JPH02248835A - Measurement of eccentricity of core for optical fiber base material - Google Patents

Measurement of eccentricity of core for optical fiber base material

Info

Publication number
JPH02248835A
JPH02248835A JP7105989A JP7105989A JPH02248835A JP H02248835 A JPH02248835 A JP H02248835A JP 7105989 A JP7105989 A JP 7105989A JP 7105989 A JP7105989 A JP 7105989A JP H02248835 A JPH02248835 A JP H02248835A
Authority
JP
Japan
Prior art keywords
optical fiber
eccentricity
core
base material
directions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7105989A
Other languages
Japanese (ja)
Inventor
Shinichi Nakayama
真一 中山
Tomio Azebiru
富夫 畔蒜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP7105989A priority Critical patent/JPH02248835A/en
Publication of JPH02248835A publication Critical patent/JPH02248835A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To achieve a quicker feedback to a production process with a higher measuring accuracy by measuring an angle of refraction distribution from three directions at the right angle to a center axis of an optical fiber base material to calculate eccentricity from a distance between centers of a core section and a clad section and an angle therebetween. CONSTITUTION:An optical fiber base material 1 is rotated with a center axis of a clad section 3 as center axis of rotation to measure a distribution of angle of refraction from three directions at the right angle to the axis. Then, a distance between centers of a core section 2 and the clad section 3 is determined in three directions. Then, an approximation is made to a sine curve by data at three points indicated by the angle and the distance in the three directions to calculate an amplitude of the curve thereby enabling the determination of eccentricity of the core section 2 with respect to the center axis of the clad section 3. This enables measurement of eccentricity at the stage of the optical fiber base material thereby achieving a higher measuring accuracy while allowing a quicker feedback to a production process.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、光ファイバのコアの偏心量を、焼結され透
明ガラス化された光ファイバ母材の段階で測定する方法
に関する。
The present invention relates to a method for measuring the eccentricity of an optical fiber core at the stage of an optical fiber preform that has been sintered and made into transparent glass.

【従来の技術】[Conventional technology]

従来では、光ファイバのコアの偏心量は、光ファイバ母
材を線引して紡糸することによって光ファイバ素線とし
て出来上がったものの端面を観察して測定するのが通常
である。すなわち、光ファイバの端面においてコアの中
心とクラッドの中心とのずれ量を測定し、このずれ量を
コア偏心量としている。
Conventionally, the amount of eccentricity of the core of an optical fiber is usually measured by observing the end face of an optical fiber produced by drawing and spinning an optical fiber preform. That is, the amount of deviation between the center of the core and the center of the cladding at the end face of the optical fiber is measured, and this amount of deviation is taken as the amount of core eccentricity.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、従来のコア偏心量測定法では、光ファイ
バ素線の状態で測定するため測定精度に欠け、また光フ
ァイバ母材製造工程へのフィードバックも遅いという問
題がある。すなわち、直径的125μmの光ファイバ素
線端面を観察するため、高精度の測定器が必要である等
のさまざまな制約が課せられ、しかも高い測定精度を得
ることが難しい。さらに、光ファイバのコアの偏心の原
因の多くは光ファイバ母材製造工程によるものであるが
、光ファイバ素線の段階で測定するのでは、光ファイバ
母材を線引し光ファイバ素線とした後測定することにな
るため、光ファイバ母材製造工程へのフィードバックが
遅れることになる。 この発明は、コア偏心量を高い精度で容易に測定するこ
とができるとともに、光ファイバ母材製造工程へのフィ
ードバックも早めることができる、光ファイバ母材のコ
ア偏心量測定法を提供することを目的とする。
However, the conventional core eccentricity measurement method lacks measurement accuracy because it measures the optical fiber in its strand state, and the feedback to the optical fiber preform manufacturing process is also slow. That is, in order to observe the end face of an optical fiber having a diameter of 125 μm, various restrictions are imposed, such as the need for a high-precision measuring instrument, and it is difficult to obtain high measurement accuracy. Furthermore, most of the causes of eccentricity in the core of optical fibers are due to the manufacturing process of the optical fiber base material, but measuring it at the optical fiber stage requires drawing the optical fiber base material and forming it into a raw optical fiber. Since the measurement must be carried out after the measurement, feedback to the optical fiber preform manufacturing process will be delayed. The present invention aims to provide a method for measuring the amount of core eccentricity of an optical fiber preform, which can easily measure the amount of core eccentricity with high accuracy, and can also speed up feedback to the optical fiber preform manufacturing process. purpose.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するため、この発明による光ファイバ母
材のコア偏心量測定法においては、まず、光ファイバ母
材の中心軸にほぼ直角な平面上の互いに異なる3方向よ
り該母材の屈折角分布を測定し、つぎに、これら3方向
の屈折角分布よりそれぞれコア部の中心点とクラッド部
の中心点との間の距離を求め、さらに、これら3方向の
角度と距離とからサインカーブを近似し、該サインカー
ブの振幅を算出することを特徴とする。
In order to achieve the above object, in the method for measuring the core eccentricity of an optical fiber preform according to the present invention, first, the refraction angle of the preform is measured from three different directions on a plane substantially perpendicular to the central axis of the optical fiber preform. The distribution is measured, and then the distance between the center point of the core and the center of the cladding is determined from the refraction angle distribution in these three directions.Furthermore, a sine curve is calculated from the angle and distance in these three directions. It is characterized by approximating and calculating the amplitude of the sine curve.

【作  用】[For production]

光ファイバ母材を、その中心軸を回転中心軸として回転
させ、その側方の一定方向から観察すると、コア部が偏
心している場合は、このコア部の中心点は回転角度に対
してサインカーブを描く。 そして、このサインカーブの振幅がコア部の偏心量に対
応することになる。 そして、光ファイバ母材を線引することによって光ファ
イバが得られるため、光ファイバ母材の断面形状は光フ
ァイバの断面形状と相似であると見なせる。そのため、
光ファイバ母材の段階で求めたコア部の偏心量は光ファ
イバのコアの偏心量ということができる。 そこで、光ファイバ母材の側方から、つまり光ファイバ
母材の中心軸にほぼ直角な平面上の適当な1つの方向か
ら屈折角の分布を測定する。この屈折角の分布より、コ
ア部の中心点とクラッド部の中心点とをそれぞれ求める
ことができ、それらの間の距離を求めることができる。 この距離を、上記の平面上の、上記の方向とは異なる2
方向より求める。 すると、これら3方向の角度と距離により表わされる点
は、サインカーブの上にのることになるので、これら3
方向の角度と距離とからサインカーブを近似することが
できる。このようにしてサインカーブが求められれば、
上記のようにその振幅からコア部の偏心量を求めること
ができる。
When an optical fiber base material is rotated around its central axis and observed from a certain direction on the side, if the core is eccentric, the center point of this core will be a sine curve with respect to the rotation angle. draw The amplitude of this sine curve corresponds to the amount of eccentricity of the core portion. Since the optical fiber is obtained by drawing the optical fiber preform, the cross-sectional shape of the optical fiber preform can be considered to be similar to the cross-sectional shape of the optical fiber. Therefore,
The amount of eccentricity of the core portion determined at the optical fiber preform stage can be said to be the amount of eccentricity of the core of the optical fiber. Therefore, the distribution of the refraction angle is measured from the side of the optical fiber preform, that is, from one suitable direction on a plane substantially perpendicular to the central axis of the optical fiber preform. From this distribution of refraction angles, the center point of the core portion and the center point of the cladding portion can be determined, and the distance therebetween can be determined. Set this distance to two points on the above plane that are different from the above direction.
Determine from the direction. Then, the points represented by the angles and distances in these three directions will be on the sine curve, so these three
A sine curve can be approximated from the direction angle and distance. If the sine curve is found in this way,
As described above, the amount of eccentricity of the core portion can be determined from the amplitude.

【実 施 例】【Example】

つぎにこの発明の一実施例について図面を参照しながら
説明する。まず、プリフォームアナライザなどの光ファ
イバ母材の光学的性質を調べる測定器を用いて、光ファ
イバ母材の側方、つまり光ファイバ母材の中心軸にほぼ
直角な平面上の適当な1つの方向から屈折角分布を測定
する。すると、この屈折角分布は第3図Bのようになり
、第3図Aに示す光ファイバ母材1の断面形状に対応す
ることになる。すなわち、屈折角分布上のP、8点はク
ラッド部3のエツジ付近に、Q、R点はコア部2とクラ
ッド部との境界にそれぞれ対応する。 そして、このP、8点の中点はクラッド部3の中心点、
Q、R点の中点はコア部2の中心点となるため、これら
の中点よりコア部2とクラッド部3のそれぞれの中心点
を求めることができる。このようにしてそれぞれの中心
点が求められれば、それらの間の距離りも求められる。 このような屈折角分布を、光コアイノく母材1をクラッ
ド部3の中心軸を回転中心軸として回転させて、クラッ
ド部3の中心軸にほぼ直角な平面上の3方向、この実施
例ではO’ 、90°、180°の各方向から測定する
。これにより、第1図A。 B、Cに示すように3方向でのコア部2の中心点とクラ
ッド部3の中心点との距離La、Lb、LCを求める。 つぎにこの距離La、Lb、Lcとそれを取得した角度
とで表わされる3点のデータを用いて、第2図のように
サインカーブを近似する。このようにサインカーブが近
似できたら、そのサインカーブの振幅Lmを算出する。 すると、この振幅Lmはクラッド部3の中心軸に対する
コア部2の中心軸の偏心量に対応することになる。 なお、3つの異なる角度でのコア部2の中心点とクラッ
ド部3の中心点との距離りが求められれば、第2図に示
すように1つのサインカーブを近・似することができる
ため、屈折角分布を求める方向は上記のように0°、9
0°  180°に限定されず、任意に選ぶことができ
る。
Next, an embodiment of the present invention will be described with reference to the drawings. First, using a measuring instrument such as a preform analyzer to examine the optical properties of the optical fiber preform, measure one suitable point on the side of the optical fiber preform, that is, on a plane approximately perpendicular to the central axis of the optical fiber preform. Measure the refraction angle distribution from the direction. Then, this refraction angle distribution becomes as shown in FIG. 3B, which corresponds to the cross-sectional shape of the optical fiber preform 1 shown in FIG. 3A. That is, points P and 8 on the refraction angle distribution correspond to the vicinity of the edge of the cladding portion 3, and points Q and R correspond to the boundary between the core portion 2 and the cladding portion, respectively. Then, the middle point of this P, 8 points is the center point of the cladding part 3,
Since the midpoint between points Q and R becomes the center point of the core portion 2, the respective center points of the core portion 2 and the cladding portion 3 can be determined from these midpoints. If each center point is found in this way, the distance between them can also be found. Such a refraction angle distribution can be obtained by rotating the optical core base material 1 about the central axis of the cladding part 3, in three directions on a plane substantially perpendicular to the central axis of the cladding part 3, in this embodiment. Measurements are taken from the O', 90°, and 180° directions. As a result, FIG. 1A. As shown in B and C, the distances La, Lb, and LC between the center point of the core portion 2 and the center point of the cladding portion 3 in three directions are determined. Next, a sine curve is approximated as shown in FIG. 2 using data at three points represented by the distances La, Lb, and Lc and the angles at which they were obtained. Once the sine curve has been approximated in this way, the amplitude Lm of the sine curve is calculated. Then, this amplitude Lm corresponds to the amount of eccentricity of the central axis of the core section 2 with respect to the central axis of the cladding section 3. Furthermore, if the distances between the center point of the core portion 2 and the center point of the cladding portion 3 at three different angles are determined, one sine curve can be approximated as shown in Figure 2. , the directions for calculating the refraction angle distribution are 0° and 9 as described above.
It is not limited to 0° to 180° and can be arbitrarily selected.

【発明の効果】【Effect of the invention】

この発明の光ファイバ母材のコア偏心量測定法によれば
、大きな光ファイバ母材の段階でコア偏心量の測定が可
能になったため、測定精度を向上させることが容易であ
る。また、光ファイバ母材の段階で測定できるため、光
ファイバ母材製造工程へのフィードバックも早くするこ
とができ、母材段階で良品選別等が可能となる。
According to the method for measuring the amount of core eccentricity of an optical fiber preform of the present invention, it is possible to measure the amount of core eccentricity at the stage of a large optical fiber preform, so it is easy to improve the measurement accuracy. Furthermore, since measurement can be performed at the optical fiber preform stage, feedback to the optical fiber preform manufacturing process can be made faster, and non-defective products can be selected at the preform stage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A、B、C1第2図、第3図A、Bはすべてこの
発明の一実施例にかかるもので、第1図A、B、Cは光
ファイバ母材の側方の3方向がら見たコア部中心とクラ
ッド部中心との距離を示す図、第2図は近似されるサイ
ンカーブを示す図、第3図A、Bは光ファイバ母材断面
とそれに対応する屈折角分布とをそれぞれ示す図である
。 1・・・光ファイバ母材、2・・・コア部、3・・・ク
ラッド部。
Figure 1 A, B, C1 Figure 2, Figure 3 A, B all relate to one embodiment of the present invention, Figure 1 A, B, C shows the three lateral directions of the optical fiber preform. Figure 2 is a diagram showing the approximated sine curve, and Figures 3A and B are the cross-sections of the optical fiber base material and the corresponding refraction angle distribution. FIG. DESCRIPTION OF SYMBOLS 1... Optical fiber base material, 2... Core part, 3... Clad part.

Claims (1)

【特許請求の範囲】[Claims] (1)光ファイバ母材の中心軸にほぼ直角な平面上の互
いに異なる3方向より該母材の屈折角分布を測定し、つ
ぎに、これら3方向の屈折角分布よりそれぞれコア部の
中心点とクラッド部の中心点との間の距離を求め、さら
に、これら3方向の角度と距離とからサインカーブを近
似し、該サインカーブの振幅を算出することを特徴とす
る光ファイバ母材のコア偏心量測定法。
(1) Measure the refraction angle distribution of the optical fiber base material from three different directions on a plane substantially perpendicular to the central axis of the optical fiber base material, and then measure the refraction angle distribution of the optical fiber base material from each of the three directions at the center of the core. and the center point of the cladding part, and further approximates a sine curve from the angles and distances in these three directions, and calculates the amplitude of the sine curve. Eccentricity measurement method.
JP7105989A 1989-03-23 1989-03-23 Measurement of eccentricity of core for optical fiber base material Pending JPH02248835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7105989A JPH02248835A (en) 1989-03-23 1989-03-23 Measurement of eccentricity of core for optical fiber base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7105989A JPH02248835A (en) 1989-03-23 1989-03-23 Measurement of eccentricity of core for optical fiber base material

Publications (1)

Publication Number Publication Date
JPH02248835A true JPH02248835A (en) 1990-10-04

Family

ID=13449572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7105989A Pending JPH02248835A (en) 1989-03-23 1989-03-23 Measurement of eccentricity of core for optical fiber base material

Country Status (1)

Country Link
JP (1) JPH02248835A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366435A (en) * 1986-09-09 1988-03-25 Sumitomo Electric Ind Ltd Structure measuring apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366435A (en) * 1986-09-09 1988-03-25 Sumitomo Electric Ind Ltd Structure measuring apparatus

Similar Documents

Publication Publication Date Title
CA1054788A (en) Method of measuring the parameters of optical fibers
CN103197380B (en) Preparation method of contact-type optical fiber micro probe based on optical fiber tapering technology
US5029961A (en) Optical fiber coupler and process for manufacturing same
CA1071858A (en) Method for monitoring the concentricity of plastic coatings on optical fibers
CN1201174C (en) Polarization holding optical fiber and productino method of polarization holding optical fiber preshaped parts
JPS5937451B2 (en) Surface stress measuring device for chemically strengthened glass
EP0418874A2 (en) Method and apparatus for scattered light measurements
JPH02248835A (en) Measurement of eccentricity of core for optical fiber base material
US5379112A (en) Process for relative measurement of the center-line of an aperture and the center-line of a cylindrical outline
US6937325B2 (en) Method and apparatus for measuring eccentricity in a optical fiber
JPS6141933A (en) Method and device for measuring stress in body
JP3096870B2 (en) Angle measurement method of optical fiber insertion hole of multi-core ferrule
JPH04213409A (en) Highly accurate manufacture of connecting device for capillary, connecting terminal and optical fiber
JP3735063B2 (en) Optical fiber preform refractive index measurement method
JPH08245232A (en) Method for detecting twist of glass fiber
JPH06185982A (en) Measuring method for v-shaped groove
Askins et al. Technique for controlling the internal rotation of principal axes in the fabrication of birefringent fibers
CA1054361A (en) Method of measuring the parameters of optical fibers
JPH0815562A (en) Alignment method of direction of rotating direction of optical fiber in optical fiber array and optical fiber array
GB2233116A (en) Optical fibre coupler having polished grooved substrates whose sides have different areas
US5617210A (en) Method of detecting whether at least one die is centered about a thread held taught between two fixed points
JPH04323528A (en) Spun string tension measurement method for optical fiber
JPS63311206A (en) Optical fiber mode disturbing method and its element
JPH06337321A (en) Optical fiber polarization eliminator
JPH037061B2 (en)