting mirror (4B) to change the incident angle of the parallel light incident on the diffraction grating (3), the angle θ1 and By appropriately adjusting θ2, even if the diffraction grating (3) is rotated, the direction of the output light (6) whose spectral width is narrowed from the third plane reflecting mirror (4C) is always constant. An external cavity semiconductor laser oscillator characterized by:
JP32383589A 1989-12-15 1989-12-15 External resonator type semiconductor laser oscillator Pending JPH03185887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32383589A JPH03185887A (en) 1989-12-15 1989-12-15 External resonator type semiconductor laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32383589A JPH03185887A (en) 1989-12-15 1989-12-15 External resonator type semiconductor laser oscillator

Publications (1)

Publication Number Publication Date
JPH03185887A true JPH03185887A (en) 1991-08-13

Family

ID=18159125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32383589A Pending JPH03185887A (en) 1989-12-15 1989-12-15 External resonator type semiconductor laser oscillator

Country Status (1)

Country Link
JP (1) JPH03185887A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005159000A (en) * 2003-11-26 2005-06-16 Sony Corp Semiconductor laser
JP2006324371A (en) * 2005-05-18 2006-11-30 Sony Corp Laser equipment, laser wavelength detection method and hologram equipment
JP2006324561A (en) * 2005-05-20 2006-11-30 Sony Corp Laser and driving method of grating
US7940458B2 (en) 2004-10-18 2011-05-10 Sony Corporation Laser light source device, hologram apparatus, and method for detecting laser light

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005159000A (en) * 2003-11-26 2005-06-16 Sony Corp Semiconductor laser
US7940458B2 (en) 2004-10-18 2011-05-10 Sony Corporation Laser light source device, hologram apparatus, and method for detecting laser light
JP2006324371A (en) * 2005-05-18 2006-11-30 Sony Corp Laser equipment, laser wavelength detection method and hologram equipment
JP2006324561A (en) * 2005-05-20 2006-11-30 Sony Corp Laser and driving method of grating

Similar Documents

Publication Publication Date Title
JP4068566B2 (en) Retroreflective devices especially for tunable lasers
EP0240293B1 (en) Frequency stabilized light source
JP4069110B2 (en) Reflective semiconductor optical amplifier light source
JP4947367B2 (en) External resonator type tunable light source
JPH11186648A (en) External mirror type wavelength-variable laser
US6690709B2 (en) Device and method for reduction of spontaneous emission from external cavity lasers
JPS625677A (en) Frequency-stabilized semiconductor laser element
JPH03185887A (en) External resonator type semiconductor laser oscillator
JP3654401B2 (en) External cavity light source
JP3069643B2 (en) Tunable light source
JP2005175049A (en) External resonator semiconductor laser
JP2006128656A (en) External resonance type semiconductor laser
WO2022127138A1 (en) Resonant cavity, laser, and laser radar
US6407869B1 (en) External cavity type light source
JPH09129982A (en) External resonator type ld light source
CN218448909U (en) Novel junction external cavity semiconductor laser structure
JPH03241883A (en) Wavelength variable semiconductor laser device
JP2741060B2 (en) Multiple reflection interferometer and stabilized laser light source using the same
JP2000164980A (en) External resonator type variable wavelength semiconductor laser light source
JP2566037B2 (en) Semiconductor laser pumped solid-state laser device
JP2000183453A (en) External resonator type light source
JPH06252489A (en) External resonator laser
JPH03227584A (en) Narrow-band oscillation excimer laser
JPS6132488A (en) Semiconductor laser device
JPH01124281A (en) Optical feedback light-emitting device