JPH02249278A - Manufacture of ferroelectric film - Google Patents

Manufacture of ferroelectric film

Info

Publication number
JPH02249278A
JPH02249278A JP1071104A JP7110489A JPH02249278A JP H02249278 A JPH02249278 A JP H02249278A JP 1071104 A JP1071104 A JP 1071104A JP 7110489 A JP7110489 A JP 7110489A JP H02249278 A JPH02249278 A JP H02249278A
Authority
JP
Japan
Prior art keywords
film
ferroelectric
ferroelectric body
sputtering
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1071104A
Other languages
Japanese (ja)
Inventor
Masafumi Ogita
荻田 雅史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1071104A priority Critical patent/JPH02249278A/en
Publication of JPH02249278A publication Critical patent/JPH02249278A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a manufacturing method for improving stability of a ferroelectric body film, especially stoichiometry of the ferroelectric body film by performing annealing within a high-pressure oxygen after forming the ferroelectric body film, sputtering the ferroelectric body target. CONSTITUTION:After forming a ferroelectric body thin film 104 by sputtering a ferroelectric body target. annealing is made within a high-pressure oxygen 105. For example, an insulating film 102 is clad on an Si substrate 101, tungsten is clad as a lower-part electrode 103 by the sputtering method, and then patterning is made by using the photolithography method. Then, after cladding PZT (PbZr0.65Ti0.35O3) as the ferroelectric body thin film by the sputtering method, annealing is made at 8 atmospheric pressure, 800 deg.% within a high- pressure oxygen 105 for 30 minutes. After that, Al is formed by the sputtering method as an upper electrode 106 and then Al and the ferroelectric body thin film PZT are subjected to patterning simultaneously by photolithography Further more, by cladding an insulating film 107 for opening a contact hole and forming Al as a wiring metal 108, and then patterning is made.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は強誘電体膜とそれを用いた不揮発性メモリの製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ferroelectric film and a method of manufacturing a nonvolatile memory using the same.

〔発明の概要〕[Summary of the invention]

本発明は強誘電体膜の製造方法において、強誘電体膜を
スパッタ法で形成した後、高圧酸素中でアニールするこ
とにより、化学量論比組成に近くなおかつち密な膜を形
成し、その膜を不揮発性メモリに応用した際、電気的書
き換え可能回数の多い、信頼性の高い不揮発性メモリを
提供するものである。
The present invention is a method for manufacturing a ferroelectric film, in which a ferroelectric film is formed by sputtering and then annealed in high pressure oxygen to form a dense film with a close to stoichiometric composition. When applied to a nonvolatile memory, the present invention provides a highly reliable nonvolatile memory that can be electrically rewritten many times.

〔従来の技術〕[Conventional technology]

従来の半導体不揮発性メモリとしては、絶縁ゲート中の
トラップまたは浮遊ゲートにシリコン基板からの電荷を
注入することによりシリコン基板の表面ポテンシャルが
変調される現象を用いた、MIS型トランジスタが一般
に使用されており、EFROM(紫外線消去型不揮発性
メモリ)やEEPROM(電気的書き換え可能型不揮発
性メモリ)などとして実用化されている。
Conventional semiconductor non-volatile memories generally use MIS transistors, which utilize a phenomenon in which the surface potential of a silicon substrate is modulated by injecting charge from the silicon substrate into a trap or floating gate in an insulated gate. It has been put into practical use as EFROM (ultraviolet erasable nonvolatile memory) and EEPROM (electrically rewritable nonvolatile memory).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしこれらの不揮発性メモリは、情報の書き換え電圧
が通常約20V前後と高いことや、書き換え時間が非常
に長い(例えばEEPROMの場合数十m5ec)など
の欠点を有す。また、情報の書き換え回数が約105回
と非常に少なく、く。
However, these nonvolatile memories have drawbacks such as a high voltage for rewriting information, usually around 20 V, and a very long rewriting time (for example, several tens of m5ec in the case of EEPROM). In addition, the number of times information is rewritten is very small, approximately 105 times.

り返し使用する場合には問題が多い。There are many problems when using it repeatedly.

電気的に分極が反転可能である強誘電体を用いた不揮発
性メモリについては、書き込み時間と読み出し時間が原
理的にほぼ同じであり、また電源を切っても分極は保持
されるため理想的な不揮発性メモリとなる可能性を有す
る。このような強誘電体を用いた不揮発性メモリについ
ては、例えば米国特許4149302の様に、シリコン
基板上に強誘電体からなるキャパシタを集積した構造や
、米国特許3832700の様にMis型トランジスタ
のゲート部分に強誘電体膜を配置した不揮発性メモリな
どの提案がなされている。しかし、実際には強誘電体膜
の安定性がなかったり、集積化に適さなかったりするた
め、いまだ実用化には至っていない。また、強誘電体膜
の形成には通常スパッタ法をもってするが、この方法に
よるとできた強誘電体膜は酸素が欠乏することがままあ
る。
Non-volatile memory using ferroelectric materials whose polarization can be electrically reversed is ideal because the write time and read time are basically the same, and the polarization is maintained even when the power is turned off. It has the potential to become non-volatile memory. Regarding non-volatile memories using such ferroelectric materials, for example, as in US Pat. No. 4,149,302, there is a structure in which a ferroelectric capacitor is integrated on a silicon substrate, and as in US Pat. Proposals have been made for non-volatile memories in which a ferroelectric film is placed in some areas. However, in reality, it has not yet been put into practical use because ferroelectric films lack stability and are not suitable for integration. Further, although a sputtering method is usually used to form a ferroelectric film, the ferroelectric film formed by this method is often deficient in oxygen.

そこで本発明はこのような課題を解決するもので、その
目的とするところは、強誘電体膜の安定性、特に強誘電
体膜のストイキオメトリを改善する製造方法を提供する
所にある。
SUMMARY OF THE INVENTION The present invention is intended to solve these problems, and its purpose is to provide a manufacturing method that improves the stability of a ferroelectric film, particularly the stoichiometry of a ferroelectric film.

〔課題を解決するための手段〕 本発明の強誘電体膜の製造方法は、強誘電体膜を形成す
る工程において、強誘電体ターゲットをスパッタして強
誘電体薄膜を形成後、高圧酸素中でアニールすることを
特徴とする。
[Means for Solving the Problems] In the method for manufacturing a ferroelectric film of the present invention, in the step of forming a ferroelectric film, after forming a ferroelectric thin film by sputtering a ferroelectric target, sputtering is performed in a high pressure oxygen atmosphere. It is characterized by annealing.

〔実 施 例〕〔Example〕

第1図は本発明の一実施例を示す製造工程図である。ま
ず81基板101上に絶縁膜102を被着する。次に下
部電極103、例えばタングステン(W)をスパッタ法
により被着し、フォトリソグラフィ法を用いてバターニ
ングする。(第1図(a))さらに強誘電体薄膜104
、例えばPzT (PbZro、6s’Tio、、qO
g)をスパッタ法によって被着する。この状態で高圧酸
素105中、例えば8気圧800℃で30分アニールす
る。
FIG. 1 is a manufacturing process diagram showing an embodiment of the present invention. First, an insulating film 102 is deposited on an 81 substrate 101. Next, a lower electrode 103, such as tungsten (W), is deposited by sputtering and patterned by photolithography. (FIG. 1(a)) Furthermore, the ferroelectric thin film 104
, for example PzT (PbZro, 6s'Tio, qO
g) is deposited by sputtering. In this state, annealing is performed in high pressure oxygen 105 at, for example, 8 atm and 800° C. for 30 minutes.

(第1図(b))これにより、PZT中に酸素が取り込
まれ、ストイキオメトリツクなPZTが形成される。ま
た、スパッタ直後の強誘電体薄膜104は結晶性も不十
分で配向性がよくないが、この高圧酸素105、高温中
でのアニールにより、配向性もよくなり、かつち密とな
って密度も上がり、強誘電性結晶としての性質が向上す
る。
(FIG. 1(b)) As a result, oxygen is incorporated into PZT, forming stoichiometric PZT. In addition, the ferroelectric thin film 104 immediately after sputtering has insufficient crystallinity and poor orientation, but by annealing at high pressure oxygen 105 and high temperature, the orientation becomes better and the density increases. , the properties as a ferroelectric crystal are improved.

その後上部電極106、例えばAIをスパッタ法により
形成し、AIと強誘電体薄膜PZTとをフォトリソグラ
フィ法により同時にバターニングする。(第1図(C)
)さらに絶縁膜107を被着してコンタクトホールを開
孔し、配線金属108、例えば/’47を形成後バター
ニングする(第1図(d)) 従来の技術ではスパッタ法により被着したPzTをその
まま用いていたが、この方法によるとPZT中の酸素が
欠乏し、強誘電体の分極特性が劣化し、不揮発性半導体
メモリへの適用は困難であった。また、スパッタ後大気
圧酸素中でアニールする方法もあるが、これによると、
例えば下部電極にAgを用いた時は温度が上げられない
ため、アニールの効果が不十分となる。本発明によれば
高圧酸素を用いるため、温度が低くてもアニールの効果
はあり、500℃以上ならばよい。従って下部電極がA
llでも十分アニール効果を有し、強誘電体膜の特性が
改善される。本実施例のように下部電極にWなどの高融
点金属を用いれば、アニール温度を900℃近くまで上
げることができるので、アニール効果はさらに上がる。
Thereafter, an upper electrode 106, for example AI, is formed by sputtering, and the AI and the ferroelectric thin film PZT are simultaneously patterned by photolithography. (Figure 1 (C)
) Further, an insulating film 107 is deposited, a contact hole is opened, and a wiring metal 108, for example /'47, is formed and then patterned (Fig. 1(d)). However, this method depleted oxygen in PZT and deteriorated the polarization characteristics of the ferroelectric material, making it difficult to apply it to nonvolatile semiconductor memories. There is also a method of annealing in atmospheric pressure oxygen after sputtering, but according to this method,
For example, when Ag is used for the lower electrode, the temperature cannot be raised, resulting in insufficient annealing effects. According to the present invention, since high-pressure oxygen is used, the annealing effect can be achieved even at low temperatures, and it is sufficient if the temperature is 500° C. or higher. Therefore, the lower electrode is A
Even 11 has a sufficient annealing effect, and the characteristics of the ferroelectric film are improved. If a high melting point metal such as W is used for the lower electrode as in this embodiment, the annealing temperature can be raised to nearly 900° C., which further improves the annealing effect.

また、本実施例では強誘電体膜としてPZTを用いたが
、B a T L O3やPLZTなど他のペロブスカ
イト型酸化物強誘電体を用いても同様の効果を有するの
はもちろんである。
Furthermore, although PZT was used as the ferroelectric film in this embodiment, it goes without saying that other perovskite-type oxide ferroelectrics such as B a T L O 3 and PLZT can also be used to provide similar effects.

本発明による強誘電体薄膜は、不揮発性メモリへ応用し
て、電気的書き換え回数の多い、信頼性の高い不揮発性
メモリを製造できることが可能となる他に、シリコン基
板上に強誘電体からなるキャパシタを集積する際に応用
することも可能である。
The ferroelectric thin film according to the present invention can be applied to non-volatile memories, and can be used to manufacture highly reliable non-volatile memories that can be electrically rewritten many times. It can also be applied when integrating capacitors.

〔発明の効果〕 本発明によれば、強誘電体膜の安定性、特に強誘電体膜
のストイキオメトリを改善するという効果を有する。例
えば不揮発性メモリーに応用した際、電気的書き換え可
能な回数の多い、信頼性の高い不揮発性メモリを製造す
ることが可能となる。
[Effects of the Invention] According to the present invention, there is an effect of improving the stability of a ferroelectric film, particularly the stoichiometry of the ferroelectric film. For example, when applied to nonvolatile memory, it becomes possible to manufacture highly reliable nonvolatile memory that can be electrically rewritten many times.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a、 )〜(d)は本発明の一実施例を示す製
造工程図。 1、01  ・ 102・ 103・ 〕 04 φ 105 ・ 106 ・ 107 ・ 108・ ・St基板 ・絶縁膜 ・下部電極 ・強誘電体薄膜 ・高圧酸素 ・上部電極 ・絶縁膜 ・配線金属 出願人 セイコーエプソン株式会社
FIGS. 1(a, 1d) to 1(d) are manufacturing process diagrams showing one embodiment of the present invention. 1, 01 ・ 102 ・ 103 ・ ] 04 φ 105 ・ 106 ・ 107 ・ 108 company

Claims (1)

【特許請求の範囲】[Claims] 強誘電体ターゲットをスパッタして強誘電体薄膜を形成
後、高圧酸素中でアニールすることを特徴とする強誘電
体膜の製造方法。
A method for producing a ferroelectric film, which comprises forming a ferroelectric thin film by sputtering a ferroelectric target, and then annealing the film in high-pressure oxygen.
JP1071104A 1989-03-23 1989-03-23 Manufacture of ferroelectric film Pending JPH02249278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1071104A JPH02249278A (en) 1989-03-23 1989-03-23 Manufacture of ferroelectric film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1071104A JPH02249278A (en) 1989-03-23 1989-03-23 Manufacture of ferroelectric film

Publications (1)

Publication Number Publication Date
JPH02249278A true JPH02249278A (en) 1990-10-05

Family

ID=13450911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1071104A Pending JPH02249278A (en) 1989-03-23 1989-03-23 Manufacture of ferroelectric film

Country Status (1)

Country Link
JP (1) JPH02249278A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443030A (en) * 1992-01-08 1995-08-22 Sharp Kabushiki Kaisha Crystallizing method of ferroelectric film
US6326216B1 (en) 1996-08-07 2001-12-04 Hitachi, Ltd. Process for producing semiconductor integrated circuit device
JP2002324924A (en) * 2001-04-24 2002-11-08 Sony Corp Method of manufacturing piezoelectric element
JP2004296681A (en) * 2003-03-26 2004-10-21 Seiko Epson Corp Ferroelectric film, forming method thereof, ferroelectric capacitor, manufacturing method thereof, and ferroelectric memory
JP2007103963A (en) * 2006-12-11 2007-04-19 Seiko Epson Corp Method for manufacturing ferroelectric capacitor, ferroelectric capacitor and semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443030A (en) * 1992-01-08 1995-08-22 Sharp Kabushiki Kaisha Crystallizing method of ferroelectric film
US6326216B1 (en) 1996-08-07 2001-12-04 Hitachi, Ltd. Process for producing semiconductor integrated circuit device
JP2002324924A (en) * 2001-04-24 2002-11-08 Sony Corp Method of manufacturing piezoelectric element
JP2004296681A (en) * 2003-03-26 2004-10-21 Seiko Epson Corp Ferroelectric film, forming method thereof, ferroelectric capacitor, manufacturing method thereof, and ferroelectric memory
JP2007103963A (en) * 2006-12-11 2007-04-19 Seiko Epson Corp Method for manufacturing ferroelectric capacitor, ferroelectric capacitor and semiconductor device

Similar Documents

Publication Publication Date Title
JP3258899B2 (en) Ferroelectric thin film element, semiconductor device using the same, and method of manufacturing ferroelectric thin film element
JP3363301B2 (en) Ferroelectric thin film-coated substrate, method of manufacturing the same, and nonvolatile memory constituted by ferroelectric thin-film-coated substrate
US5365094A (en) Semiconductor device including ferroelectric nonvolatile memory
KR100419683B1 (en) Dc sputtering process for making smooth electrodes and thin film ferroelectric capacitors having improved memory retention
US5760432A (en) Thin film strained layer ferroelectric capacitors
JP3162718B2 (en) Integrated circuit memory
WO2001024265A1 (en) Nonvolatile memory
KR100228040B1 (en) Non-volatile semiconductor memory device and method for manufacturing the same
JPH10313097A (en) Ferroelectric thin film, manufacture thereof, and device provided therewith
JP2000068466A (en) Semiconductor memory device
JP2004319651A (en) Element of memory and manufacturing method thereof
JPH02249278A (en) Manufacture of ferroelectric film
JPH02232973A (en) Semiconductor device
JPH02208978A (en) Semiconductor device
KR20020062069A (en) Field Effect Transistor Using Zirconiumtitanate Thin Film
JPH09321237A (en) Non-volatile semiconductor storage device having ferroelectric film, capacitor having ferroelectric film and its manufacture
KR100363393B1 (en) Ndro-fram memory cell device and the fabrication method there of
JP2572649B2 (en) Method for manufacturing semiconductor device
JP3403507B2 (en) Ferroelectric memory element and method of manufacturing the same
JPH0319373A (en) Formation of ferroelectric thin film
JP2001024074A (en) Ferroelectric gate device and driving thereof
JP2004319995A (en) Ferroelectric film, its manufacturing method, and semiconductor device
KR100967110B1 (en) Method for forming ferroelectric layer having same orientational property with under layer and method for forming ferroelectric capacitor using the method
JP3872917B2 (en) Manufacturing method of semiconductor device
JPH0730074A (en) Capacitor for non-volatile memory