JPS6366435A - Structure measuring apparatus - Google Patents

Structure measuring apparatus

Info

Publication number
JPS6366435A
JPS6366435A JP21073086A JP21073086A JPS6366435A JP S6366435 A JPS6366435 A JP S6366435A JP 21073086 A JP21073086 A JP 21073086A JP 21073086 A JP21073086 A JP 21073086A JP S6366435 A JPS6366435 A JP S6366435A
Authority
JP
Japan
Prior art keywords
base material
eccentricity
transparent body
subject
cylindrical transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21073086A
Other languages
Japanese (ja)
Other versions
JPH0781928B2 (en
Inventor
Yasuji Hattori
服部 保次
Susumu Inoue
享 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61210730A priority Critical patent/JPH0781928B2/en
Publication of JPS6366435A publication Critical patent/JPS6366435A/en
Publication of JPH0781928B2 publication Critical patent/JPH0781928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To enable the measurement of eccentricity of an optical fiber base material in a non-destructive manner at a high accuracy, by determining relative position of boundaries from boundary information of an image pickup element and movement information of a holding stage for an object to be inspected. CONSTITUTION:An optical fiber base material 1 as object to be inspected is irradiated sideways with a spot light source 6. An image pickup device 8 with a camera lens 7 is provided on the opposite side of the spot light source 6 with respect to the base material 1 to surround a partial image containing boundary information of the base material 1 on an observing surface close to the center of the base material 1 while being orthogonal to the optical axis of light. The partial image is observed with a monitor TV 10, a brightness data of which is sent to a CPU 12 through a controller 11. A stage 4 for holding an object to be inspected moves the base material 1 in the direction perpendicular both to the length of the base material 1 and the optical axis. The movement of the stage 4 is read out with a scale 14 to be sent to the CPU 12 through a display 15. Relative positions of boundaries are determined with the CPU 12 from boundary information of the image pickup element 8 and movement information of the stage 4 to obtain eccentricity of the base material 1.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は例えば石英系光フアイバ母材のコア中心位置と
クラフト中心位置との差、すなわち偏心量を、該母材を
側方から観測することにより測定する構造測定装置に関
する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention, for example, measures the difference between the core center position and the craft center position of a quartz-based optical fiber base material, that is, the eccentricity, by observing the base material from the side. The present invention relates to a structure measuring device for measuring structures.

〈従来の技術と問題点〉 光ファイバの偏心量を精度良く測定するということは、
特にコア径が小さいシングルモード光ファイバにおいて
は接続損失を低減するという観点から重要である。
<Conventional technology and problems> Measuring the eccentricity of an optical fiber with high accuracy requires
This is particularly important for single mode optical fibers with small core diameters from the viewpoint of reducing splice loss.

従来における光ファイバの偏心量を測定する方法として
は、光ファイバの端面を鏡面に切断し、その切断面を顕
微鏡、ITV等で観測するというものであった。しかし
ながら、光ファイバの外径は標準的なもので125/+
1と小さいことから、接続損失への影響を考慮して偏心
量を測定するためには0.1μ程度以下の測定精度が要
求されるが、観測に用いる波長(通常0.5 trm程
度の可視域の波長を用いる)に比較して小さな値である
ため所要精度を満足する測定を行うことは非常に困難で
あった。
A conventional method for measuring the amount of eccentricity of an optical fiber is to cut the end face of the optical fiber into a mirror surface and observe the cut surface using a microscope, ITV, or the like. However, the standard outer diameter of the optical fiber is 125/+
1, a measurement accuracy of about 0.1μ or less is required to measure the amount of eccentricity in consideration of the effect on splice loss. Because the value is small compared to the wavelength range (using wavelengths in the range), it has been extremely difficult to perform measurements that satisfy the required accuracy.

因に、石英系光ファイバは通常プリフォームと呼ばれる
光ファイバと相イ以な構造を有する母材を高温溶融線引
して得られるが、このことより母材の構造パラメータを
測定し、それによって光ファイバの構造パラメータを推
定することが可能と考えられる。従来より、母材の測定
としては母材の側方から測定光を照射し、コア部の屈折
率分布の変化により生じる光線の屈折角を求め、これに
よってコア部の屈折率分布を推定する方法は知られてい
るが、コア中心位置とクラッド中心位置との差(偏心量
)を精度良く測定することはけわれていなかった。
Incidentally, silica-based optical fibers are usually obtained by high-temperature fusion drawing of a base material called a preform, which has a structure similar to that of optical fibers. It is considered possible to estimate the structural parameters of optical fibers. Conventionally, the method of measuring base metals is to irradiate measurement light from the side of the base material, find the refraction angle of the light beam caused by changes in the refractive index distribution of the core part, and estimate the refractive index distribution of the core part from this. However, it has not been necessary to accurately measure the difference (eccentricity) between the core center position and the clad center position.

本発明は上記従来の事情に鑑みなされたもので、光フア
イバ母材の偏心量の測定を高精度に達成することができ
る構造測定装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional circumstances, and an object of the present invention is to provide a structure measuring device that can measure the eccentricity of an optical fiber base material with high precision.

〈問題点を解決するための手段〉 本発明の構造測定装置は、円筒状透明体より屈折率が高
い円柱状透明体を中心にして該円筒状透明体により取囲
み、該円柱状透明体と該円筒状透明体とを一体化して構
成した円柱状の被検体の構造を測定する装置において、
前記被検体を側方から照射する点光源と、前記被検体に
対し前記点光源の反対側に配設されて該被検体の中心よ
り近く且つ光軸に直交する観測面における当該被検体の
境界情報を含んだ部分像を取込む撮像光学系と、前記被
検体を長手方向及び光軸方向のいずれにも直交する方向
に移動させる被検体保持ステージと、前記撮像光学系の
境界情報及び前記被検体保持ステージの移動量情帳から
各境界の相対位置を求めて前記被検体の偏心量を求める
データ処理装置とを備えたことを特徴とする。
<Means for Solving the Problems> The structure measuring device of the present invention surrounds a cylindrical transparent body with a cylindrical transparent body having a higher refractive index than that of the cylindrical transparent body; In an apparatus for measuring the structure of a cylindrical object formed by integrating the cylindrical transparent body,
a point light source that illuminates the object from the side; and a boundary of the object in an observation plane that is arranged on the opposite side of the object to the point light source and is closer to the center of the object and perpendicular to the optical axis. an imaging optical system that captures a partial image containing information; a subject holding stage that moves the subject in a direction perpendicular to both the longitudinal direction and the optical axis; and boundary information of the imaging optical system and the subject. The present invention is characterized by comprising a data processing device that determines the eccentricity of the subject by determining the relative position of each boundary from the movement amount information record of the specimen holding stage.

〈実 施 例〉 本発明の一実施例に係る構造測定装置をその全体構成を
表す第1図を参照、して説明する。
<Embodiment> A structure measuring device according to an embodiment of the present invention will be described with reference to FIG. 1 showing its overall configuration.

図示のように、本装置により偏心量を測定する被検体は
プリフォームと呼ばれる円柱状の光フアイバ母材1であ
り、この母材1は円筒状透明体2より屈折率の高い円柱
状透明体3を中心にして該円筒状透明体2により取囲み
、これら透明体2,3を一体化して構成されている。
As shown in the figure, the object whose eccentricity is measured by this device is a cylindrical optical fiber base material 1 called a preform, and this base material 1 is a cylindrical transparent body whose refractive index is higher than that of a cylindrical transparent body 2. 3 is surrounded by the cylindrical transparent body 2, and these transparent bodies 2 and 3 are integrated.

この母材1は被検体保持ステージ4のVブロック上に載
置保持されており、モータ5を作動してステージ4を図
中矢印a方向へ移動させると母材1も同方向へ移動する
。母材1の一側部には点光源6が配設され、母材1の他
側部には撮像レンズ7を備えた撮像素子8が配設されて
おり、母材1は黒光tJ、6から議像レンズ7への光軸
上に直交して位置している。従って、ステージ4を移動
させることにより、母材1を長手方向及び光軸方向のい
ずれにも直交する方向に移動させることができる。
This base material 1 is placed and held on a V block of a subject holding stage 4, and when the motor 5 is operated to move the stage 4 in the direction of arrow a in the figure, the base material 1 also moves in the same direction. A point light source 6 is disposed on one side of the base material 1, and an image sensor 8 equipped with an imaging lens 7 is disposed on the other side of the base material 1. It is located perpendicularly on the optical axis from to the imaging lens 7. Therefore, by moving the stage 4, the base material 1 can be moved in a direction perpendicular to both the longitudinal direction and the optical axis direction.

上記撮像レンズ7は母材1の一部を観測するようにその
倍率が設定されており、例えば円筒状透明体(クラッド
)2の外縁部、円筒状透明体(クラッド)2と円柱状透
明体くコア)3との境界部というように母材1の部分像
を撮像素子8に取込むようになっている。
The magnification of the imaging lens 7 is set so as to observe a part of the base material 1, for example, the outer edge of the cylindrical transparent body (cladding) 2, the cylindrical transparent body (cladding) 2 and the cylindrical transparent body. A partial image of the base material 1, such as the boundary between the base material 1 and the core 3, is captured by the image sensor 8.

従って、例えばクラッド2の外縁部の境界線2aは撮像
素子8に接続したモニタテレビ10に図示の如く観測さ
れ、上記ステージ4の移動に伴って得られる走査b’A
 10 aに沿った輝度データはコントローラ11を介
してデータ処理装置であるCPUI 2に送られる。尚
、観測面は光軸に直交した面であるが、撮像レンズ7の
焦点調整を行うことにより、この観測面は母材1の中心
を通る面Pより撮像レンズ7に近い側の面P′に設定さ
れている。これは、コア3とクラッド2との境界面にお
ける光線の屈折を考慮した場合に、この境界面が面Pよ
り面P′において明瞭に識別されるためである。
Therefore, for example, the boundary line 2a of the outer edge of the cladding 2 is observed on a monitor television 10 connected to the image sensor 8 as shown in the figure, and the scanning b'A obtained as the stage 4 moves.
The luminance data along line 10a is sent to the CPUI 2, which is a data processing device, via the controller 11. Note that the observation plane is a plane perpendicular to the optical axis, but by adjusting the focus of the imaging lens 7, this observation plane becomes a plane P′ closer to the imaging lens 7 than the plane P passing through the center of the base material 1. is set to . This is because when considering the refraction of light rays at the interface between the core 3 and the cladding 2, this interface is more clearly identified at the plane P' than at the plane P.

また、上記ステージ4にはスケール14が付設されてお
り、ステージ4の移動量(位置)はスケール14により
読取られて表示器15を介してCPU12に送られる。
Further, a scale 14 is attached to the stage 4, and the amount of movement (position) of the stage 4 is read by the scale 14 and sent to the CPU 12 via a display 15.

従って、モニタテレビ1θ上での絶対スケールを予め求
めでおくことにより、ステージ4の位置データ及びモニ
タテレビ10からの輝度データにより境界の位置データ
が求まる。すなわち、これら位置データ及び輝度データ
をCPTJ12で処理し、面P′におけるクラッド2の
外縁部境界P’+ 、 P’aの位置座標をそれぞれZ
′、。
Therefore, by determining the absolute scale on the monitor television 1θ in advance, the position data of the boundary can be determined from the position data of the stage 4 and the brightness data from the monitor television 10. That is, these position data and brightness data are processed by the CPTJ 12, and the position coordinates of the outer edge boundaries P'+ and P'a of the cladding 2 on the plane P' are determined as Z.
',.

Z′4.コア3とクラフト2との境界面P″よ。Z'4. The interface P'' between core 3 and craft 2.

P′3の位置座標をそれぞれZ’t 、 Z’x とす
ると、コア3の中心Z3.クラッド2の中心Z&+z’
t+z’s 偏心量ΔZはそれぞれ 2.=       。
If the position coordinates of P'3 are Z't and Z'x, respectively, then the center Z3. Center of cladding 2 Z&+z'
t+z's Eccentricity ΔZ is each 2. = .

Z’++Z’a Z&=       、Δ2=2.−2.により求まる
。更に、図示していない回転機構により母材1を軸回り
に所定の角度ステップΔθで回転させてΔZ(ixΔθ
)(ここにi=1.2.・・・・・・)を求め、これを
正弦波曲1Asin(iXΔθ+ψ)にフィッティング
させることにより振幅Aから偏心量が求まる。
Z'++Z'a Z&=, Δ2=2. -2. It is determined by Furthermore, the base material 1 is rotated around the axis by a predetermined angle step Δθ by a rotation mechanism (not shown) to obtain ΔZ(ixΔθ
) (here i=1.2...) and fitting this to the sine wave curve 1A sin (iXΔθ+ψ), the eccentricity amount is found from the amplitude A.

尚、観測される偏心量Aから真の偏心量λを求めるには
クラツド2外縁部におけるレンズ効果を補正する必要が
あり、近位的にλはλ=A/n  (n:屈折率) で得ることができる。
In addition, in order to obtain the true eccentricity λ from the observed eccentricity A, it is necessary to correct the lens effect at the outer edge of the cladding 2, and proximally λ is λ=A/n (n: refractive index). Obtainable.

上記の観測において、光源に点光源6を用いているため
、母材1内の観測面の各点を通過する光線の角度がほぼ
一義的に決定され、描像レンズ7の観測面を面P′とし
ても面Pにおけるクラフト2の外縁部の輪郭が明瞭に観
測される。これに対し、光源に拡散性光源を用いた場合
、撮像レンズ7の観測面を面P′としたときには面Pは
撮像レンズ7の合焦範囲から外れるためクラッド2の外
縁部の明瞭な観測が行えず、また観測面を面Pとしたと
きにはコア3とクランド2との境界面を明瞭なダークラ
インとして観測することができず、いずれにしても境界
の認識精度が低下する。
In the above observation, since the point light source 6 is used as the light source, the angle of the light ray passing through each point on the observation surface in the base material 1 is almost uniquely determined, and the observation surface of the imaging lens 7 is connected to the plane P' Even so, the outline of the outer edge of the craft 2 on the plane P can be clearly observed. On the other hand, when a diffusive light source is used as the light source, when the observation surface of the imaging lens 7 is set to the plane P', the plane P is out of the focusing range of the imaging lens 7, making it difficult to clearly observe the outer edge of the cladding 2. Furthermore, when the observation plane is set to plane P, the interface between the core 3 and the crund 2 cannot be observed as a clear dark line, and in any case, the accuracy of boundary recognition decreases.

また、像の観測は対象物の全画像を撮像素子8に取込ん
で行うことも可能であるが、撮像素子8の分解能の制約
を考慮して対象物の部分像を観測するようにし、高い測
定精度を達成している。
Although it is possible to observe the image by capturing the entire image of the object into the image sensor 8, it is possible to observe a partial image of the object in consideration of the resolution limitations of the image sensor 8. Measurement accuracy has been achieved.

また、母材lを軸回りに回転させて偏心量の測定を行い
、測定された各偏心量を正弦波曲線にフィッティングさ
せるようにしているため、更に精度の高い測定が達成さ
れている。ぺ尚、母材1の軸回りへの回転機能に加えて
母材1の軸方向への移動機能を進加すれば、母材1の偏
心量及び偏心方向の長手方向への分布を測定することが
できる。
Furthermore, since the eccentricity is measured by rotating the base material l around the axis and each measured eccentricity is fitted to a sinusoidal curve, even more accurate measurement is achieved. Furthermore, by adding the function of moving the base material 1 in the axial direction in addition to the function of rotating the base material 1 around its axis, it is possible to measure the amount of eccentricity of the base material 1 and the distribution of the eccentric direction in the longitudinal direction. be able to.

(具体例) 点光源としてLEDを用い、外径φ20mの単一モード
光ファイバプリフォームの偏心量ΔZを測定し、第2図
に示すような結果を得た。撮像レンズとしては拡大率が
4倍となるものを用い、被検体保持ステージの位置読取
用として0.1 /*分解能のリニアスケールを用いた
。母材の同一断面に対して10回の測定を行ったところ
、偏心量の測定値の標準偏差は1.2μとなり、はぼ0
.01%の精度で偏心率が測定可能であることが判った
(Specific Example) Using an LED as a point light source, the eccentricity ΔZ of a single mode optical fiber preform with an outer diameter of φ20 m was measured, and the results shown in FIG. 2 were obtained. An imaging lens with a magnification of 4 times was used, and a linear scale with a resolution of 0.1/* was used to read the position of the subject holding stage. When measurements were performed 10 times on the same cross section of the base material, the standard deviation of the measured value of eccentricity was 1.2μ, which was approximately 0.
.. It was found that the eccentricity can be measured with an accuracy of 0.1%.

尚、本発明は上記実施例に限定されるものではなく種々
の変更を加え得るものであり、また母材以外の被検体の
構造測定にも応用し得るものである。
It should be noted that the present invention is not limited to the above embodiments, but can be modified in various ways, and can also be applied to structural measurements of objects other than base materials.

:発明の効果〉 本発明によれば被検体の偏心量を非破壊で極めて高精度
に測定することができる。また、光フアイバ母材の段階
で偏心量を測定できるため、中間工程においてその品質
を検査することができ、光フアイバ製造に多大なる利点
を供する。
:Effects of the Invention> According to the present invention, the amount of eccentricity of a subject can be measured non-destructively with extremely high precision. Furthermore, since the amount of eccentricity can be measured at the optical fiber base material stage, its quality can be inspected in an intermediate process, providing a great advantage in optical fiber manufacturing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る構造測定装置を表す概
略構成図、第2図は実験結果を表すグラフである。 図  面  中、 1は母材(被検体)、 2は円筒状透明体(クラッド)、 3は円柱状透明体(コア)、 4は被検体保持ステージ、 6は点光源、 8は撮像素子、 12はcpu <データ処理装置)である。
FIG. 1 is a schematic configuration diagram showing a structure measuring device according to an embodiment of the present invention, and FIG. 2 is a graph showing experimental results. In the drawing, 1 is a base material (subject), 2 is a cylindrical transparent body (cladding), 3 is a cylindrical transparent body (core), 4 is a subject holding stage, 6 is a point light source, 8 is an image sensor, 12 is CPU <data processing device).

Claims (2)

【特許請求の範囲】[Claims] (1)円筒状透明体より屈折率が高い円柱状透明体を中
心にして該円筒状透明体により取囲み、該円柱状透明体
と該円筒状透明体とを一体化して構成した円柱状の被検
体の構造を測定する装置において、前記被検体を側方か
ら照射する点光源と、前記被検体に対し前記点光源の反
対側に配設されて該被検体の中心より近く且つ光軸に直
交する観測面における当該被検体の境界情報を含んだ部
分像を取込む撮像光学系と、前記被検体を長手方向及び
光軸方向のいずれにも直交する方向に移動させる被検体
保持ステージと、前記撮像光学系の境界情報及び前記被
検体保持ステージの移動量情報から各境界の相対位置を
求めて前記被検体の偏心量を求めるデータ処理装置とを
備えたことを特徴とする構造測定装置。
(1) A cylindrical transparent body surrounded by a cylindrical transparent body with a cylindrical transparent body having a higher refractive index than that of the cylindrical transparent body, and configured by integrating the cylindrical transparent body and the cylindrical transparent body. In an apparatus for measuring the structure of a subject, there is provided a point light source that illuminates the subject from the side; an imaging optical system that captures a partial image containing boundary information of the subject in orthogonal observation planes; a subject holding stage that moves the subject in a direction perpendicular to both the longitudinal direction and the optical axis direction; A structure measuring device comprising: a data processing device that determines the eccentricity of the object by determining the relative position of each boundary from boundary information of the imaging optical system and movement amount information of the object holding stage.
(2)データ処理装置は被検体を軸回りに回転させたと
きに順次得られる偏心量を正弦波曲線にフィッティング
してその振幅から偏心量を求めることを特徴とする特許
請求の範囲第1項記載の構造測定装置。
(2) Claim 1, characterized in that the data processing device fits the eccentricity sequentially obtained when the subject is rotated around an axis to a sine wave curve, and calculates the eccentricity from the amplitude thereof. Structure measuring device as described.
JP61210730A 1986-09-09 1986-09-09 Structure measuring device Expired - Fee Related JPH0781928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61210730A JPH0781928B2 (en) 1986-09-09 1986-09-09 Structure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61210730A JPH0781928B2 (en) 1986-09-09 1986-09-09 Structure measuring device

Publications (2)

Publication Number Publication Date
JPS6366435A true JPS6366435A (en) 1988-03-25
JPH0781928B2 JPH0781928B2 (en) 1995-09-06

Family

ID=16594157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61210730A Expired - Fee Related JPH0781928B2 (en) 1986-09-09 1986-09-09 Structure measuring device

Country Status (1)

Country Link
JP (1) JPH0781928B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248835A (en) * 1989-03-23 1990-10-04 Fujikura Ltd Measurement of eccentricity of core for optical fiber base material
WO2011052541A1 (en) * 2009-10-26 2011-05-05 株式会社フジクラ Testing device and testing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353403A (en) * 1986-08-25 1988-03-07 Furukawa Electric Co Ltd:The Measurement of eccentricity for light transmitting long-sized body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353403A (en) * 1986-08-25 1988-03-07 Furukawa Electric Co Ltd:The Measurement of eccentricity for light transmitting long-sized body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248835A (en) * 1989-03-23 1990-10-04 Fujikura Ltd Measurement of eccentricity of core for optical fiber base material
WO2011052541A1 (en) * 2009-10-26 2011-05-05 株式会社フジクラ Testing device and testing method
JP5591818B2 (en) * 2009-10-26 2014-09-17 株式会社フジクラ Inspection apparatus and inspection method

Also Published As

Publication number Publication date
JPH0781928B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
KR100326302B1 (en) Apparatus and method for measuring residual stress and photoelastic effect of optical fiber
US6545761B1 (en) Embedded interferometer for reference-mirror calibration of interferometric microscope
JP3078133B2 (en) Method for inspecting alignment state of optical waveguide and optical waveguide
JPS6366435A (en) Structure measuring apparatus
Young et al. Optical fiber geometry: Accurate measurement of cladding diameter
US5305079A (en) Nondestructive method for detecting defects in thin film using scattered light
US5317575A (en) System for determining birefringent axes in polarization-maintaining optical fiber
JP3162364B2 (en) Optical sensor device
JP2001004486A (en) Inspection method for optical fiber base material and continuous inspection device
JP2592906B2 (en) Measuring device for connector structural parameters
JP2519775B2 (en) Refraction angle measuring device
CN111609819B (en) Super-smooth surface roughness measuring system
JP2000146532A (en) Non-contact measuring method for dimension by automatic focus of laser
CN217465704U (en) Micro-nano optical fiber diameter detection device based on white light interference
JPH0942920A (en) Device for automatically checking polished surface of optical connector and method of checking polished surface of optical connector
JP2019191050A (en) Probe for optical imaging and optical measuring apparatus
JP2541197Y2 (en) Interference shape measuring instrument
JP2523156B2 (en) Refraction angle measuring method and refractive index distribution measuring device
JPH08233545A (en) Method and apparatus for measuring hole shape
Mechels et al. Scanning confocal microscope for accurate dimensional measurement
Li et al. An optical microform calibration system for ball-shaped hardness indenters
Young Standards for optical fiber geometry measurements
JPH0295201A (en) Measuring instrument for fine displacement quantity
JPS63317705A (en) Shape measuring instrument
JPH0648323B2 (en) Optical fiber axis deviation measurement method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees