JPS6141933A - Method and device for measuring stress in body - Google Patents

Method and device for measuring stress in body

Info

Publication number
JPS6141933A
JPS6141933A JP16358684A JP16358684A JPS6141933A JP S6141933 A JPS6141933 A JP S6141933A JP 16358684 A JP16358684 A JP 16358684A JP 16358684 A JP16358684 A JP 16358684A JP S6141933 A JPS6141933 A JP S6141933A
Authority
JP
Japan
Prior art keywords
measured
light
stress
optical path
path difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16358684A
Other languages
Japanese (ja)
Other versions
JPH0369059B2 (en
Inventor
Tetsuharu Abe
阿部 徹治
Yutaka Mitsunaga
満永 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16358684A priority Critical patent/JPS6141933A/en
Publication of JPS6141933A publication Critical patent/JPS6141933A/en
Publication of JPH0369059B2 publication Critical patent/JPH0369059B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/241Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet by photoelastic stress analysis

Abstract

PURPOSE:To measure the internal stress distribution in a body to be measured which has a uniform shape and stress distribution in one direction at a high speed without destruction by measuring the optical path difference of light transmitted through the object body due to opto-elastic effect while rotating the object body. CONSTITUTION:The body 4 to be measured is fixed on a sample turntable 5, whose angle of rotation is set to some angle. In this state, laser light from a laser 1 which is polarized linearly by a polarizer 3 is allowed to strike the body 4 to be measured. This incident light is split into two components having mutually orthogonal planes of polarization by birefringence originating from the stress distribution in the body and they travel at different propagation speeds, so light passed through the body has an optical path difference and becomes an elliptic polarized wave. Further, the object body 4 has a uniform and stress in a direction Z and the light beam having this optical path difference is passed through a quarter-wavelength plate 7 to become linear polarized light. For the purpose, the optical axis of an analyzer 8 is rotated to read data on a vidicon 9 in an image memory 10 and the optical path difference is calculated by using a computer 11. Thus, a measurement is taken easily and precisely without destruction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、物体内の応力分布を非破壊で測定する測定方
法および装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a measuring method and apparatus for non-destructively measuring stress distribution within an object.

〔従来の技術〕[Conventional technology]

従来、透明物体内の応力を測定する方法としては、光弾
性偏光器を用いる方法、すなわち、被測定物と1/4波
長板を、偏光子と検光子の間に挟み、物体内の主応力差
を透過光の光の強度に変換して測定する方法がある。
Conventionally, the method of measuring stress within a transparent object is to use a photoelastic polarizer, in which the object to be measured and a quarter-wave plate are sandwiched between a polarizer and an analyzer, and the principal stress within the object is measured. There is a method of measuring the difference by converting it into the intensity of transmitted light.

〔発明がW6決しようとする問題点〕 上記のような従来の測定方法では、被測定物か平板状、
あるいは軸対称性を有している必要があり、軸対称でな
い3次元物体の場合には、被測定物を平板状1こ加工し
なければならず、被測定物を破壊してしまうという問題
があった。また、受光方法として写真撮影やフォトダイ
オードをスキャンする方法を用いているため、データの
解析や測定に時間がかかり、精度もあまりよくないとい
う問題もあった。
[Problems that the invention attempts to resolve] In the conventional measurement method as described above, the object to be measured is flat,
Alternatively, it is necessary to have axial symmetry, and in the case of a three-dimensional object that is not axially symmetrical, the object to be measured must be machined into a flat plate, which may cause the problem of destroying the object. there were. Furthermore, since the method of receiving light involves taking photographs or scanning photodiodes, there are problems in that it takes time to analyze and measure data, and the accuracy is not very good.

本発明は、これら従来の問題を解決するものである。The present invention solves these conventional problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の物体内の応力測定方法は、発光源から被測定物
Iζ光線を照射し、応力が物体に与える複屈折性によっ
て透過光に生じる直交する偏光間の光路差を、被測定物
を回転させながら受光装置で検出し、それらのデータに
基づいて、被測定物の断面内における該断面に垂直な応
力成分分布を求めることを特徴とす。
The method for measuring stress in an object of the present invention involves irradiating the object to be measured with Iζ rays from a light source, and rotating the object to compensate for the optical path difference between orthogonal polarized lights that occurs in the transmitted light due to the birefringence that stress imparts to the object. The method is characterized in that the stress component distribution perpendicular to the cross section of the object to be measured is determined based on the data detected by the light receiving device while the object is being measured.

また、本発明の物体内の応力測定gc置は、レーザ光源
部、該レーザ光源の出力光を被測定物の大きさ以上の広
がりを有する平行光線に変換するレンズ系と、該平行光
線を直線偏光とするための偏亮子とによって光源部を構
成すると共に、被測定物の外周部屈折率と等しい屈折率
を有するマツチングオイルを充てんできかつ該被測定物
を所望の角度で回転できる回転台を備え、かつビディコ
ンと、該ビディコン上に被測定物の像を結像するレンズ
と、被測定物を通過したレーザ光を直線偏光とするため
のλ/4板と、偏光面のずれを検出するための検光子と
から受光部を構成し、さらにビディコンからの出力を処
理して所望の応力分布を求めるデータ処理部を備えて成
ることを特徴とする。
The gc device for measuring stress in an object according to the present invention includes a laser light source section, a lens system that converts the output light of the laser light source into a parallel light beam having a spread larger than the size of the object to be measured, and a lens system that converts the parallel light beam into a straight line. A rotary table which constitutes a light source section with a polarizer for polarizing the light, is filled with matching oil having a refractive index equal to the refractive index of the outer circumference of the object to be measured, and is capable of rotating the object to be measured at a desired angle. and a vidicon, a lens for forming an image of the object to be measured on the vidicon, a λ/4 plate for linearly polarizing the laser beam that has passed through the object to be measured, and detecting a shift in the plane of polarization. The present invention is characterized in that the light receiving section is constituted by an analyzer for determining the amount of stress, and further includes a data processing section that processes the output from the vidicon to obtain a desired stress distribution.

〔実施例〕〔Example〕

以下、本発明を図面に基づいて説明する。 Hereinafter, the present invention will be explained based on the drawings.

第1図は本発明の測定装置の構成例を表わす。FIG. 1 shows an example of the configuration of a measuring device according to the present invention.

図中1はレーザ、2a、2b、2cはレンズ、3は偏光
子、4は被測定物であり、レンズ2a 、 2bは、レ
ーザ1の出力光を被測定物4の大きさ以上の広がりをも
つ平行光線に変換するレンズ系を成し、また偏光子3は
平行光線を直線偏光とするものである。これら、レーザ
1.レンズ2a、2b1および偏光子3は光源部を構成
している。被測定物4は試料回転台5に固定されている
。この回転台5は、マツチングオイル6を充填でき、か
つ被測定物4を所望の角度回転できるものである。マツ
チングオイル6は、被測定物4の外周部の屈折率と等し
い屈折率を有する液体であり、光線が屈折によって曲が
ることを防ぐ。
In the figure, 1 is a laser, 2a, 2b, and 2c are lenses, 3 is a polarizer, and 4 is an object to be measured. Lenses 2a and 2b spread the output light of the laser 1 to a size larger than the object to be measured 4. The polarizer 3 constitutes a lens system that converts the parallel light beams into parallel light beams, and the polarizer 3 converts the parallel light beams into linearly polarized light beams. These lasers 1. Lenses 2a, 2b1 and polarizer 3 constitute a light source section. The object to be measured 4 is fixed to a sample rotating table 5. This rotating table 5 can be filled with matching oil 6 and can rotate the object 4 to be measured at a desired angle. The matching oil 6 is a liquid having a refractive index equal to the refractive index of the outer periphery of the object to be measured 4, and prevents the light beam from being bent due to refraction.

また、7は1/4 M、長板、8は検光子% 9はビデ
イコンであり、これらは前出したレンズ2aと共に受光
部を構成している。レンズ2aは、被測定物4の像をビ
デイコン9上に結像するように配置さnている。1/4
波長板7は、被測定物4を通過したレーザ光を直線偏光
するものであり、また検光子8は、偏光面のずれを検出
するものである。
Further, 7 is a 1/4 M long plate, 8 is an analyzer, and 9 is a videcon, which constitute a light receiving section together with the previously provided lens 2a. The lens 2 a is arranged so as to form an image of the object 4 on the videcon 9 . 1/4
The wavelength plate 7 linearly polarizes the laser beam that has passed through the object to be measured 4, and the analyzer 8 detects a shift in the plane of polarization.

また、10は画像メモリ装置、11は電子計算機、12
は出力装置であり、これらはビデイコン9からの出力を
処理して所望の応力分布を求めるデータ処理部を成して
いる。
Further, 10 is an image memory device, 11 is an electronic computer, and 12
is an output device, and these constitute a data processing section that processes the output from the videcon 9 to obtain a desired stress distribution.

次に、上記装置による応力の測定方法について説明する
Next, a method for measuring stress using the above device will be explained.

まず、被dす宝物4を試料回転台5に固定し、その回転
角をある角度θ0に設定する。この状態において、偏光
子3により直線偏光となったレーザ1からのレーザ光を
被測定物4に入射する。この入射光は、物体内の応力分
布1こ起因する複屈折性により互いに直交する偏波面を
持つ2つの成分に分かれて、それぞれの成分が異った伝
播速度で進むため、物体を透過した光には光路差&が生
じ、光線は清円偏波となる。光路差几は、光線の入射位
ifXと回転台の回転角θ0の関数から次式で与えられ
る。
First, the treasure 4 to be d is fixed on the sample rotating table 5, and its rotation angle is set to a certain angle θ0. In this state, the laser beam from the laser 1, which has been linearly polarized by the polarizer 3, is incident on the object to be measured 4. This incident light is split into two components with mutually orthogonal polarization planes due to birefringence caused by the stress distribution within the object, and each component propagates at a different propagation speed, so the light that passes through the object An optical path difference & occurs, and the light beam becomes a clear circularly polarized wave. The optical path difference is given by the following equation from a function of the incident position ifX of the light beam and the rotation angle θ0 of the rotary table.

R(X、θ0)=Cf″’rzdY   −・・・・・
 (1)ここで、Cは光弾性定数、Yは光層の進行方向
、σ2はX−Y面に垂直な方向の物体内の応力であり、
被測定物4はZ方向に一欣な形状および応力状をqを有
するとしている(第2図)。この光路差を持つ光線が1
/4波長板7を通過すると、偏波面の角度が入射光の偏
光面よりΔφ=πB、/λだけずれた直線偏光となる。
R(X, θ0)=Cf″'rzdY −・・・・・
(1) Here, C is the photoelastic constant, Y is the traveling direction of the optical layer, and σ2 is the stress within the object in the direction perpendicular to the X-Y plane.
The object to be measured 4 is assumed to have a uniform shape and stress shape q in the Z direction (FIG. 2). A ray with this optical path difference is 1
When the light passes through the /4 wavelength plate 7, it becomes linearly polarized light whose polarization plane angle is shifted by Δφ=πB, /λ from the polarization plane of the incident light.

ただし、λは光の波長。However, λ is the wavelength of light.

そこで、検光子8の光軸1を回転させながらビディコン
9上の画像データを画像メモリ10に読みとり、計算+
R11を用いて透過光の強度が最小となる検光子8の回
転角からΔφを求め、(1式の光路差II、 (X 、
θ0)のデータをル=Δφλ/πより求める。
Therefore, while rotating the optical axis 1 of the analyzer 8, the image data on the vidicon 9 is read into the image memory 10, and the calculation +
Using R11, find Δφ from the rotation angle of the analyzer 8 where the intensity of the transmitted light is minimum, and (1 equation optical path difference II, (X,
The data of θ0) is obtained from Le=Δφλ/π.

次に、試料回転台5をある角度回転させて角度θ1とし
、上記と同じ操作によりR(X、θ1 )のデータを得
る。この手順を試料回転台5が1回転するまで繰り返し
行なう。物体内の2方向の応力σ2はこのIL (X 
、θ0)tR(X、θIL”’R(X、0n)(nは任
意の数)のデータより次式を用いて計算機11により計
算する。
Next, the sample rotating table 5 is rotated by a certain angle to an angle θ1, and the data of R(X, θ1) is obtained by the same operation as above. This procedure is repeated until the sample rotating table 5 rotates once. The stress σ2 in two directions inside the object is this IL (X
, θ0) tR(X, θIL'''R(X, 0n) (n is an arbitrary number) using the following formula and calculated by the calculator 11.

d曽〕dθ F(w−θ、WsIrIO)=f)L(X、θ)exp
(−iwx)dXm 3 (a)図は、実際に本装置を
用いて、応力付与形ttiil波保存元ファイバの一層
で断面形状が第3図中)のファイバ(通称・「PANL
IAファイバ」)13のTlfr面内の応力分布を測定
して、高さを応力の大きさとして3次元表示したもので
ある。このファイバ13は、第3図(b)中斜線で示し
た部分の熱膨張係数がその周囲に比べて大きくなるよう
に作られており、その斜線で示した部分で大きな熱応力
が生じるような構造となっている。その熱応力が第3 
(a)図中の2つの山として表示されている。ファイバ
13は、外径が125μm、1度と細く軸対称性もない
ためその2方向の応力を測定することは従来の方法では
極めて困難であった力ξ本発明の方法によれば簡単1こ
精度よく、かつ非破壊で測定することが可能となる。
dso]dθ F(w-θ, WsIrIO)=f)L(X,θ)exp
(-iwx)dXm 3 (a) shows the fiber (commonly known as "PANL") (commonly known as "PANL"
The stress distribution in the Tlfr plane of the IA fiber (13) was measured, and the height was expressed three-dimensionally as the magnitude of stress. This fiber 13 is made in such a way that the coefficient of thermal expansion of the shaded area in FIG. It has a structure. The thermal stress is the third
(a) Displayed as two mountains in the figure. Since the fiber 13 has an outer diameter of 125 μm, is as thin as 1 degree, and has no axial symmetry, it is extremely difficult to measure the stress in two directions using conventional methods. It becomes possible to measure accurately and non-destructively.

なお、本実施例では、受光装置としてビディコン92画
像メモリ10を用いているため、透過光のデータを一度
に精度よく収集・記憶して、そのまま計算1機処理する
ことができ、応力測定の一層の高精度化、および、%連
化を図ることができる。
In addition, in this example, since the Vidicon 92 image memory 10 is used as the light receiving device, transmitted light data can be collected and stored with high accuracy at one time, and calculations can be processed in one machine as it is, making stress measurement even easier. It is possible to achieve high accuracy and increase the percentage continuity.

〔発明の効果〕〔Effect of the invention〕

以上説明したようlこ、本発明によれば、被測定物を透
過してきた光に光弾性効果によって生じる光路差を、v
l、測定物を回転させながら測定して、v!tlIIl
l定吻の断面内の応力分布・3求めるにめ、ある一つの
方間に一様な形状と応力分布をもつ物体の内部の応力分
布を、非破壊でかつ篇速に測定することができる。
As explained above, according to the present invention, the optical path difference caused by the photoelastic effect in the light transmitted through the object to be measured is
l.Measure while rotating the object, v! tlIIl
In order to find the stress distribution within the cross section of a constant proboscis, the stress distribution inside an object that has a uniform shape and stress distribution in one direction can be measured non-destructively and quickly. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の応力測定装置の一例を表わす概略構成
図、り12図は測定原理の幌、明図、243図(a)は
実測結果の一例を表わす図、第3図(b)は被測定物と
したファイバの断面図である。 1・・・・・・レーザ(レーザ光源)、2a 、 2b
 、 2c・・・・・・レンズ、3・・・・・・偏光子
、4・・・・・・被測定物、5・・・・・・試料回転台
、6・・・・・・マツチングオイル、7・・・・・・1
/4波長版、8・・・・・・検光子、9・・・・・・ビ
ディコン、10・・・・・・画像メモリ、11・・・・
・パ電子計カニ機、12・・・・・・出力装置% 13
・・・・・・ファイバ。 第1図 第2図
Figure 1 is a schematic configuration diagram showing an example of the stress measuring device of the present invention, Figure 12 is a clear diagram of the measurement principle, Figure 243 (a) is a diagram showing an example of actual measurement results, and Figure 3 (b). is a cross-sectional view of a fiber used as an object to be measured. 1... Laser (laser light source), 2a, 2b
, 2c...lens, 3...polarizer, 4...object to be measured, 5...sample rotating table, 6...pine Ching oil, 7...1
/4 wavelength version, 8...analyzer, 9...vidicon, 10...image memory, 11...
・Paper electronic meter crab machine, 12...Output device% 13
······fiber. Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)発光源から被測定物に光線を照射し、応力が物体
に与える複屈折性によって透過光に生じる直交する偏光
間の光路差を、被測定物を回転させながら受光装置で検
出し、それらのデータに基づいて、被測定物の断面内に
おける該断面に垂直な応力成分分布を求めることを特徴
とする物体内の応力測定方法。
(1) A light beam is irradiated from the light source to the object to be measured, and a light receiving device detects the optical path difference between orthogonal polarized lights that occurs in the transmitted light due to the birefringence that stress imparts to the object, while rotating the object to be measured, A method for measuring stress in an object, which comprises determining a stress component distribution perpendicular to a cross section of the object to be measured based on the data.
(2)レーザ光源と、該レーザ光源の出力光を被測定物
の大きさ以上の広がりを有する平行光線に変換するレン
ズ系と、該平行光線を直線偏光とするための偏光子とに
よって光源部を構成すると共に、被測定物の外周部屈折
率と等しい屈折率を有するマッチングオイルを充てんで
きかつ該被測定物を所望の角度で回転できる回転台を備
え、かつビディコンと、該ビディコン上に被測定物の像
を結像するレンズと、被測定物を通過したレーザ光を直
線偏光とするための1/4波長板と、偏光面のずれを検
出するための検光子とから受光部を構成し、さらにビデ
ィコンからの出力を処理して所望の応力分布を求めるデ
ータ処理部を備えて成ることを特徴とする物体内の応力
測定装置。
(2) A light source unit consisting of a laser light source, a lens system that converts the output light of the laser light source into parallel light beams having a spread larger than the size of the object to be measured, and a polarizer that converts the parallel light beams into linearly polarized light. It comprises a vidicon and a rotary table which can be filled with matching oil having a refractive index equal to the refractive index of the outer circumference of the object to be measured and which can rotate the object to be measured at a desired angle. The light receiving section consists of a lens that forms an image of the object to be measured, a quarter-wave plate that linearly polarizes the laser beam that has passed through the object, and an analyzer that detects deviations in the plane of polarization. An apparatus for measuring stress in an object, further comprising a data processing section that processes the output from the vidicon to obtain a desired stress distribution.
JP16358684A 1984-08-03 1984-08-03 Method and device for measuring stress in body Granted JPS6141933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16358684A JPS6141933A (en) 1984-08-03 1984-08-03 Method and device for measuring stress in body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16358684A JPS6141933A (en) 1984-08-03 1984-08-03 Method and device for measuring stress in body

Publications (2)

Publication Number Publication Date
JPS6141933A true JPS6141933A (en) 1986-02-28
JPH0369059B2 JPH0369059B2 (en) 1991-10-30

Family

ID=15776728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16358684A Granted JPS6141933A (en) 1984-08-03 1984-08-03 Method and device for measuring stress in body

Country Status (1)

Country Link
JP (1) JPS6141933A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325341U (en) * 1986-08-01 1988-02-19
JP2007121174A (en) * 2005-10-31 2007-05-17 Univ Nagoya Stress sensor
JP2009168813A (en) * 2008-01-14 2009-07-30 Gwangju Inst Of Science & Technology Apparatus for measuring residual stress of optical fiber
WO2011065175A1 (en) * 2009-11-27 2011-06-03 国立大学法人京都工芸繊維大学 Stress measurement device and stress measurement method
CN103091014A (en) * 2011-11-02 2013-05-08 财团法人工业技术研究院 Optical measuring device
CN103115705A (en) * 2013-01-19 2013-05-22 清华大学 Stress and double refraction measurement instrument and measurement method based on cross-polarization solid laser

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325341U (en) * 1986-08-01 1988-02-19
JP2007121174A (en) * 2005-10-31 2007-05-17 Univ Nagoya Stress sensor
JP2009168813A (en) * 2008-01-14 2009-07-30 Gwangju Inst Of Science & Technology Apparatus for measuring residual stress of optical fiber
WO2011065175A1 (en) * 2009-11-27 2011-06-03 国立大学法人京都工芸繊維大学 Stress measurement device and stress measurement method
CN103091014A (en) * 2011-11-02 2013-05-08 财团法人工业技术研究院 Optical measuring device
CN103115705A (en) * 2013-01-19 2013-05-22 清华大学 Stress and double refraction measurement instrument and measurement method based on cross-polarization solid laser

Also Published As

Publication number Publication date
JPH0369059B2 (en) 1991-10-30

Similar Documents

Publication Publication Date Title
CN107255451A (en) Angle compensation formula laser heterodyne interference displacement measuring device and method
US4067651A (en) Method for measuring the parameters of optical fibers
JPH01313736A (en) Method and apparatus for measuring refractive index n of material
JP2008500536A (en) Optical interrogation device for reducing parasitic reflection and method for removing parasitic reflection
JPH08304229A (en) Method and instrument for measuring refractive index distribution of optical element
CN110186390A (en) Compact transient state multi-wavelength phase shift interference device and its measurement method
JPH1144641A (en) Method and apparatus for measuring refractive index distribution
JPS6141933A (en) Method and device for measuring stress in body
DE3611119C1 (en) Sensor arrangement
US3620593A (en) Method of surface interference microscopy
JP3423486B2 (en) Method and apparatus for measuring refractive index distribution of optical element
US3286581A (en) Method and apparatus for determining surface birefringences in a transparent material employing a prism place adjacent to the surface
JP3131242B2 (en) Method of measuring incident angle of light beam, measuring device and method of using the device for distance measurement
KR101373709B1 (en) The measurement device and the method of the principle axis and retardation of the 3-dimensional film
US3589812A (en) Processes and devices for measuring stresses within a transparent body for electromagnetic waves
Murty et al. Simple method for measuring the refractive index of a liquid
JP3670821B2 (en) Refractive index distribution measuring device
JPH02116732A (en) Method and apparatus for optical measurement
CN109520935A (en) The optical activity measurement method realized based on convergent neuron
US3113171A (en) Method for polarimetric analysis
JPS5831860B2 (en) Optical fiber cutoff wavelength measuring device
Urbanczyk et al. Novel bifunctional systems for measuring the refractive index profile and residual stress birefringence in optical fibers and preforms
Biswas et al. Measurement of gradient refractive index profile using a birefringent lens
JP2592254B2 (en) Measuring device for displacement and displacement speed
Corke et al. Polarization maintaining single mode couplers

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees