JPH0653616A - Semiconductor laser complete with wavelength sweep function - Google Patents

Semiconductor laser complete with wavelength sweep function

Info

Publication number
JPH0653616A
JPH0653616A JP22271892A JP22271892A JPH0653616A JP H0653616 A JPH0653616 A JP H0653616A JP 22271892 A JP22271892 A JP 22271892A JP 22271892 A JP22271892 A JP 22271892A JP H0653616 A JPH0653616 A JP H0653616A
Authority
JP
Japan
Prior art keywords
region
wavelength
semiconductor laser
diffraction grating
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22271892A
Other languages
Japanese (ja)
Other versions
JP2832920B2 (en
Inventor
Yuichi Tomori
裕一 東盛
Yuzo Yoshikuni
裕三 吉国
Hiroyuki Ishii
啓之 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4222718A priority Critical patent/JP2832920B2/en
Priority to US08/026,451 priority patent/US5325392A/en
Priority to DE69325118T priority patent/DE69325118T2/en
Priority to DE69331533T priority patent/DE69331533T2/en
Priority to EP93103480A priority patent/EP0559192B1/en
Priority to EP98102645A priority patent/EP0847116B1/en
Publication of JPH0653616A publication Critical patent/JPH0653616A/en
Application granted granted Critical
Publication of JP2832920B2 publication Critical patent/JP2832920B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To conduct wideband wavelength sweep by using a semiconductor distribution reflector, as a laser reflector, which has regions repeatedly at a cycle of Mf (Mf>As, Ab) where a pitch of diffraction lattice on a optical waveguide path changes continuously or interruptedly from Aa to Ab. CONSTITUTION:This semiconductor laser is provided with a section 10a forming repeatedly, at a cycle of Mf, a region of a diffraction lattice where a pitch changes continuously from Aa to Ab, and a section 10b forming repeatedly, at a cycle of Mf, a region of a diffraction lattice where a pitch changes continuously from A'a to A'b. An active region 101 containing an active waveguide path layer 2, a distribution reflector regions 102 and 103 which have diffraction lattice-formed sections 10a and 10b, and a phase adjusting region 104 having a non-active waveguide path layer 3 where a diffraction lattice is not formed are electrically separated mutually. When the electric current flows into the active region 101, laser oscillation generates, and oscillating wavelength is changed by the distribution reflector regions 102, 103, and the phase adjusting region 104.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信分野での光波長
(周波数)多重通信システムにおける送信用光源や同期
検波用可同調光源、及び光計測用光源として好適な波長
掃引機能付き半導体レーザに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser having a wavelength sweeping function suitable as a light source for transmission, a tunable light source for synchronous detection, and a light source for optical measurement in an optical wavelength (frequency) multiplex communication system in the field of optical communication. It is about.

【0002】[0002]

【従来の技術】将来の通信情報量の増大に対して、光波
長(周波数)多重通信システムの研究が行われている
が、送信用光源及び同期検波用可同調光源として広範囲
な波長掃引機能が要求されてきており、また、光計測の
分野からも広域波長帯をカバーする可変波長光源の実現
が望まれている。可変波長光源としては、電流注入によ
り簡単に波長を掃引することができる分布反射型半導体
レーザが数多く研究されている。波長機能付き分布反射
型半導体レーザの実現例として、図9にその構造の断面
図を示す(例えば、東盛らによるエレクトロニクス・レ
ターズ(Electronics Letters)24巻 24号、1
481〜1482頁、1988年参照)。図9におい
て、2は活性導波路層、3は非活性導波路層、20は回
折格子、101は活性領域、102及び103はそれぞ
れ前側及び後側の分布反射器領域、104は位相調整領
域を示す。
2. Description of the Related Art In response to an increase in the amount of communication information in the future, research on an optical wavelength (frequency) multiplex communication system has been carried out. There is a demand for it, and also in the field of optical measurement, realization of a variable wavelength light source that covers a wide wavelength band is desired. As a variable wavelength light source, a number of distributed reflection type semiconductor lasers that can easily sweep the wavelength by injecting current have been studied. As an example of the realization of a distributed reflection type semiconductor laser with a wavelength function, a cross-sectional view of the structure is shown in FIG. 9 (for example, Electronics Letters Vol. 24, No. 24 by Tomori et al., 1).
481-1482, 1988). In FIG. 9, 2 is an active waveguide layer, 3 is an inactive waveguide layer, 20 is a diffraction grating, 101 is an active region, 102 and 103 are front and rear distributed reflector regions, and 104 is a phase adjustment region. Show.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来例においては、分布反射器領域102、103におけ
る回折格子20のピッチは一様であるため、λ=2Λn
eq(Λ:回折格子のピッチ、neq:等価屈折率)で決ま
るブラッグ波長λ近傍の発振波長は、非活性導波路領域
の等価屈折率neqの電気的な等価屈折率変化量Δneq
決まっていた。よって、通常電流注入による半導体の最
大屈折率変化量Δn/nは1%程度であるため、上記従
来例の分布反射型半導体レーザの波長掃引幅は100Å
程度に留まり、光波長多重通信システム用光源としては
不十分であるという問題があった。
However, in the above conventional example, since the pitch of the diffraction grating 20 in the distributed reflector regions 102 and 103 is uniform, λ = 2Λn
The oscillation wavelength near the Bragg wavelength λ determined by eq (Λ: pitch of diffraction grating, n eq : equivalent refractive index) is an electrical equivalent refractive index change Δn eq of the equivalent refractive index n eq of the inactive waveguide region. It was decided. Therefore, the maximum refractive index change amount Δn / n of the semiconductor due to the normal current injection is about 1%, and thus the wavelength sweep width of the distributed reflection semiconductor laser of the conventional example is 100Å.
However, there is a problem that it is not sufficient as a light source for an optical wavelength division multiplexing communication system.

【0004】本発明の目的は上記問題を解決し、非活性
導波路領域の等価屈折率変化量Δneqが従来と同程度
(約1%)でも、活性導波路領域の利得帯域幅(約10
00Å)にわたって広帯域波長掃引が可能な波長掃引機
能付き半導体レーザを提供することにある。
The object of the present invention is to solve the above-mentioned problems, and even if the equivalent refractive index change amount Δn eq in the non-active waveguide region is about the same as the conventional one (about 1%), the gain bandwidth of the active waveguide region (about 10%).
It is to provide a semiconductor laser with a wavelength sweep function capable of sweeping a wide band wavelength over 00 Å).

【0005】[0005]

【課題を解決するための手段】本課題を解決するため
に、半導体基板上に形成された前記半導体基板より光学
的に屈折率の大きい光導波路層を1層以上含む光導波路
において、前記光導波路上に形成された回折格子のピッ
チがΛaからΛbまで連続的もしくは断続的に変化する領
域が周期Mf(ただし、Mf>Λa、Λb)で繰り返し形成
されている半導体分布反射器をレーザの反射器として用
いる。
In order to solve this problem, in the optical waveguide including one or more optical waveguide layers formed on a semiconductor substrate and having an optical index larger than that of the semiconductor substrate, the optical waveguide Semiconductor distributed reflection in which a region in which the pitch of a diffraction grating formed on the road changes continuously or intermittently from Λ a to Λ b is repeatedly formed with a period M f (where M f > Λ a , Λ b ). The device is used as a laser reflector.

【0006】そして、レーザ構造としては半導体基板上
の所定の領域に形成した活性導波路層と、その活性導波
路層の前後にそれぞれの活性導波路層と光学的に結合し
た非活性導波路層とを有する分布反射型半導体レーザで
あって、前及び後の非活性導波路領域の一部または全部
が前述の半導体分布反射器で構成されていて、前側の非
活性導波路領域に形成される回折格子は、ピッチがΛa
からΛbまで連続的もしくは断続的に変化する領域が周
期Mf(ただし、Mf>Λa、Λb)で繰り返し形成されて
おり、後側の非活性導波路領域に形成される回折格子
は、ピッチがΛa′からΛb′まで連続的もしくは断続的
に変化する領域が周期Mr(ただし、Mr>Λa′、
Λb′)で繰り返し形成されており、前及び後の非活性
導波路領域の屈折率をそれぞれ独立に電流注入、あるい
は電圧印加を行うことにより制御し発振波長を広域掃引
できる波長掃引機能付き半導体レーザを用いる。
As a laser structure, an active waveguide layer formed in a predetermined region on a semiconductor substrate and inactive waveguide layers optically coupled to the active waveguide layers before and after the active waveguide layer are formed. A distributed reflection semiconductor laser having a front and rear inactive waveguide regions partially or wholly composed of the above-mentioned semiconductor distributed reflector and formed in the front inactive waveguide region. The pitch of the diffraction grating is Λ a
To Λ b, regions that continuously or intermittently change are repeatedly formed with a period M f (where M f > Λ a , Λ b ), and the diffraction grating formed in the non-active waveguide region on the rear side. Is a period M r (where M r > Λ a ′, where P r is continuously or intermittently changed from Λ a ′ to Λ b ′,
A semiconductor with a wavelength sweep function that is repeatedly formed with Λ b ′) and that can control the refractive index of the front and rear inactive waveguide regions independently by current injection or voltage application to sweep the oscillation wavelength in a wide range. Use a laser.

【0007】また、その波長掃引機能付き半導体レーザ
において、回折格子が形成されていない非活性導波路領
域に電流注入、もしくは電圧印加を行うことによって、
上記領域の屈折率を制御して発振波長を広域掃引できる
波長掃引機能付き半導体レーザを用いる。
Further, in the semiconductor laser with the wavelength sweep function, current injection or voltage application is performed in the non-active waveguide region where the diffraction grating is not formed,
A semiconductor laser with a wavelength sweep function that can sweep the oscillation wavelength over a wide range by controlling the refractive index in the above region is used.

【0008】また、その波長掃引機能付き半導体レーザ
において、回折格子が形成されている前後の非活性導波
路層の上方に、それぞれ櫛型に配置された2つの独立な
電極を有する波長掃引機能付き半導体レーザを用いる。
Further, in the semiconductor laser having the wavelength sweep function, the semiconductor laser having the wavelength sweep function has two independent electrodes arranged in a comb shape above the inactive waveguide layer before and after the diffraction grating is formed. A semiconductor laser is used.

【0009】さらに別のレーザ構造として、半導体基板
上に形成した活性導波路層の上部あるいは下部に回折格
子を有し、電気的に分離された領域が少なくとも2つ以
上ある、いわゆる多電極分布帰還型半導体レーザにおい
て、活性導波路領域の一部または全部が前述の半導体分
布反射器で構成されていて、回折格子の構成が異なる2
つの領域を有し、そのうちの1つの領域に形成される回
折格子は、ピッチがΛaからΛbまで連続的もしくは断続
的に変化する領域が周期Mf(ただし、Mf>Λa、Λb
で繰り返し形成されており、他方の領域に形成される回
折格子は、ピッチがΛa′からΛb′まで連続的もしくは
断続的に変化する領域が周期Mr(ただし、Mr
Λa′、Λb′)で繰り返し形成されており、前記異なる
2つの活性導波路領域の屈折率をそれぞれ独立に電流注
入を行い制御し、レーザ発振状態を保ちつつ発振波長を
広域掃引できる波長掃引機能付き半導体レーザを用い
る。
As another laser structure, a so-called multi-electrode distributed feedback having a diffraction grating above or below an active waveguide layer formed on a semiconductor substrate and having at least two or more electrically separated regions. Type semiconductor laser, a part or all of the active waveguide region is composed of the above-mentioned semiconductor distributed reflector, and the structure of the diffraction grating is different.
In the diffraction grating having two regions, the region in which the pitch changes continuously or intermittently from Λ a to Λ b has a period M f (where M f > Λ a , Λ b )
In the diffraction grating formed in the other region, the region in which the pitch changes continuously or intermittently from Λ a ′ to Λ b ′ has a period M r (where M r >
Λ a ′, Λ b ′) are repeatedly formed, and the refractive indexes of the two different active waveguide regions are controlled by independently injecting current, and the oscillation wavelength can be broadly swept while maintaining the laser oscillation state. A semiconductor laser with a sweep function is used.

【0010】また、その波長掃引機能付き半導体レーザ
において、回折格子が形成されていない活性導波路領域
に注入する電流値を変化させることによって、上記領域
の屈折率を制御して発振波長を広域掃引できる波長掃引
機能付き半導体レーザ。
Further, in the semiconductor laser having the wavelength sweep function, the refractive index of the region is controlled by changing the current value injected into the active waveguide region where the diffraction grating is not formed, thereby sweeping the oscillation wavelength in a wide range. A semiconductor laser with a wavelength sweeping function.

【0011】また、その波長掃引機能付き半導体レーザ
において、回折格子が形成されている異なる2つの領域
の活性導波路層の上方に、それぞれ櫛型に配置された2
つの独立な電極を有する波長掃引機能付き半導体レー
ザ。
Further, in the semiconductor laser with the wavelength sweep function, two comb-shaped semiconductor lasers are provided above the active waveguide layers in two different regions where the diffraction grating is formed.
A semiconductor laser with wavelength sweep function that has two independent electrodes.

【0012】[0012]

【作用】本発明による請求項1の分布反射器は、図10
に示すように回折格子のピッチがΛaからΛbまで連続
的、もしくは断続的に変化する領域が周期Mfで繰り返
し形成されているため、その分布反射器の反射特性は、
波長λa=2Λaeqから波長λb=2Λbeqまでの間に
波長間隔Δλf=λ0 2/2neqf(λ0=neq(Λa+Λ
b))で周期的に反射ピークを持つ特性となる。そこ
で、図11に示すように便宜的にこの反射ピーク点の波
長をλ1〜λnとする。ここで本発明の波長制御機能付き
半導体レーザでは、分布反射型(請求項2〜4)、及び
分布帰還型(請求項5〜7)いずれの場合も異なる構成
の前述の分布反射器をさらにもう1つ用いる。そのもう
1つの分布反射器の反射特性を、波長λa′=2Λa′n
eqから波長λb′=2neqΛb′までの間に、波長間隔Δ
λr=λ02/2neqr(λ0′=neq(Λa′+
Λb′))で周期的に反射ピークλ1′〜λk′を持つ特
性となる。ここで、2つの分布反射領域の回折格子のピ
ッチ変調の周期Mf及び、Mrはそれぞれ異なる周期で形
成しておく。
The distributed reflector according to the first aspect of the present invention is shown in FIG.
As shown in, since the region in which the pitch of the diffraction grating changes continuously or intermittently from Λ a to Λ b is repeatedly formed with the period M f , the reflection characteristic of the distributed reflector is
The wavelength interval Δλ f = λ 0 2 / 2n eq M f0 = n eqa + Λ from the wavelength λ a = 2Λ a n eq to the wavelength λ b = 2Λ b n eq
b )) has the characteristic of having a reflection peak periodically. Therefore, as shown in FIG. 11, for convenience, the wavelengths of the reflection peak points are set to λ 1 to λ n . Here, in the semiconductor laser with a wavelength control function of the present invention, the distributed reflector (claims 2 to 4) and the distributed feedback type (claims 5 to 7) are different from the above-mentioned distributed reflector. Use one. The reflection characteristic of the other distributed reflector is set to the wavelength λ a ′ = 2Λ a ′ n.
From eq to the wavelength λ b ′ = 2n eq Λ b ′, the wavelength interval Δ
λ r = λ 02 / 2n eq M r0 ′ = n eqa ′ +
Λ b ′)) has a characteristic that periodically has reflection peaks λ 1 ′ to λ k ′. Here, the pitch modulation periods M f and M r of the diffraction gratings of the two distributed reflection regions are formed with different periods.

【0013】請求項2〜4、及び5〜7については、上
記2つの異なる分布反射領域の屈折率をそれぞれ電気的
に独立に制御して、λ1〜λnのうちの一波長λi(i=
1〜n)にλ1′〜λk′のうちの一つを同調させて、そ
のλi近傍のみでレーザ発振させることができる。図1
1は、λ1とλ2の発振例、すなわちiが1及び2の場合
を示したものである。λ1〜λn及びλ1′〜λk′を半導
体の利得帯域がカバーできる程度に設定すれば、利得帯
域をカバーする発振波長制御を行うことができる。ここ
で前述の回折格子を、活性領域の両側に非活性領域を有
する分布反射型のレーザの非活性領域中に形成したもの
が請求項2〜4であり、共振器が活性領域のみで構成さ
れた分布帰還型のレーザの活性領域中に前述の回折格子
を形成したものが請求項5〜7である。
In the second to fourth and fifth to seventh aspects, the refractive indices of the two different distributed reflection regions are controlled electrically independently of each other, and one wavelength λ ii of λ 1 to λ n ( i =
1 to n), one of λ 1 ′ to λ k ′ can be tuned to cause laser oscillation only in the vicinity of λ i . Figure 1
1 shows an example of oscillation of λ 1 and λ 2 , that is, i is 1 and 2. If λ 1 to λ n and λ 1 ′ to λ k ′ are set to such an extent that the semiconductor gain band can be covered, the oscillation wavelength control that covers the gain band can be performed. Here, the above-mentioned diffraction grating is formed in an inactive region of a distributed Bragg reflector laser having inactive regions on both sides of the active region, and the resonator is composed only of the active region. According to claims 5 to 7, the above-mentioned diffraction grating is formed in the active region of the distributed feedback laser.

【0014】請求項3は、非活性導波路層のなかで回折
格子を形成していない位相調整領域の屈折率を、前述の
分布反射領域とは独立に制御することにより、前述の波
長λi近傍で発振波長を微少調整することができ、した
がって、λ1〜λ2の全範囲の波長帯全てでレーザ発振さ
せることができる。
According to a third aspect of the present invention, the above-mentioned wavelength λ i is controlled by controlling the refractive index of the phase adjusting region in which the diffraction grating is not formed in the non-active waveguide layer independently of the above-mentioned distributed reflection region. The oscillation wavelength can be finely adjusted in the vicinity, and therefore, laser oscillation can be performed in the entire wavelength band of λ 1 to λ 2 .

【0015】さらに請求項6は、活性領域中で回折格子
を形成していない位相調整領域の屈折率を、前述の分布
反射器領域とは独立に制御することにより、前述の波長
λi近傍で発振波長を微少調整することができる。した
がって、λ1〜λ2の全範囲の波長帯全てでレーザ発振さ
せることができる。
Further, according to a sixth aspect of the present invention, the refractive index of the phase adjusting region in which the diffraction grating is not formed in the active region is controlled independently of the above distributed reflector region, so that the wavelength in the vicinity of the above wavelength λ i is controlled. The oscillation wavelength can be finely adjusted. Therefore, laser oscillation can be performed in all wavelength bands in the entire range of λ 1 to λ 2 .

【0016】請求項4の分布反射型半導体レーザでは、
前後の分布反射器の上方に設けられた2組の櫛型電極の
うちのそれぞれ1つずつに、独立に電流注入、もしくは
電圧印加を行うことによって、前後の分布反射器の平均
等価屈折率をそれぞれ独立に変化させ、前述の任意の波
長λi近傍でレーザ発振を得ることができる。ここで前
後の分布反射器の平均屈折率を同時に同量だけ変化させ
れば、前記波長λi近傍での発振波長の微調整が可能と
なる。本発明による分布反射型半導体レーザでは、前記
櫛型電極の残りの2つの電極を短絡して、該電極に電流
注入、もしくは電圧印加を行うことにより、λi近傍で
の発振波長の微調整を行うことができる。さらに、本発
明による分布反射型半導体レーザでは、前述の短絡した
櫛型電極と回折格子が形成されていない非活性導波路領
域とに、同時に電流注入、もしくは電圧印加を行い、前
記波長λi近傍で連続的に発振波長を掃引することがで
きる。
In the distributed Bragg reflector semiconductor laser according to claim 4,
The average equivalent refractive index of the front and rear distributed reflectors is measured by independently injecting current or applying voltage to each one of the two sets of comb-shaped electrodes provided above the front and rear distributed reflectors. Laser oscillation can be obtained in the vicinity of the above-mentioned arbitrary wavelength λ i by changing each independently. If the average refractive indices of the front and rear distributed reflectors are simultaneously changed by the same amount, fine adjustment of the oscillation wavelength in the vicinity of the wavelength λ i becomes possible. In the distributed Bragg reflector semiconductor laser according to the present invention, the remaining two electrodes of the comb-shaped electrode are short-circuited and a current is injected or a voltage is applied to the electrodes to finely adjust the oscillation wavelength in the vicinity of λ i. It can be carried out. Further, in the distributed Bragg reflector semiconductor laser according to the present invention, current is injected or voltage is simultaneously applied to the above-mentioned short-circuited comb-shaped electrode and the inactive waveguide region where the diffraction grating is not formed, so that the wavelength near λ i is reached. The oscillation wavelength can be continuously swept with.

【0017】また、請求項7の分布帰還型半導体レーザ
では、2つの分布反射器の上方に設けられた2組の櫛型
電極のうちのそれぞれ1つずつに注入する電流値を変化
させることによって、2つの分布反射器の平均等価屈折
率をそれぞれ独立に変化させ、前述の任意の波長λi
傍でレーザ発振を得ることができる。ここで前後の分布
反射器の平均屈折率を同時に同量だけ変化させれば、前
記波長λi近傍での発振波長の微調整が可能となる。本
発明による分布帰還型半導体レーザでは、前記櫛型電極
の残りの2つの電極を短絡して、該電極に注入する電流
値を変化させることにより、λi近傍での発振波長の微
調整を行うことができる。さらに、本発明による分布帰
還型半導体レーザでは、前述の短絡した櫛型電極と回折
格子が形成されていない活性導波路領域とに注入する電
流値を同時に変化させることにより、前記波長λi近傍
で連続的に発振波長を掃引することができる。
According to the distributed feedback semiconductor laser of the present invention, the current value injected into each one of the two sets of comb electrodes provided above the two distributed reflectors is changed. It is possible to independently change the average equivalent refractive index of the two distributed reflectors and obtain laser oscillation in the vicinity of the arbitrary wavelength λ i described above. If the average refractive indices of the front and rear distributed reflectors are simultaneously changed by the same amount, fine adjustment of the oscillation wavelength in the vicinity of the wavelength λ i becomes possible. In the distributed feedback semiconductor laser according to the present invention, the remaining two electrodes of the comb-shaped electrode are short-circuited and the current value injected into the electrodes is changed to finely adjust the oscillation wavelength in the vicinity of λ i. be able to. Further, in the distributed feedback semiconductor laser according to the present invention, the current value injected into the above-mentioned short-circuited comb-shaped electrode and the active waveguide region in which the diffraction grating is not formed is changed at the same time, so that the wavelength near λ i The oscillation wavelength can be continuously swept.

【0018】以上に説明したような方法により、波長λ
1からλnまでの間の任意の波長でレーザ発振を得ること
ができる。さらに、前述の波長λ1〜λn、及びλ1′〜
λk′を半導体の利得帯域がカバーできる程度に設定す
れば、上記利得帯域内の任意の波長でレーザ発振が得ら
れる。
By the method described above, the wavelength λ
Laser oscillation can be obtained at any wavelength between 1 and λ n . Furthermore, the wavelengths λ 1 to λ n and λ 1 ′ to
If λ k ′ is set to an extent that the gain band of the semiconductor can be covered, laser oscillation can be obtained at any wavelength within the above gain band.

【0019】[0019]

【実施例】〔実施例1〕実施例1〜2では請求項2、3
の発明を示す。
Embodiments [Embodiment 1] In Embodiments 1 and 2, claims 2, 3
The invention of

【0020】図1に本発明の分布反射型の波長掃引機能
付き半導体レーザの実施例を示す。図1において、1は
n型InP基板、2はバンドギャップ波長が1.55μ
mのInGaAsP活性導波路層、3はバンドギャップ
波長が1.3μmのInGaAsP非活性導波路層、4
はp型InPクラッド層、5はp(+)型InGaAsP
キャップ層、6はp型InP電流ブロック層、7はn型
電流ブロック層、8はn型電極、9はp型電極、10a
はピッチがΛaからΛbまで連続的に変化する回折格子の
領域が周期Mfで繰り返し形成された部分、10bはピ
ッチがΛa′からΛb′まで連続的に変化する回折格子の
領域が周期Mrで繰り返し形成された部分、11は活性
導波路層と非活性導波路層の結合部分、101は活性領
域、102及び103はそれぞれ前側及び後側の分布反
射器領域、104は位相調整領域である。
FIG. 1 shows an embodiment of a distributed reflection type semiconductor laser having a wavelength sweeping function according to the present invention. In FIG. 1, 1 is an n-type InP substrate and 2 is a bandgap wavelength of 1.55 μm.
m InGaAsP active waveguide layer, 3 is an InGaAsP inactive waveguide layer having a bandgap wavelength of 1.3 μm, 4
Is a p-type InP clad layer, 5 is a p (+)-type InGaAsP
Cap layer, 6 is p-type InP current blocking layer, 7 is n-type current blocking layer, 8 is n-type electrode, 9 is p-type electrode, and 10a
Is a portion in which a region of the diffraction grating whose pitch continuously changes from Λ a to Λ b is repeatedly formed with a period M f , and 10b is a region of the diffraction grating whose pitch continuously changes from Λ a ′ to Λ b ′. Are repeatedly formed with a period M r , 11 is a coupling part of an active waveguide layer and an inactive waveguide layer, 101 is an active region, 102 and 103 are front and rear distributed reflector regions, and 104 is a phase. This is an adjustment area.

【0021】前記実施例の波長掃引機能付き分布反射型
レーザの作製方法を簡単に説明する。最初に、有機金属
気相エピタキシャル成長法を用いて、n型InP基板1
上に活性導波路層2と非活性導波路層3を作製する。そ
の後、非活性導波路層3の表面に塗布したレジストに、
電子ビーム露光法によって、ピッチが変調された回折格
子のパターンを転写し、その転写パターンをマスクとし
てエッチングによって10a及び10bの回折格子を形
成する。そして、横モードを制御するためにストライプ
状に導波路を加工し、再度有機金属気相エピタキシャル
成長法を用いて、p型InP電流ブロック層6、n型電
流ブロック層7、p型InPクラッド層4、及びp(+)
型InGaAsPキャップ層5を順次作製する。その
後、p型電極9及びn型電極8を形成し、さらに、活性
導波路層2を含む活性領域101、回折格子が形成され
た部分10a及び10bを有する分布反射器領域102
及び103、及び回折格子が形成されていない非活性導
波路層を有する位相調整領域104をそれぞれ互いに電
気的に分離するために、それらの結合部分の上方のp型
電極9、及びp(+)型InGaAsPキャップ層5を除
去する。
A method of manufacturing the distributed reflection laser with the wavelength sweeping function of the above embodiment will be briefly described. First, the n-type InP substrate 1 is formed by using the metalorganic vapor phase epitaxial growth method.
An active waveguide layer 2 and a non-active waveguide layer 3 are formed on top. After that, the resist applied on the surface of the inactive waveguide layer 3 is
The pattern of the diffraction grating whose pitch is modulated is transferred by the electron beam exposure method, and the diffraction gratings 10a and 10b are formed by etching using the transferred pattern as a mask. Then, the waveguide is processed into a stripe shape to control the transverse mode, and the p-type InP current block layer 6, the n-type current block layer 7, and the p-type InP clad layer 4 are again formed by using the metalorganic vapor phase epitaxial growth method. , And p (+)
The type InGaAsP cap layer 5 is sequentially manufactured. Then, the p-type electrode 9 and the n-type electrode 8 are formed, and further, the active region 101 including the active waveguide layer 2 and the distributed reflector region 102 having the diffraction grating formed portions 10a and 10b.
And 103, and the p-type electrode 9 and p (+) above their coupling part in order to electrically isolate the phase adjusting region 104 having the non-active waveguide layer in which the diffraction grating is not formed from each other. The InGaAsP cap layer 5 is removed.

【0022】本実施例の波長掃引機能付き分布反射型半
導体レーザにおける回折格子では、10aの部分ではピ
ッチが2459Åから2389Åまで連続的に変化する
領域が周期75μmで繰り返し形成されており、10b
の部分ではピッチが2454Åから2385Åまで連続
的に変化する領域が周期67.5μmで繰り返し形成さ
れている。
In the diffraction grating of the distributed Bragg reflector semiconductor laser with wavelength sweeping function of this embodiment, in the portion 10a, a region in which the pitch continuously changes from 2459Å to 2389Å is repeatedly formed with a cycle of 75 μm, and 10b.
In the area, the region where the pitch continuously changes from 2454Å to 2385Å is repeatedly formed with a period of 67.5 μm.

【0023】以上のような構成の分布反射型半導体レー
ザでは、活性領域101に電流を流すことによってレー
ザ発振が生じ、分布反射器領域102及び103、位相
調整領域104にそれぞれ独立に電流を流したり、電圧
を印加することによって発振波長が変化する。活性領域
に一定電流を流し、分布反射器領域102と位相調整領
域104には電流を流さない状態で、分布反射器領域1
03の電流を変化させたときの発振波長の変化の様子を
図2に示す。図2に示すように、本実施例の分布反射型
半導体レーザでは、分布反射器領域103に電流を流す
ことによって、発振波長が1.575μmから1.53
0μmまで約50Åおきに変化し、最大450Åの波長
掃引が得られる。さらに、分布反射器領域102及び位
相調整領域104に流す電流をそれぞれ制御することに
よって、450Åの全範囲にわたって、発振波長を変化
させることができる。
In the distributed Bragg reflector semiconductor laser having the above-described structure, laser oscillation occurs when a current is passed through the active region 101, and currents are independently passed through the distributed reflector regions 102 and 103 and the phase adjustment region 104. , The oscillation wavelength is changed by applying a voltage. With a constant current flowing in the active region and no current flowing in the distributed reflector region 102 and the phase adjustment region 104, the distributed reflector region 1
FIG. 2 shows how the oscillation wavelength changes when the current of No. 03 is changed. As shown in FIG. 2, in the distributed Bragg reflector semiconductor laser of the present embodiment, the oscillation wavelength is changed from 1.575 μm to 1.53 by passing a current through the distributed reflector region 103.
A wavelength sweep of up to 450 Å can be obtained by changing every 50 Å up to 0 μm. Further, the oscillation wavelength can be changed over the entire range of 450 Å by controlling the currents flowing through the distributed reflector region 102 and the phase adjustment region 104, respectively.

【0024】なお、上述の実施例では、活性導波路層、
及び非活性導波路層が単一の半導体層で構成されている
場合について説明したが、多重量子井戸構造等のよう
な、組成の異なる複数の半導体層が積層された構造であ
っても本発明は適用可能である。
In the above embodiment, the active waveguide layer,
Also, the case where the inactive waveguide layer is composed of a single semiconductor layer has been described, but the present invention can be applied to a structure in which a plurality of semiconductor layers having different compositions are laminated, such as a multiple quantum well structure. Is applicable.

【0025】〔実施例2〕実施例1では、分布反射器領
域に形成された回折格子のピッチが連続的に変化する場
合について説明したが、回折格子のピッチが断続的に変
化している場合にも本発明を適用することができる。そ
こで、以下に回折格子のピッチを断続的に変化させた場
合の実施例について説明する。回折格子以外の構造は、
図1に示した実施例1の場合の構造と同一のものであっ
て、前側分布反射器領域102に形成される回折格子1
0aと後側分布反射器領域103に形成される回折格子
10bが次のような構成になっている。回折格子10a
は、ピッチが2459Åから2389Åまで7.5μm
ずつ断続的に10段階変化する領域が75μmの繰り返
し周期で形成されており、回折格子10bは、ピッチが
2454Åから2385Åまで7.5μmずつ断続的に
9段階変化する領域が67.5μmの繰り返し周期で形
成されている。表1に本実施例で用いた回折格子のピッ
チと制御電流を注入していないときのブラッグ波長を示
す。
[Embodiment 2] In Embodiment 1, the case where the pitch of the diffraction grating formed in the distributed reflector region changes continuously has been described. However, when the pitch of the diffraction grating changes intermittently. The present invention can also be applied to. Therefore, an example in which the pitch of the diffraction grating is intermittently changed will be described below. Structures other than the diffraction grating are
The diffraction grating 1 has the same structure as that of the first embodiment shown in FIG. 1 and is formed in the front distributed reflector region 102.
0a and the diffraction grating 10b formed in the rear distributed reflector region 103 have the following configuration. Diffraction grating 10a
Has a pitch of 7.5 μm from 2459 Å to 2389 Å
The region in which the pitch changes intermittently by 10 steps is formed with a repetition period of 75 μm, and the diffraction grating 10b has a repetition period of 67.5 μm in which the pitch changes intermittently in 9 steps by 7.5 μm from 2454 Å to 2385 Å. Is formed by. Table 1 shows the pitch of the diffraction grating used in this example and the Bragg wavelength when the control current is not injected.

【0026】[0026]

【表1】 [Table 1]

【0027】このような構造の波長掃引機能付き半導体
レーザにおいても、実施例1のところで説明したような
方法で、各電極への注入電流値を制御することによっ
て、1.575μmから1.530μmまでの450Å
の範囲内の全ての波長において、レーザ発振動作を行う
ことができる。
Also in the semiconductor laser with the wavelength sweeping function having such a structure, the injection current value to each electrode is controlled by the method as described in the first embodiment, so that the value is increased from 1.575 μm to 1.530 μm. Of 450Å
The laser oscillation operation can be performed at all wavelengths within the range.

【0028】〔実施例3〕実施例3、4では、請求項
3、4の発明を示す。
[Embodiment 3] Embodiments 3 and 4 show the inventions of claims 3 and 4.

【0029】図3に本発明による波長掃引機能付き分布
反射型半導体レーザの一実施例の構造図を示す。図3に
おいて、(a)は上記分布反射型半導体レーザを上方か
ら眺めた図であり、(b)は(a)に示した線A−A′
で分布反射型半導体レーザを切りとったときの断面図で
あり、(c)は(a)に示した線B−B′で分布反射型
半導体レーザを切りとったときの断面図である。図3に
おいて、1はn型InP基板、2はバンドギャップ波長
が1.55μmのInGaAsP活性導波路層、3はバ
ンドギャップ波長が1.3μmのInGaAsP非活性
導波路層、4はp型InPクラッド層、5はp(+)型I
nGaAsPキャップ層、6はp型InP電流ブロック
層、7はn型電流ブロック層、8はn型電極、9aは活
性領域101に設けられたp型電極、9bは位相調整領
域104に設けられたp型電極、9c、9dは前側の分
布反射器領域102に設けられた1組の櫛型p型電極、
9e、9fは後側の分布反射器領域103に設けられた
1組の櫛型p型電極、10aはピッチがΛaからΛbまで
連続的に変化する回折格子の領域が周期Mfで繰り返し
形成された部分、10bはピッチがΛa′からΛb′まで
連続的に変化する回折格子の領域が周期Mrで繰り返し
形成された部分、11は活性導波路層と非活性導波路層
の結合部分である。
FIG. 3 shows a structural diagram of an embodiment of a distributed Bragg reflector semiconductor laser with a wavelength sweeping function according to the present invention. In FIG. 3, (a) is a view of the distributed Bragg reflector semiconductor laser viewed from above, and (b) is a line AA ′ shown in (a).
FIG. 6 is a cross-sectional view of the distributed reflection type semiconductor laser taken along with, and (c) is a cross-sectional view of the distributed reflection semiconductor laser taken along line BB ′ shown in (a). In FIG. 3, 1 is an n-type InP substrate, 2 is an InGaAsP active waveguide layer having a bandgap wavelength of 1.55 μm, 3 is an InGaAsP inactive waveguide layer having a bandgap wavelength of 1.3 μm, and 4 is a p-type InP clad. Layer 5 is p (+) type I
nGaAsP cap layer, 6 is a p-type InP current blocking layer, 7 is an n-type current blocking layer, 8 is an n-type electrode, 9a is a p-type electrode provided in the active region 101, and 9b is provided in the phase adjustment region 104. p-type electrodes, 9c and 9d are a pair of comb-type p-type electrodes provided in the front distributed reflector region 102,
9e and 9f are a pair of p-type p-type electrodes provided in the distributed reflector region 103 on the rear side, and 10a is a region of a diffraction grating whose pitch continuously changes from Λ a to Λ b and is repeated with a period M f . The formed portion 10b is a portion in which a region of the diffraction grating whose pitch continuously changes from Λ a ′ to Λ b ′ is repeatedly formed with a period M r , and 11 is an active waveguide layer and an inactive waveguide layer. It is the connecting part.

【0030】本実施例の波長掃引機能付き分布反射型半
導体レーザにおける回折格子では、10aの部分ではピ
ッチが2459Åから2389Åまで連続的に変化する
領域が周期75μmで繰り返し形成されており、10b
の部分ではピッチが2454Åから2385Åまで連続
的に変化する領域が周期67.5μmで繰り返し形成さ
れている。また、櫛型電極において、櫛状に細かく分割
された個々の電極の繰り返し周期は、回折格子のピッチ
変調周期と同一になっている。すなわち、前側分布反射
器領域の櫛型電極9c、9dの個々の電極は、75μm
周期で繰り返し形成されていて、電極の長さはその周期
のほぼ半分の長さになっている。そして、後側分布反射
器領域の櫛型電極9e、9fの個々の電極は、67.5
μm周期で繰り返し形成されている。
In the diffraction grating of the distributed Bragg reflector semiconductor laser with wavelength sweeping function of this embodiment, in the portion 10a, a region in which the pitch continuously changes from 2459Å to 2389Å is repeatedly formed with a period of 75 μm, and 10b.
In the area, the region where the pitch continuously changes from 2454Å to 2385Å is repeatedly formed with a period of 67.5 μm. Further, in the comb-shaped electrode, the repetition cycle of the individual electrodes that are finely divided into a comb shape is the same as the pitch modulation cycle of the diffraction grating. That is, the individual electrodes of the comb-shaped electrodes 9c and 9d in the front distributed reflector region are 75 μm.
The electrodes are repeatedly formed in a cycle, and the length of the electrode is almost half the cycle. The individual electrodes of the comb-shaped electrodes 9e and 9f in the rear distributed reflector region are 67.5.
It is repeatedly formed with a period of μm.

【0031】以上のような構成の分布反射型半導体レー
ザでは、活性領域101に電流を流すことによってレー
ザ発振が生じ、分布反射器領域102及び103、位相
調整領域104にそれぞれ独立に電流を流したり、電圧
を印加することによって発振波長が変化する。
In the distributed Bragg reflector semiconductor laser having the above-described structure, laser oscillation occurs when a current is passed through the active region 101, and a current is independently passed through the distributed reflector regions 102 and 103 and the phase adjustment region 104. , The oscillation wavelength is changed by applying a voltage.

【0032】活性領域に一定電流を流し、前後の分布反
射器領域102及び103に設けられた櫛型電極のうち
の9c、9d、及び9fと位相調整領域104に設けら
れたp型電極9bには電流を流さない状態で、分布反射
器領域103に設けられた櫛型電極9eに流す電流を変
化させたときの発振波長の変化の様子を図4に示す。図
4に示すように、本実施例の分布反射型半導体レーザで
は、分布反射器領域103に電流を流すことによって、
発振波長を1.575μmから1.530μmまで約5
0Åおきに変化させることができる。
A constant current is applied to the active region, and 9c, 9d, and 9f of the comb-shaped electrodes provided in the front and rear distributed reflector regions 102 and 103 and the p-type electrode 9b provided in the phase adjustment region 104. FIG. 4 shows how the oscillation wavelength changes when the current flowing through the comb-shaped electrode 9e provided in the distributed reflector region 103 is changed while no current is flowing. As shown in FIG. 4, in the distributed Bragg reflector semiconductor laser of the present embodiment, by passing a current through the distributed reflector region 103,
Oscillation wavelength from 1.575μm to 1.530μm about 5
It can be changed every 0Å.

【0033】また前述の状態において、櫛型電極9cと
9eに流す電流値を固定して、約50Åおきに変化する
発振波長のうちの1つの波長を選択し、さらにここで櫛
型電極9dと9fとを電気的に短絡して、上記電極に同
時に電流を注入することにより、発振波長を微調整する
ことが可能である。短絡した櫛型電極9dと9fに流す
電流を変化させたときの発振波長の変化の様子を図5に
実線で示す。図5に示すように、本実施例の分布反射型
半導体レーザでは、短絡した櫛型電極9dと9fとに同
時に電流を流すことによって、波長跳びを起こしながら
発振波長を50Å程度変化させることができる。
Further, in the above-mentioned state, the value of the current flowing through the comb-shaped electrodes 9c and 9e is fixed, and one of the oscillation wavelengths that changes at intervals of about 50 Å is selected. It is possible to finely adjust the oscillation wavelength by electrically shorting 9f and injecting a current into the electrodes at the same time. The solid line in FIG. 5 shows how the oscillation wavelength changes when the current flowing through the short-circuited comb electrodes 9d and 9f is changed. As shown in FIG. 5, in the distributed Bragg reflector semiconductor laser of the present embodiment, the oscillation wavelength can be changed by about 50 Å while causing the wavelength jump by causing a current to flow through the shorted comb electrodes 9d and 9f at the same time. .

【0034】さらに位相調整領域104に設けられたp
型電極9bに電流を流して、短絡した櫛型電極9dと9
fとに流す電流を変化させたときの発振波長の変化の様
子を図5に破線で示す。このように、位相調整領域に設
けられたp型電極9bに流す電流を制御することによっ
て、さらに発振波長を微調整することが可能となる。
Further, p provided in the phase adjustment region 104
An electric current is applied to the mold electrode 9b to short-circuit the comb electrodes 9d and 9d.
A change in the oscillation wavelength when the currents flowing through f and f is changed is shown by a broken line in FIG. In this way, by controlling the current flowing through the p-type electrode 9b provided in the phase adjustment region, the oscillation wavelength can be further finely adjusted.

【0035】p型電極9b〜fに流す電流を以上に説明
した手順で調整することによって、発振波長の粗調整、
微調整を行い、450Åの波長範囲にわたって任意の発
振波長を選択することが可能となる。
By adjusting the currents flowing through the p-type electrodes 9b to 9f by the procedure described above, rough adjustment of the oscillation wavelength,
By fine adjustment, it becomes possible to select an arbitrary oscillation wavelength over the wavelength range of 450Å.

【0036】〔実施例4〕実施例3では、分布反射器領
域に形成された回折格子のピッチが連続的に変化する場
合について説明したが、回折格子のピッチが断続的に変
化している場合にも本発明を適用することができる。そ
こで、以下に回折格子のピッチを断続的に変化させた場
合の実施例について説明する。回折格子以外の構造は、
図3に示した実施例3の場合の構造と同一のものであっ
て、前側分布反射器領域102に形成される回折格子1
0aと後側分布反射器領域103に形成される回折格子
10bが次のような構成になっている。回折格子10a
は、ピッチが2459Åから2389Åまで7.5μm
ずつ断続的に10段階変化する領域が75μmの繰り返
し周期で形成されており、回折格子10bは、ピッチが
2454Åから2385Åまで7.5μmずつ断続的に
9段階変化する領域が67.5μmの繰り返し周期で形
成されている。表1に本実施例で用いた回折格子のピッ
チと制御電流を注入していないときのブラッグ波長を示
す。
[Embodiment 4] In Embodiment 3, the case where the pitch of the diffraction grating formed in the distributed reflector region changes continuously has been described. However, when the pitch of the diffraction grating changes intermittently. The present invention can also be applied to. Therefore, an example in which the pitch of the diffraction grating is intermittently changed will be described below. Structures other than the diffraction grating are
The diffraction grating 1 has the same structure as that of the third embodiment shown in FIG. 3 and is formed in the front distributed reflector region 102.
0a and the diffraction grating 10b formed in the rear distributed reflector region 103 have the following configuration. Diffraction grating 10a
Has a pitch of 7.5 μm from 2459 Å to 2389 Å
The region in which the pitch changes intermittently by 10 steps is formed with a repetition period of 75 μm, and the diffraction grating 10b has a repetition period of 67.5 μm in which the pitch changes intermittently in 9 steps by 7.5 μm from 2454 Å to 2385 Å. Is formed by. Table 1 shows the pitch of the diffraction grating used in this example and the Bragg wavelength when the control current is not injected.

【0037】このような構造の波長掃引機能付き分布反
射型半導体レーザにおいても、実施例3のところで説明
したような方法で、各電極への注入電流値を制御するこ
とによって、1.575μmから1.530μmまでの
450Åの範囲内の全ての波長において、レーザ発振動
作を行うことができる。
Also in the distributed reflection type semiconductor laser having the wavelength sweeping function having such a structure, the injection current value to each electrode is controlled by the method as described in the third embodiment, so that the value from 1.575 μm to 1 can be obtained. Laser oscillation can be performed at all wavelengths within the range of 450 Å up to 0.530 μm.

【0038】〔実施例5〕実施例5は、請求項4の発明
を示す。
[Embodiment 5] Embodiment 5 shows the invention of claim 4.

【0039】実施例3、4は、回折格子のピッチ変調周
期と櫛型電極の個々の電極の繰り返し周期が同一の場合
について説明したが、櫛型電極の個々の電極の繰り返し
周期が回折格子のピッチ変調周期よりも小さい場合に
は、上記実施例と同様の効果が得られる。一方、電極の
繰り返し周期が回折格子のピッチ変調周期よりも大きい
場合には、違った効果が得られる。その一例として、図
3に示した実施例3の波長掃引機能付き分布反射型半導
体レーザと櫛型電極以外の構造は全て同じで、櫛型電極
9c〜fの個々の電極の長さが2倍になっている半導体
レーザについて、その発振波長の制御方法を以下に説明
する。
In the third and fourth embodiments, the pitch modulation period of the diffraction grating and the repetition period of the individual electrodes of the comb-shaped electrode are the same, but the repetition period of the individual electrodes of the comb-shaped electrode is the same as that of the diffraction grating. When it is smaller than the pitch modulation period, the same effect as that of the above-mentioned embodiment can be obtained. On the other hand, if the electrode repetition period is longer than the pitch modulation period of the diffraction grating, a different effect is obtained. As an example thereof, the structure other than the distributed reflection type semiconductor laser with wavelength sweeping function of the third embodiment shown in FIG. 3 and the comb-shaped electrodes are all the same, and the length of each of the comb-shaped electrodes 9c to f is doubled. A method of controlling the oscillation wavelength of the semiconductor laser having the above structure will be described below.

【0040】図6に本実施例における半導体レーザの分
布反射器領域の反射特性を示す。櫛型電極に電流を注入
しない場合は、図6(a)に示すように、回折格子のピ
ッチ変調周期Mfに対応する波長間隔Δλfで周期的に反
射ピークを持つ反射特性となる。ここで、回折格子の上
方に設けられた周期2Mfで個々の電極が繰り返し形成
されている1組の櫛型電極のうちの片方の電極に電流を
注入すると、屈折率が周期2Mfで変動するため、図6
(b)に示すような、波長間隔Δλf/2で周期的に反
射ピークを持つ特性になる。さらに、その電極に流す電
流量を増すと、図6(c)に示すように、電流を全く流
さないときの反射特性がΔλf/2だけシフトした特性
となる。以上のような原理を用いることにより、波長間
隔Δλf/2で発振波長の粗調整が行える。つまり、実
施例1及び実施例2の半導体レーザでは、50Åごとに
発振波長の粗調整が行えるのに対して、本実施例の半導
体レーザでは、25Åごとに発振波長の粗調整が行え
る。
FIG. 6 shows the reflection characteristics of the distributed reflector region of the semiconductor laser in this embodiment. When no current is injected into the comb-shaped electrode, as shown in FIG. 6A, the reflection characteristic has periodic reflection peaks at a wavelength interval Δλ f corresponding to the pitch modulation period M f of the diffraction grating. Here, when a current is injected into one electrode of a pair of comb-shaped electrodes in which individual electrodes are repeatedly formed at a period of 2M f provided above the diffraction grating, the refractive index changes at a period of 2M f . In order to
As shown in (b), the characteristics have periodic reflection peaks at the wavelength interval Δλ f / 2. Further, when the amount of current flowing through the electrode is increased, the reflection characteristic when no current is passed is shifted by Δλ f / 2, as shown in FIG. 6C. By using the principle as described above, it is possible to roughly adjust the oscillation wavelength at the wavelength interval Δλ f / 2. That is, in the semiconductor lasers of Examples 1 and 2, the oscillation wavelength can be roughly adjusted every 50Å, whereas in the semiconductor laser of this example, the oscillation wavelength can be roughly adjusted every 25Å.

【0041】〔実施例6〕実施例6、7は請求項5の発
明を示す。
[Embodiment 6] Embodiments 6 and 7 show the invention of claim 5.

【0042】図7に本発明による分布帰還型の波長掃引
機能付き半導体レーザの一実施例の構造図を示す。図7
において、1はn型InP基板、2はバンドギャップ波
長が1.55μmのInGaAsP活性層、3はバンド
ギャップ波長が1.3μmのInGaAsP光閉じ込め
層、4はp型InPクラッド層、5はp(+)型InGa
AsPキャップ層、6はp型InP電流ブロック層、7
はn型電流ブロック層、8はn型電極、9はp型電極、
10aはピッチがΛaからΛbまで連続的に変化する回折
格子の領域が周期Mfで繰り返し形成された部分、10
bはピッチがΛa′からΛb′まで連続的に変化する回折
格子の領域が周期Mrで繰り返し形成された部分、10
2及び103はそれぞれ前側及び後側の分布反射器領
域、104は位相調整領域である。
FIG. 7 shows a structural diagram of one embodiment of a distributed feedback type semiconductor laser with a wavelength sweeping function. Figure 7
1, 1 is an n-type InP substrate, 2 is an InGaAsP active layer having a bandgap wavelength of 1.55 μm, 3 is an InGaAsP optical confinement layer having a bandgap wavelength of 1.3 μm, 4 is a p-type InP clad layer, and 5 is p ( +) Type InGa
AsP cap layer, 6 is p-type InP current blocking layer, 7
Is an n-type current blocking layer, 8 is an n-type electrode, 9 is a p-type electrode,
Reference numeral 10a denotes a portion in which a region of the diffraction grating whose pitch continuously changes from Λ a to Λ b is repeatedly formed with a period M f.
b is a portion where a region of the diffraction grating whose pitch continuously changes from Λ a ′ to Λ b ′ is repeatedly formed with a period M r , 10
Reference numerals 2 and 103 are front and rear distributed reflector regions, and 104 is a phase adjustment region.

【0043】前記実施例の波長掃引機能付き半導体レー
ザの作製方法を簡単に説明する。最初に、有機金属気相
エピタキシャル成長法を用いて、n型InP基板上に活
性層2と光閉じ込め層3を作製する。その後、光閉じ込
め層3の表面に塗布したレジストに、電子ビーム露光法
によって、ピッチが変調された回折格子のパターンを転
写し、その転写パターンをマスクとしてエッチングによ
って10a及び10bの回折格子を形成する。そして、
横モードを制御するためにストライプ状に導波路を加工
し、再度有機金属気相エピタキシャル成長法を用いて、
p型InP電流ブロック層6、n型電流ブロック層7、
p型InPクラッド層4、及びp(+)型InGaAsP
キャップ層5を順次作製する。その後、p型電極9及び
n型電極8を形成し、さらに、回折格子が形成された部
分10a及び10bを有する分布反射器領域102及び
103、及び回折格子が形成されていない非活性導波路
層を有する位相調整領域104をそれぞれ互いに電気的
に分離するために、それらの結合部分の上方のp型電極
9、及びp(+)型InGaAsPキャップ層5を除去す
る。
A method of manufacturing the semiconductor laser with the wavelength sweeping function of the above embodiment will be briefly described. First, the active layer 2 and the optical confinement layer 3 are formed on the n-type InP substrate by using the metalorganic vapor phase epitaxial growth method. After that, the pattern of the pitch-modulated diffraction grating is transferred to the resist applied on the surface of the light confinement layer 3 by the electron beam exposure method, and the transfer patterns are used as masks to form the diffraction gratings 10a and 10b by etching. . And
By processing the waveguide in a stripe shape to control the transverse mode, and again using the metalorganic vapor phase epitaxial growth method,
p-type InP current blocking layer 6, n-type current blocking layer 7,
p-type InP clad layer 4 and p (+)-type InGaAsP
The cap layer 5 is sequentially manufactured. After that, the p-type electrode 9 and the n-type electrode 8 are formed, and further the distributed reflector regions 102 and 103 having the portions 10a and 10b in which the diffraction grating is formed, and the inactive waveguide layer in which the diffraction grating is not formed. In order to electrically isolate the phase adjusting regions 104 having the above-mentioned characteristics from each other, the p-type electrode 9 and the p (+)-type InGaAsP cap layer 5 above their coupling portion are removed.

【0044】本実施例の波長掃引機能付き半導体レーザ
における回折格子では、10aの部分ではピッチが24
59Åから2389Åまで連続的に変化する領域が周期
75μmで繰り返し形成されており、10bの部分では
ピッチが2454Åから2385Åまで連続的に変化す
る領域が周期67.5μmで繰り返し形成されている。
In the diffraction grating of the semiconductor laser with wavelength sweeping function of this embodiment, the pitch is 24 in the portion 10a.
Regions that continuously change from 59 Å to 2389 Å are repeatedly formed at a period of 75 μm, and in the portion 10b, regions where the pitch continuously changes from 2454 Å to 2385 Å are repeatedly formed at a period of 67.5 μm.

【0045】以上のような構成の波長掃引機能付き半導
体レーザでは、全領域に電流を注入することによってレ
ーザ発振が生じ、分布反射器領域102及び103、位
相調整領104の電流値をそれぞれ独立に変化させるこ
とによって発振波長が変化する。前側分布反射器領域1
02と位相調整領域104に一定電流を流した状態で、
後側分布反射器領域103の電流を変化させたときの発
振波長の変化の様子を図2に示す。図2に示すように、
本実施例の半導体レーザでは、分布反射器領域103に
電流を流すことによって、発振波長が1.575μmか
ら1.530μmまで約50Åおきに変化し、最大45
0Åの波長掃引が得られる。さらに、分布反射器領域1
02及び位相調整領域104に流す電流をそれぞれ制御
することによって、450Åの全範囲にわたって、発振
波長を変化させることができる。
In the semiconductor laser with the wavelength sweeping function having the above-mentioned configuration, laser oscillation occurs by injecting current into the entire region, and the current values in the distributed reflector regions 102 and 103 and the phase adjustment region 104 are independently set. The oscillation wavelength is changed by changing it. Front distributed reflector area 1
02 and the phase adjustment region 104 with a constant current flowing,
FIG. 2 shows how the oscillation wavelength changes when the current in the rear distributed reflector region 103 is changed. As shown in FIG.
In the semiconductor laser of the present embodiment, when the current is passed through the distributed reflector region 103, the oscillation wavelength changes from 1.575 μm to 1.530 μm at intervals of about 50 Å, and the maximum is 45.
A wavelength sweep of 0Å is obtained. Further, the distributed reflector region 1
The oscillation wavelength can be changed over the entire range of 450 Å by controlling the currents flowing in 02 and the phase adjustment region 104, respectively.

【0046】なお、上述の実施例では、活性層が単一の
半導体層で構成される場合について説明したが、活性層
として、組成の異なる半導体層が交互に積層されたいわ
ゆる多重量子井戸構造を備えた場合でも本発明は適用可
能である。
In the above-described embodiments, the case where the active layer is composed of a single semiconductor layer has been described. However, a so-called multiple quantum well structure in which semiconductor layers having different compositions are alternately stacked is used as the active layer. The present invention is applicable even when provided.

【0047】〔実施例7〕実施例6では、分布反射器領
域に形成された回折格子のピッチが連続的に変化する場
合について説明したが、回折格子のピッチが断続的に変
化している場合にも本発明を適用することができる。そ
こで、以下に回折格子のピッチを断続的に変化させた場
合の実施例について説明する。回折格子以外の構造は、
図7に示した実施例6の場合の構造と同一のものであっ
て、前側分布反射器領域102に形成される回折格子1
0aと後側分布反射器領域103に形成される回折格子
10bが次のような構成になっている。回折格子10a
は、ピッチが2459Åから2389Åまで7.5μm
ずつ断続的に10段階変化する領域が75μmの繰り返
し周期で形成されており、回折格子10bは、ピッチが
2454Åから2385Åまで7.5μmずつ断続的に
9段階変化する領域が67.5μmの繰り返し周期で形
成されている。表1に本実施例で用いた回折格子のピッ
チと制御電流を注入していないときのブラッグ波長を示
す。
[Embodiment 7] In Embodiment 6, the case where the pitch of the diffraction grating formed in the distributed reflector region changes continuously has been described. However, when the pitch of the diffraction grating changes intermittently. The present invention can also be applied to. Therefore, an example in which the pitch of the diffraction grating is intermittently changed will be described below. Structures other than the diffraction grating are
The diffraction grating 1 has the same structure as that of the sixth embodiment shown in FIG. 7 and is formed in the front distributed reflector region 102.
0a and the diffraction grating 10b formed in the rear distributed reflector region 103 have the following configuration. Diffraction grating 10a
Has a pitch of 7.5 μm from 2459 Å to 2389 Å
The region in which the pitch changes intermittently by 10 steps is formed with a repetition period of 75 μm, and the diffraction grating 10b has a repetition period of 67.5 μm in which the pitch changes intermittently in 9 steps by 7.5 μm from 2454 Å to 2385 Å. Is formed by. Table 1 shows the pitch of the diffraction grating used in this example and the Bragg wavelength when the control current is not injected.

【0048】このような構造の波長掃引機能付き半導体
レーザにおいても、実施例1のところで説明したような
方法で、各電極への注入電流値を制御することによっ
て、1.575μmから1.530μmまでの450Å
の範囲内の全ての波長において、レーザ発振動作を行う
ことができる。
Also in the semiconductor laser having the wavelength sweeping function having such a structure, the injection current value to each electrode is controlled by the method as described in the first embodiment, so that the value is increased from 1.575 μm to 1.530 μm. Of 450Å
The laser oscillation operation can be performed at all wavelengths within the range.

【0049】〔実施例8〕実施例8、9は請求項6、7
の発明を示す。
[Embodiment 8] Embodiments 8 and 9 are claims 6 and 7.
The invention of

【0050】図8に本発明による波長掃引機能付き半導
体レーザの一実施例の構造図を示す。図8において、
(a)は上記半導体レーザを上方から眺めた図であり、
(b)は(a)に示した線A−A′で半導体レーザを切
りとったときの断面図であり、(c)は(a)に示した
線B−B′で半導体レーザを切りとったときの断面図で
ある。図8において、1はn型InP基板、2はバンド
ギャップ波長が1.55μmのInGaAsP活性層、
3はバンドギャップ波長が1.3μmのInGaAsP
光閉じ込め層、4はp型InPクラッド層、5はp(+)
型InGaAsPキャップ層、6はp型InP電流ブロ
ック層、7はn型電流ブロック層、8はn型電極、9
c、9dは前側の分布反射器領域102に設けられた1
組の櫛型p型電極、9e、9fは後側の分布反射器領域
103に設けられた1組の櫛型p型電極、9bは位相調
整領域104に設けられたp型電極、10aはピッチが
ΛaからΛbまで連続的に変化する回折格子の領域が周期
fで繰り返し形成された部分、10bはピッチがΛa
からΛb′まで連続的に変化する回折格子の領域が周期
rで繰り返し形成された部分である。
FIG. 8 shows a structural diagram of an embodiment of a semiconductor laser having a wavelength sweep function according to the present invention. In FIG.
(A) is a view of the semiconductor laser as viewed from above,
(B) is a cross-sectional view of the semiconductor laser taken along line AA 'shown in (a), and (c) is a semiconductor laser taken along line BB' shown in (a). FIG. In FIG. 8, 1 is an n-type InP substrate, 2 is an InGaAsP active layer having a bandgap wavelength of 1.55 μm,
3 is InGaAsP having a band gap wavelength of 1.3 μm
Optical confinement layer, 4 is p-type InP clad layer, 5 is p (+)
Type InGaAsP cap layer, 6 is a p type InP current blocking layer, 7 is an n type current blocking layer, 8 is an n type electrode, 9
c and 9d are 1 provided in the front distributed reflector region 102.
A pair of comb-type p-type electrodes, 9e and 9f are a pair of comb-type p-type electrodes provided in the rear distributed reflector region 103, 9b is a p-type electrode provided in the phase adjustment region 104, and 10a is a pitch Is a portion in which a region of the diffraction grating in which is continuously changed from Λ a to Λ b is repeatedly formed with a period M f , and 10b has a pitch Λ a ′.
The region of the diffraction grating that continuously changes from to Λ b ′ is a portion repeatedly formed with the period M r .

【0051】本実施例の波長掃引機能付き半導体レーザ
における回折格子では、10aの部分ではピッチが24
59Åから2389Åまで連続的に変化する領域が周期
75μmで繰り返し形成されており、10bの部分では
ピッチが2454Åから2385Åまで連続的に変化す
る領域が周期67.5μmで繰り返し形成されている。
In the diffraction grating of the semiconductor laser with wavelength sweeping function of this embodiment, the pitch is 24 in the portion 10a.
Regions that continuously change from 59 Å to 2389 Å are repeatedly formed at a period of 75 μm, and in the portion 10b, regions where the pitch continuously changes from 2454 Å to 2385 Å are repeatedly formed at a period of 67.5 μm.

【0052】以上のような構成の半導体レーザでは、全
領域に適当に電流を流すことによってレーザ発振が生
じ、分布反射器領域102及び103、位相調整領域1
04にそれぞれ独立に電流を流すことによって発振波長
が変化する。
In the semiconductor laser having the above-described structure, laser oscillation occurs when a current is appropriately applied to all regions, and the distributed reflector regions 102 and 103 and the phase adjusting region 1 are generated.
The oscillation wavelength is changed by individually passing currents to 04.

【0053】前後の分布反射器領域102及び103に
設けられた櫛型電極のうちの9c、9d、及び9fと位
相調整領域104に設けられたp型電極9bに一定電流
を流して、レーザ発振を起こした状態で、分布反射器領
域103に設けられた櫛型電極9eに流す電流を変化さ
せたときの発振波長の変化の様子を図4に示す。図4に
示すように、本実施例の半導体レーザでは、櫛型電極9
eに流す電流値を変化させることによって、発振波長を
1.575μmから1.530μmまで約50Åおきに
変化させることができる。
A constant current is caused to flow through 9c, 9d, and 9f of the comb-shaped electrodes provided in the front and rear distributed reflector regions 102 and 103 and the p-type electrode 9b provided in the phase adjustment region 104 to cause laser oscillation. FIG. 4 shows how the oscillation wavelength changes when the current flowing through the comb-shaped electrode 9e provided in the distributed reflector region 103 is changed in the state in which the light is generated. As shown in FIG. 4, in the semiconductor laser of this embodiment, the comb-shaped electrode 9
The oscillation wavelength can be changed from 1.575 μm to 1.530 μm at intervals of about 50 Å by changing the value of the current flowing through e.

【0054】また前述の状態において、櫛型電極9eに
流す電流値を固定して、約50Åおきに変化する発振波
長のうちの1つの波長を選択し、さらにここで櫛型電極
9dと9fとを電気的に短絡して、上記電極に流す電流
値を同時に変化させることにより、発振波長を微調整す
ることが可能である。短絡した櫛型電極9dと9fに流
す電流を変化させたときの発振波長の変化の様子を図5
に実線で示す。図5に示すように、本実施例の半導体レ
ーザでは、短絡した櫛型電極9dと9fとに同時に電流
を流すことによって、波長跳びを起こしながら発振波長
を50Å程度変化させることができる。
Further, in the above-mentioned state, the value of the current flowing through the comb-shaped electrode 9e is fixed, and one of the oscillation wavelengths that changes at intervals of about 50 Å is selected. It is possible to finely adjust the oscillation wavelength by electrically short-circuiting and changing the value of the current flowing through the electrodes at the same time. FIG. 5 shows how the oscillation wavelength changes when the current flowing through the short-circuited comb electrodes 9d and 9f is changed.
Is indicated by a solid line. As shown in FIG. 5, in the semiconductor laser of the present embodiment, the oscillation wavelength can be changed by about 50Å while causing the wavelength jump by causing the current to flow through the short-circuited comb electrodes 9d and 9f at the same time.

【0055】さらに、位相調整領域104に設けられた
p型電極9bに流す電流値を変えて、短絡した櫛型電極
9dと9fとに流す電流を変化させたときの発振波長の
変化の様子を図5に破線で示す。このように、位相調整
領域に設けられたp型電極9bに流す電流を制御するこ
とによって、さらに発振波長を微調整することが可能と
なる。
Furthermore, the state of change in the oscillation wavelength when the current flowing through the p-type electrode 9b provided in the phase adjustment region 104 is changed to change the current flowing through the shorted comb electrodes 9d and 9f. It is indicated by a broken line in FIG. In this way, by controlling the current flowing through the p-type electrode 9b provided in the phase adjustment region, the oscillation wavelength can be further finely adjusted.

【0056】p型電極9b〜fに流す電流を以上に説明
した手順で調整することによって、発振波長の粗調整、
微調整を行い、450Åの波長範囲にわたって任意の発
振波長を選択することが可能となる。
By adjusting the current flowing through the p-type electrodes 9b to 9f according to the procedure described above, rough adjustment of the oscillation wavelength,
By fine adjustment, it becomes possible to select an arbitrary oscillation wavelength over the wavelength range of 450Å.

【0057】〔実施例9〕実施例8では、分布反射器領
域に形成された回折格子のピッチが連続的に変化する場
合について説明したが、回折格子のピッチが断続的に変
化している場合にも本発明を適用することができる。そ
こで、以下に回折格子のピッチを断続的に変化させた場
合の実施例について説明する。回折格子以外の構造は、
図8に示した実施例8の場合の構造と同一のものであっ
て、前側分布反射器領域102に形成される回折格子1
0aと後側分布反射器領域103に形成される回折格子
10bが次のような構成になっている。回折格子10a
は、ピッチが2459Åから2389Åまで7.5μm
ずつ断続的に10段階変化する領域が75μmの繰り返
し周期で形成されており、回折格子10bは、ピッチが
2454Åから2385Åまで7.5μmずつ断続的に
9段階変化する領域が67.5μmの繰り返し周期で形
成されている。表1に本実施例で用いた回折格子のピッ
チと制御電流を注入していないときのブラッグ波長を示
す。
[Embodiment 9] In Embodiment 8, the case where the pitch of the diffraction grating formed in the distributed reflector region changes continuously has been described. However, in the case where the pitch of the diffraction grating changes intermittently. The present invention can also be applied to. Therefore, an example in which the pitch of the diffraction grating is intermittently changed will be described below. Structures other than the diffraction grating are
The diffraction grating 1 having the same structure as that of the eighth embodiment shown in FIG. 8 and formed in the front distributed reflector region 102
0a and the diffraction grating 10b formed in the rear distributed reflector region 103 have the following configuration. Diffraction grating 10a
Has a pitch of 7.5 μm from 2459 Å to 2389 Å
The region in which the pitch changes intermittently by 10 steps is formed with a repetition period of 75 μm, and the diffraction grating 10b has a repetition period of 67.5 μm in which the pitch changes intermittently in 9 steps by 7.5 μm from 2454 Å to 2385 Å. Is formed by. Table 1 shows the pitch of the diffraction grating used in this example and the Bragg wavelength when the control current is not injected.

【0058】このような構造の波長掃引機能付き半導体
レーザにおいても、実施例8のところで説明したような
方法で、各電極への注入電流値を制御することによっ
て、1.575μmから1.530μmまでの450Å
の範囲内の全ての波長において、レーザ発振を行うこと
ができる。
Also in the semiconductor laser with the wavelength sweeping function having such a structure, the injection current value to each electrode is controlled by the method as described in the eighth embodiment, so that the current from 1.575 μm to 1.530 μm can be obtained. Of 450Å
Laser oscillation can be performed at all wavelengths within the range.

【0059】〔実施例10〕実施例10は請求項7の発
明を示す。
[Embodiment 10] Embodiment 10 shows the invention of claim 7.

【0060】実施例は、回折格子のピッチ変調周期と櫛
型電極の個々の電極の繰り返し周期が同一の場合につい
て説明したが、櫛型電極の個々の電極の繰り返し周期が
回折格子のピッチ変調周期よりも小さい場合には、上記
実施例と同様の効果が得られる。一方、電極の繰り返し
周期が回折格子のピッチ変調周期よりも大きい場合に
は、違った効果が得られる。その一例として、図8に示
した実施例8の波長掃引機能付き半導体レーザと櫛型電
極以外の構造は全て同じで、櫛型電極9c〜fの個々の
電極の長さが2倍になっている半導体レーザについて、
その発振波長の制御方法を以下に説明する。
In the embodiment, the case where the pitch modulation period of the diffraction grating and the repetition period of the individual electrodes of the comb-shaped electrode are the same is explained. However, the repetition period of the individual electrodes of the comb-shaped electrode is the pitch modulation period of the diffraction grating. If it is smaller than the above, the same effect as that of the above embodiment can be obtained. On the other hand, if the electrode repetition period is longer than the pitch modulation period of the diffraction grating, a different effect is obtained. As an example, the semiconductor laser with wavelength sweeping function of the eighth embodiment shown in FIG. 8 and the structure other than the comb-shaped electrode are all the same, and the length of each of the comb-shaped electrodes 9c to 9f is doubled. The laser diode
The method of controlling the oscillation wavelength will be described below.

【0061】図6に本実施例における半導体レーザの分
布反射器領域の反射特性を示す。櫛型電極に電流を注入
しない場合は、図6(a)に示すように、回折格子のピ
ッチ変調周期Mfに対応する波長間隔Δλfで、周期的に
反射ピークを持つ反射特性となる。ここで、回折格子の
上方に設けられた周期2Mfで個々の電極が繰り返し形
成されている1組の櫛型電極のうちの片方の電極に電流
を注入すると、屈折率が周期2Mfで変動するため、図
6(b)に示すような、波長間隔Δλf/2で周期的に
反射ピークを持つ特性になる。さらに、その電極に流す
電流量を増すと、図6(c)に示すように、電流を全く
流さないときの反射特性がΔλf/2だけシフトした特
性となる。以上のような原理を用いることにより、波長
間隔Δλf/2で発振波長の粗調整が行える。つまり、
実施例1及び実施例2の半導体レーザでは、50Åごと
に発振波長の粗調整が行えるのに対して、本実施例の半
導体レーザでは、25Åごとに発振波長の粗調整が行え
る。
FIG. 6 shows the reflection characteristics of the distributed reflector region of the semiconductor laser in this embodiment. When no current is injected into the comb-shaped electrode, as shown in FIG. 6A, the reflection characteristic has periodic reflection peaks at the wavelength interval Δλ f corresponding to the pitch modulation period M f of the diffraction grating. Here, when a current is injected into one electrode of a pair of comb-shaped electrodes in which individual electrodes are repeatedly formed at a period of 2M f provided above the diffraction grating, the refractive index changes at a period of 2M f . Therefore, as shown in FIG. 6 (b), the characteristic is such that the reflection peaks are periodically reflected at the wavelength interval Δλ f / 2. Further, when the amount of current flowing through the electrode is increased, the reflection characteristic when no current is passed is shifted by Δλ f / 2, as shown in FIG. 6C. By using the principle as described above, it is possible to roughly adjust the oscillation wavelength at the wavelength interval Δλ f / 2. That is,
In the semiconductor lasers of Examples 1 and 2, the oscillation wavelength can be roughly adjusted every 50Å, whereas in the semiconductor laser of this example, the oscillation wavelength can be roughly adjusted every 25Å.

【0062】[0062]

【発明の効果】上記のように本発明による波長掃引機能
付き半導体レーザは、半導体基板上に形成された上記半
導体基板より光学的に屈折率が大きい光導波路層を、1
層以上含む光導波路を有する半導体分布反射器におい
て、上記光導波路上に形成された回折格子のピッチがΛ
aからΛbまで連続的もしくは断続的に変化する領域が、
周期Mf(ただし、Mf>Λa、Λb)で繰り返し形成され
ている半導体分布反射器を用いたことにより、活性導波
路層の利得帯域幅にわたって、広帯域の波長掃引が制御
性良く行える波長掃引機能付き半導体レーザを得ること
ができる。
As described above, in the semiconductor laser with wavelength sweeping function according to the present invention, the optical waveguide layer formed on the semiconductor substrate and having an optical index larger than that of the semiconductor substrate is
In a semiconductor distributed reflector having an optical waveguide including more than one layer, the pitch of the diffraction grating formed on the optical waveguide is Λ
The region that changes continuously or intermittently from a to Λ b is
By using the semiconductor distributed reflector that is repeatedly formed with the period M f (where M f > Λ a , Λ b ), wideband wavelength sweeping can be performed with good controllability over the gain bandwidth of the active waveguide layer. A semiconductor laser with a wavelength sweep function can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による波長掃引機能付き分布反射型半導
体レーザの一実施例の概略構造図である。
FIG. 1 is a schematic structural diagram of an embodiment of a distributed Bragg reflector semiconductor laser with a wavelength sweeping function according to the present invention.

【図2】本発明による分布反射型半導体レーザの一実施
例における、発振波長変化の様子を示す図である。
FIG. 2 is a diagram showing how the oscillation wavelength changes in one embodiment of the distributed Bragg reflector semiconductor laser according to the present invention.

【図3】本発明による波長制御機能付き分布反射型半導
体レーザの一実施例を示す構造図で、(a)は上記半導
体レーザの平面図、(b)は上記平面図に示すA−A′
断面図、(c)は上記平面図に示すB−B′断面図であ
る。
3A and 3B are structural views showing an embodiment of a distributed reflection type semiconductor laser with a wavelength control function according to the present invention, wherein FIG. 3A is a plan view of the semiconductor laser, and FIG. 3B is AA ′ shown in the plan view.
A sectional view, (c) is a BB 'sectional view shown in the above plan view.

【図4】本発明の分布反射型半導体レーザにおける発振
波長が粗調整される様子を示す図である。
FIG. 4 is a diagram showing how the oscillation wavelength is roughly adjusted in the distributed Bragg reflector semiconductor laser of the present invention.

【図5】上記分布反射型半導体レーザにおける発振波長
が微調整される様子を示す図である。
FIG. 5 is a diagram showing how the oscillation wavelength of the distributed Bragg reflector semiconductor laser is finely adjusted.

【図6】本発明の実施例に示す分布反射型半導体レーザ
の分布反射器領域の反射特性を示す図で、(a)は櫛型
電極に電流を注入しない場合、(b)は1組の櫛型電極
の片方に電流を注入した場合、(c)は上記電極に流す
電流を増した場合をそれぞれ示す図である。
FIG. 6 is a diagram showing the reflection characteristics of the distributed reflector region of the distributed Bragg reflector semiconductor laser according to the embodiment of the present invention, where (a) shows a case where no current is injected into the comb electrodes, and (b) shows one set. When a current is injected into one of the comb-shaped electrodes, (c) is a diagram showing a case where the current supplied to the electrode is increased.

【図7】本発明による波長掃引機能付き半導体レーザの
一実施例を示す概略構造図である。
FIG. 7 is a schematic structural diagram showing an embodiment of a semiconductor laser with a wavelength sweep function according to the present invention.

【図8】本発明による波長掃引機能付き半導体レーザの
一実施例を示す構造図で、(a)は上記半導体レーザの
平面図、(b)は上記平面図に示すA−A′断面図、
(c)は上記平面図に示すB−B′断面図である。
8A and 8B are structural views showing an embodiment of a semiconductor laser having a wavelength sweeping function according to the present invention, FIG. 8A is a plan view of the semiconductor laser, and FIG. 8B is a sectional view taken along the line AA ′ shown in the plan view.
(C) is a BB 'sectional view shown in the above plan view.

【図9】従来の分布反射型レーザの断面図である。FIG. 9 is a sectional view of a conventional distributed Bragg reflector laser.

【図10】本発明の波長掃引機能付き分布反射型半導体
レーザの分布反射領域に形成された回折格子の概念図
で、(a)は連続的に形成された場合、(b)は階段状
断続的に形成された場合を示す図である。
FIG. 10 is a conceptual diagram of a diffraction grating formed in a distributed Bragg reflector region of a distributed Bragg reflector semiconductor laser with a wavelength sweeping function of the present invention, where (a) is a continuous grating and (b) is a stepwise interrupted pattern. It is a figure which shows the case where it was formed in a desired manner.

【図11】本発明の分布反射型半導体レーザによる発振
波長の設定方法を示す図で、(a)は前側分布反射器領
域の反射ピーク波長図、(b)は後側分布反射器領域の
反射ピーク波長図、(c)はλ1の発振例、(d)はλ2
の発振例をそれぞれ示す。
FIG. 11 is a diagram showing a method of setting an oscillation wavelength by the distributed Bragg reflector semiconductor laser of the present invention, in which (a) is a reflection peak wavelength diagram of a front distributed reflector region, and (b) is a reflection of a rear distributed reflector region. Peak wavelength diagram, (c) λ 1 oscillation example, (d) λ 2
Examples of oscillation are shown below.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 光導波路層 3 非活性導波路層 9c、9d、9e、9f 櫛型電極 10a、10b 回折格子 101 活性導波路領域 102、103 非活性導波路領域 104 位相調整領域 1 semiconductor substrate 2 optical waveguide layer 3 inactive waveguide layer 9c, 9d, 9e, 9f comb-shaped electrodes 10a, 10b diffraction grating 101 active waveguide region 102, 103 inactive waveguide region 104 phase adjustment region

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に形成された上記半導体基板
よりも光学的に屈折率が大きい光導波路層を、1層以上
含む光導波路を有する半導体分布反射器において、上記
光導波路上に形成された回折格子のピッチがΛaからΛb
まで連続的もしくは断続的に変化する領域が、周期Mf
(ただし、Mf>Λa、Λb)で繰り返し形成されている
ことを特徴とする半導体分布反射器。
1. A semiconductor distributed reflector having an optical waveguide including one or more optical waveguide layers having an optical index higher than that of the semiconductor substrate formed on the semiconductor substrate, the semiconductor distributed reflector being formed on the optical waveguide. The diffraction grating pitch is Λ a to Λ b
The region that continuously or intermittently changes to the period M f
(However, M f > Λ a , Λ b ) The semiconductor distributed reflector is characterized by being repeatedly formed.
【請求項2】半導体基板上の所定の領域に形成した活性
導波路層と、該活性導波路層の前後にそれぞれ上記活性
導波路層と光学的に結合した非活性導波路層とを有する
分布反射型半導体レーザであって、上記前及び後の非活
性導波路領域の一部または全部が、請求項1に記載した
半導体分布反射器で構成されていて、前側の非活性導波
路領域に形成される回折格子は、ピッチがΛaからΛb
で連続的もしくは断続的に変化する領域が周期Mf(た
だし、Mf>Λa、Λb)で繰り返し形成されており、後
側の非活性導波路領域に形成される回折格子は、ピッチ
がΛa′からΛb′まで連続的もしくは断続的に変化する
領域が周期Mr(ただし、Mr>Λa′、Λb′)で繰り返
し形成されており、前及び後の非活性導波路領域の屈折
率を、それぞれ独立に電流注入あるいは電圧印加を行う
ことにより制御し、発振波長を掃引することを特徴とす
る波長掃引機能付き半導体レーザ。
2. A distribution having an active waveguide layer formed in a predetermined region on a semiconductor substrate, and a non-active waveguide layer optically coupled to the active waveguide layer before and after the active waveguide layer. It is a reflection type semiconductor laser, Comprising: A part or all of said front and back non-active waveguide area | regions is comprised by the semiconductor distributed reflector of Claim 1, Comprising: It forms in the front side non-active waveguide area | region. In the diffraction grating described above, a region in which the pitch changes continuously or intermittently from Λ a to Λ b is repeatedly formed with a period M f (where M f > Λ a , Λ b ), and the rear side non- In the diffraction grating formed in the active waveguide region, a region in which the pitch changes continuously or intermittently from Λ a ′ to Λ b ′ has a period M r (where M r > Λ a ′, Λ b ′). The refractive index of the front and rear inactive waveguide regions, which are repeatedly formed, are respectively Controlled by performing the independent current injection or voltage application, the wavelength sweep function semiconductor laser, characterized by sweeping the oscillation wavelength.
【請求項3】請求項2に記載した波長掃引機能付き半導
体レーザにおいて、回折格子が形成されていない非活性
導波路領域に電流注入もしくは電圧印加を行うことによ
って、上記非活性導波路領域の屈折率を制御して、発振
波長を掃引することを特徴とする波長掃引機能付き半導
体レーザ。
3. The semiconductor laser with wavelength sweeping function according to claim 2, wherein current is injected or voltage is applied to the non-active waveguide region where no diffraction grating is formed to refract the non-active waveguide region. A semiconductor laser with a wavelength sweep function, characterized in that the oscillation wavelength is swept by controlling the rate.
【請求項4】請求項2に記載した波長掃引機能付き半導
体レーザにおいて、回折格子が形成されている前後の非
活性導波路層の上方に、それぞれ櫛型に配置された2つ
の独立な電極を有することを特徴とする波長掃引機能付
き半導体レーザ。
4. The semiconductor laser with wavelength sweeping function according to claim 2, wherein two independent electrodes arranged in a comb shape are provided above the inactive waveguide layer before and after the diffraction grating is formed. A semiconductor laser having a wavelength sweeping function, which has.
【請求項5】半導体基板上に形成した活性導波路層の上
部あるいは下部に回折格子を有し、電気的に分離された
領域が少なくとも2つ以上ある、いわゆる多電極分布帰
還型半導体レーザにおいて、活性導波路領域の一部また
は全部が請求項1に記載された半導体分布反射器で構成
されていて、回折格子の構成が異なる2つの領域を有
し、そのうちの1つの領域に形成される回折格子は、ピ
ッチがΛaからΛbまで連続的もしくは断続的に変化する
領域が周期Mf(ただし、Mf>Λa、Λb)で繰り返し形
成されており、他方の領域に形成される回折格子は、ピ
ッチがΛa′からΛb′まで連続的もしくは断続的に変化
する領域が周期Mr(ただし、Mr>Λa′、Λb′)で繰
り返し形成されており、上記異なる2つの活性導波路領
域の屈折率をそれぞれ独立に電流注入を行って制御し、
レーザ発振状態を保ちつつ発振波長を掃引することを特
徴とする波長掃引機能付き半導体レーザ。
5. A so-called multi-electrode distributed feedback semiconductor laser having a diffraction grating above or below an active waveguide layer formed on a semiconductor substrate and having at least two electrically separated regions, A part or all of the active waveguide region is composed of the semiconductor distributed reflector according to claim 1, and has two regions having different diffraction grating configurations, and the diffraction formed in one region of the two regions. In the lattice, a region in which the pitch continuously or intermittently changes from Λ a to Λ b is repeatedly formed with a period M f (where M f > Λ a , Λ b ) and is formed in the other region. In the diffraction grating, a region in which the pitch continuously or intermittently changes from Λ a ′ to Λ b ′ is repeatedly formed with a period Mr (where M r > Λ a ′, Λ b ′), which is different from the above. The refractive indices of the two active waveguide regions Controls performed current injection respectively independently,
A semiconductor laser with a wavelength sweep function, which sweeps the oscillation wavelength while maintaining the laser oscillation state.
【請求項6】請求項5に記載した波長掃引機能付き半導
体レーザにおいて、回折格子が形成されていない活性導
波路領域に注入する電流値を変化させることにより、上
記活性導波路領域の屈折率を制御して、発振波長を掃引
することを特徴とする波長掃引機能付き半導体レーザ。
6. The semiconductor laser with wavelength sweeping function according to claim 5, wherein the refractive index of the active waveguide region is changed by changing the current value injected into the active waveguide region in which the diffraction grating is not formed. A semiconductor laser with a wavelength sweep function, which is controlled to sweep the oscillation wavelength.
【請求項7】請求項5に記載した波長掃引機能付き半導
体レーザにおいて、回折格子が形成されている異なる2
つの領域の活性導波路層の上方に、それぞれ櫛型に配置
された2つの独立な電極を有することを特徴とする波長
掃引機能付き半導体レーザ。
7. The semiconductor laser with wavelength sweeping function according to claim 5, wherein a different diffraction grating is formed.
A semiconductor laser with a wavelength sweeping function, comprising two independent electrodes arranged in a comb shape above the active waveguide layer in one region.
JP4222718A 1992-03-06 1992-08-21 Semiconductor laser with wavelength sweep function Expired - Lifetime JP2832920B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP4222718A JP2832920B2 (en) 1992-03-06 1992-08-21 Semiconductor laser with wavelength sweep function
US08/026,451 US5325392A (en) 1992-03-06 1993-03-03 Distributed reflector and wavelength-tunable semiconductor laser
DE69325118T DE69325118T2 (en) 1992-03-06 1993-03-04 Distributed reflector and semiconductor laser with tunable wavelength
DE69331533T DE69331533T2 (en) 1992-03-06 1993-03-04 Distributed reflector and semiconductor laser with tunable wavelength
EP93103480A EP0559192B1 (en) 1992-03-06 1993-03-04 Distributed reflector and wavelength-tunable semiconductor laser
EP98102645A EP0847116B1 (en) 1992-03-06 1993-03-04 Distributed reflector and wavelength-tunable semiconductor laser

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP4942592 1992-03-06
JP14411792 1992-06-04
JP4-144117 1992-06-04
JP4-49425 1992-06-04
JP4222718A JP2832920B2 (en) 1992-03-06 1992-08-21 Semiconductor laser with wavelength sweep function

Publications (2)

Publication Number Publication Date
JPH0653616A true JPH0653616A (en) 1994-02-25
JP2832920B2 JP2832920B2 (en) 1998-12-09

Family

ID=27293636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4222718A Expired - Lifetime JP2832920B2 (en) 1992-03-06 1992-08-21 Semiconductor laser with wavelength sweep function

Country Status (1)

Country Link
JP (1) JP2832920B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786686A (en) * 1993-09-10 1995-03-31 Nec Corp Distributed feedback type semiconductor laser and current injection method
JP2003536264A (en) * 2000-06-02 2003-12-02 アジリティー コミュニケイションズ インコーポレイテッド High power, manufacturable extraction grating distributed Bragg reflector laser
WO2008035320A1 (en) * 2006-09-20 2008-03-27 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Vernier tuned coupled cavity ld having a ridge with voids for langitudinal mode suppression
US7564565B2 (en) 2003-09-26 2009-07-21 School Juridical Person Kitasato Institute Wavelength-tunable light generator and optical coherence tomography device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225087A (en) * 1988-07-13 1990-01-26 Agency Of Ind Science & Technol Semiconductor laser device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225087A (en) * 1988-07-13 1990-01-26 Agency Of Ind Science & Technol Semiconductor laser device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786686A (en) * 1993-09-10 1995-03-31 Nec Corp Distributed feedback type semiconductor laser and current injection method
JP2003536264A (en) * 2000-06-02 2003-12-02 アジリティー コミュニケイションズ インコーポレイテッド High power, manufacturable extraction grating distributed Bragg reflector laser
US7564565B2 (en) 2003-09-26 2009-07-21 School Juridical Person Kitasato Institute Wavelength-tunable light generator and optical coherence tomography device
US7732784B2 (en) 2003-09-26 2010-06-08 School Juridical Person Kitasato Institute Wavelength-tunable light generator and optical coherence tomography device
WO2008035320A1 (en) * 2006-09-20 2008-03-27 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Vernier tuned coupled cavity ld having a ridge with voids for langitudinal mode suppression
US8238388B2 (en) 2006-09-20 2012-08-07 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Tunable laser device and a method for producing light of respective selectable wavelengths

Also Published As

Publication number Publication date
JP2832920B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
EP0847116B1 (en) Distributed reflector and wavelength-tunable semiconductor laser
US5379318A (en) Alternating grating tunable DBR laser
US5789274A (en) Wavelength-tunable semiconductor laser and fabrication process thereof
JPH07326820A (en) Variable wavelength semiconductor laser device
US8184671B2 (en) Semiconductor optical element, semiconductor laser using the semiconductor optical element, and optical transponder using the semiconductor laser
JP3237733B2 (en) Semiconductor laser
EP0480697B1 (en) Tunable semiconductor laser
US8238388B2 (en) Tunable laser device and a method for producing light of respective selectable wavelengths
JP5625459B2 (en) Semiconductor laser device and manufacturing method thereof
JP4926641B2 (en) Semiconductor laser
JPH09270568A (en) Multiple wavelength oscillation laser
JP2832920B2 (en) Semiconductor laser with wavelength sweep function
JPH06125138A (en) Laser
JP3169202B2 (en) Continuous wavelength tunable semiconductor laser
JPH06112570A (en) Distributed bragg-reflection type semiconductor laser
JP2690840B2 (en) Distributed light reflector and wavelength tunable semiconductor laser using the same
JP3185930B2 (en) Integrated tunable optical filter
JP2770900B2 (en) Distributed reflector and tunable semiconductor laser using the same
JPH0653591A (en) Element for converting optical frequency
JP2770897B2 (en) Semiconductor distributed reflector and semiconductor laser using the same
JPH0290583A (en) Multi-wavelength semiconductor laser
JP2666297B2 (en) Tunable semiconductor laser
JP2687884B2 (en) Tunable semiconductor laser and manufacturing method thereof
JPH04105386A (en) Wavelength variable semiconductor laser
JPH0661571A (en) Distribution light reflection device and semiconductor laser using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081002

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091002

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20101002

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111002

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 14

EXPY Cancellation because of completion of term