JPS5831860B2 - Optical fiber cutoff wavelength measuring device - Google Patents

Optical fiber cutoff wavelength measuring device

Info

Publication number
JPS5831860B2
JPS5831860B2 JP6102477A JP6102477A JPS5831860B2 JP S5831860 B2 JPS5831860 B2 JP S5831860B2 JP 6102477 A JP6102477 A JP 6102477A JP 6102477 A JP6102477 A JP 6102477A JP S5831860 B2 JPS5831860 B2 JP S5831860B2
Authority
JP
Japan
Prior art keywords
optical path
wavelength
mode
optical
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6102477A
Other languages
Japanese (ja)
Other versions
JPS53146652A (en
Inventor
潤一 左貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6102477A priority Critical patent/JPS5831860B2/en
Publication of JPS53146652A publication Critical patent/JPS53146652A/en
Publication of JPS5831860B2 publication Critical patent/JPS5831860B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【発明の詳細な説明】 本発明は光伝送システムにおける誘電体光線路の単一モ
ード動作条件の検出装置に係り、特にコア径が微小な誘
電体光線路の構造を測定する場合好適な光フアイバ遮断
波長測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for detecting single mode operating conditions of a dielectric optical line in an optical transmission system, and particularly relates to an optical fiber suitable for measuring the structure of a dielectric optical line with a minute core diameter. This invention relates to a cutoff wavelength measuring device.

従来、誘電体光線路の単一モード動作条件を調べる方法
としては、(1)光線路を輪切り状にし、研磨した薄片
を透過型干渉光学顕微鏡で観察し、その干渉縞から光線
路断面の屈折率分布を求め、その分布形から計算で求め
る方法、(ii)光線路の光軸に対し垂直に切断された
面に光を垂直入射させ、その端面からの反射光の強度分
布を、入射点を移動させることにより測定し、光線路断
面の屈折率分布を求め、前記([)と同じくその分布形
から計算で求める方法など何らかの方法で光線路断面の
屈折率分布を求めた後、分布形から計算で求める方法と
、G11)光線路の一端から光を入射させ、他端におけ
る近視野像または遠視野像を観察し、光源の波長を変え
てモードによる像の違いを利用して、その像が変化する
波長から求める方法などがある。
Conventionally, methods for investigating the single mode operating conditions of a dielectric optical path include (1) cutting the optical path into rings, observing the polished thin slices with a transmission interference optical microscope, and determining the refraction of the cross section of the optical path from the interference fringes; (ii) The light is vertically incident on a surface cut perpendicularly to the optical axis of the optical path, and the intensity distribution of the reflected light from the end surface is calculated from the incident point. After determining the refractive index distribution of the optical path cross section by some method, such as calculating the refractive index distribution from the distribution shape as in ([) above, G11) Inject light from one end of the optical path, observe the near-field image or far-field image at the other end, and change the wavelength of the light source to take advantage of the difference in images depending on the mode. There are methods such as finding it from the wavelength at which the image changes.

しかしながら、これらの方法はいずれも破壊測定であり
、非破壊のまま構造を測定し、他の測定との対応をつけ
る際には使用できないという欠点があった。
However, all of these methods are destructive measurements, and have the disadvantage that they cannot be used to measure the structure non-destructively and to correlate it with other measurements.

本発明は以上の点に鑑み、このような問題を解決すると
共にかかる欠点を除去すべくなされたもので、その目的
は光線路を切断することなく、非破壊で光軸方向に連続
的に高精度な光線路の構造パラメータ測定を行うことが
できる光フアイバ遮断波長測定装置を提供することにあ
る。
In view of the above points, the present invention has been made in order to solve such problems and eliminate such drawbacks.The purpose of the present invention is to provide a non-destructive and continuous high-speed optical path in the optical axis direction without cutting the optical path. An object of the present invention is to provide an optical fiber cutoff wavelength measuring device that can accurately measure the structural parameters of an optical line.

このような目的を達成するために、本発明は、誘電体光
線路の構造測定において、波長可変光源を用い、光線路
からの散乱光強度の角度分布と光線路を伝搬するモード
の偏光状態を対応づけることにより、散乱光の偏光度の
波長に対する変化点からTEol、TMol、HE2□
各モードの第1高次モード群の遮断波長(単一モード条
件)を非破壊で精度よく測定するようにしたもので、以
下、図面に基づき本発明の実施例を詳細に説明する。
In order to achieve such an object, the present invention uses a wavelength tunable light source to measure the structure of a dielectric optical path, and measures the angular distribution of the intensity of scattered light from the optical path and the polarization state of the mode propagating through the optical path. By making the correspondence, TEol, TMol, HE2□ can be obtained from the change point of the polarization degree of scattered light with respect to wavelength
The cut-off wavelength (single mode condition) of the first higher-order mode group of each mode is measured non-destructively and with high precision.Examples of the present invention will be described in detail below with reference to the drawings.

第1図は本発明による光フアイバ遮断波長測定装置の一
実施例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of an optical fiber cutoff wavelength measuring device according to the present invention.

図において、1は波長可変光源、2は波長可変光源1か
ら出た光ビーム、3は光ビーム2を直線偏光とする偏光
子、4は偏光子3からの偏光ビーム、5は偏光ビーム4
を集光するレンズで、これらは波長可変光源からの光を
直線偏光させて被測定光線路(以下、光線路と略称する
)7に入射せしめる入封部を構成している。
In the figure, 1 is a wavelength tunable light source, 2 is a light beam emitted from the wavelength tunable light source 1, 3 is a polarizer that makes the light beam 2 linearly polarized, 4 is a polarized beam from the polarizer 3, and 5 is a polarized beam 4.
These lenses constitute an enclosing part that linearly polarizes the light from the wavelength tunable light source and makes it enter the optical path to be measured (hereinafter abbreviated as optical path) 7.

6は光線路7に励起されたクラッドモードなど不要モー
ドを除去するための不要モード除去容器で、この不要モ
ード除去容器6内には光線路7の屈折率より高い液体を
充たしてあり、この液体としては例えば2゛リセリン、
セダン油などが用いられる。
Reference numeral 6 denotes an unnecessary mode removal container for removing unnecessary modes such as cladding modes excited by the optical path 7. This unnecessary mode removal container 6 is filled with a liquid whose refractive index is higher than that of the optical path 7. For example, 2゛lycerin,
Sedan oil etc. are used.

8は支持パイプで、この支持パイプ8は測定の際、光線
路7の光軸が動かないように光検出器9の両側で支持し
、この支持パイプ8と光検出器9は一体となって光線路
上の任意の位置で散乱光強度が測定できるように構成さ
れている。
8 is a support pipe, and this support pipe 8 supports the photodetector 9 on both sides so that the optical axis of the optical path 7 does not move during measurement, and the support pipe 8 and the photodetector 9 are integrated. The structure is such that the scattered light intensity can be measured at any position on the optical path.

10はマツチング液容器で、このマツチング液容器10
は光線路7からの出射光が端部で反射して測定に誤差が
生ずるのを防止するためのもので、前記不要モード除去
容器6と同じく光線路7の屈折率より高い液体を充たし
である。
10 is a matching liquid container, and this matching liquid container 10
This is to prevent the light emitted from the optical path 7 from being reflected at the end, causing measurement errors, and is filled with a liquid whose refractive index is higher than that of the optical path 7, like the unnecessary mode removal container 6. .

11は入射光と散乱光の同期をとるチョッパーで、光ビ
ーム2の光路中に設けられている。
A chopper 11 synchronizes incident light and scattered light, and is provided in the optical path of the light beam 2.

12はチョッパー11の出力と光検出器9の出力を入力
とするロックイン増幅器、13は光強度の角度分布から
光線路7を伝搬する光の偏光状態を求める演算処理部、
14は演算処理部13で求められた偏光状態と波長可変
光源1の波長の対応関係を表示する部分を構成する表示
部である。
12 is a lock-in amplifier that receives the output of the chopper 11 and the output of the photodetector 9; 13 is an arithmetic processing unit that calculates the polarization state of the light propagating through the optical path 7 from the angular distribution of the light intensity;
Reference numeral 14 denotes a display section that displays the correspondence between the polarization state determined by the arithmetic processing section 13 and the wavelength of the wavelength tunable light source 1.

第2図は第1図の動作説明図で、誘電体光線路の低次モ
ードの偏光状態の概略を示し、aはHE1□モードを示
したものであり、bはTEo1モード、CはTMo1モ
ード、dはHE2□モードの第1高次モード群を示した
ものである。
Fig. 2 is an explanatory diagram of the operation of Fig. 1, and shows an outline of the polarization state of the low-order mode of the dielectric optical path, where a shows the HE1□ mode, b shows the TEo1 mode, and C shows the TMo1 mode. , d indicate the first higher-order mode group of the HE2□ mode.

つぎに第1図に示す実施例の動作を第2図を参照して説
明する。
Next, the operation of the embodiment shown in FIG. 1 will be explained with reference to FIG. 2.

まず、波長可変光源1から出た光ビーム2を偏光子3に
通し、偏光子3からの出射光を直線偏光となし、この偏
光ビーム4をレンズ5で絞り、光線路7に入射させる。
First, a light beam 2 emitted from a wavelength tunable light source 1 is passed through a polarizer 3, the light emitted from the polarizer 3 is made into linearly polarized light, this polarized beam 4 is focused by a lens 5, and is made to enter an optical path 7.

このとき、光検出器9の受光部を光線路7の光軸に垂直
な方向で光線路の光軸に向け、光線路7からの散乱光強
度P(θ)を測定する。
At this time, the light receiving part of the photodetector 9 is directed toward the optical axis of the optical path 7 in a direction perpendicular to the optical axis of the optical path 7, and the scattered light intensity P(θ) from the optical path 7 is measured.

なお、この光検出器9の表面には、角度成分を出すため
に矩形状スリットが設けられている。
Note that a rectangular slit is provided on the surface of this photodetector 9 in order to output an angular component.

そして、この光検出器9を光線路7の光軸に垂直な面内
で、受光部は常に光線路7の光軸を向くようにして回転
させる。
Then, this photodetector 9 is rotated in a plane perpendicular to the optical axis of the optical path 7 so that the light receiving section always faces the optical axis of the optical path 7.

ここで、この光検出器9のある基準位置からの回転角を
θとする。
Here, the rotation angle of this photodetector 9 from a certain reference position is assumed to be θ.

一方、チョッパー11は散乱光が微弱であるため入射光
と散乱光の同期をとり、精度よく測定するために光ビー
ム2の光路中で断続しており、ここで同時にロックイン
増幅器12への参照信号をとっている。
On the other hand, since the scattered light is weak, the chopper 11 synchronizes the incident light and the scattered light and is interrupted in the optical path of the light beam 2 in order to measure accurately. Taking signals.

また、光検出器9の光信号もロックイン増幅器12に入
れ、同期整流した後、電気信号を増幅し、その出力は、
散乱光強度P(θ)に対応する。
In addition, the optical signal from the photodetector 9 is also input to the lock-in amplifier 12, and after synchronous rectification, the electrical signal is amplified, and its output is
It corresponds to the scattered light intensity P(θ).

そして、光検出器9の回転角θとこの散乱光強度P(/
7)の関係を演算処理部13に入れ、散乱光強度の角度
分布から光線路7内を伝搬する光の偏光状態を求める。
Then, the rotation angle θ of the photodetector 9 and the scattered light intensity P(/
The relationship 7) is entered into the arithmetic processing unit 13, and the polarization state of the light propagating within the optical path 7 is determined from the angular distribution of the scattered light intensity.

ところで、誘電体光線路を伝搬するモードは、光線路の
構造や伝搬波長で異なっている。
By the way, the modes propagating through the dielectric optical path differ depending on the structure of the optical path and the propagation wavelength.

しかして、基本モードであるHE1□モードは遮断がな
く、いかなる波長であっても伝搬し、その電界の偏光状
態は第一2図aに示すように直線偏向している。
Therefore, the HE1□ mode, which is the fundamental mode, is not blocked and propagates at any wavelength, and the polarization state of its electric field is linearly polarized as shown in FIG. 12a.

一方、第1高次モード群を形成するTEol、TMol
On the other hand, TEol and TMol forming the first higher mode group
.

HM2.の各モードは遮断があり、ある一定波長以上の
光は伝搬せず、その電界成分は第2図す、c。
HM2. Each mode is blocked, and light above a certain wavelength does not propagate, and its electric field component is shown in Figure 2, c.

dに示すように、いずれも軸対称である。As shown in d, both are axially symmetrical.

そのため、これらの第1高次モード群を構成する各モー
ドが光線路7を伝搬するとき、光線路外での散乱光強度
に内部の偏光状態が反映される。
Therefore, when each mode constituting the first higher-order mode group propagates through the optical path 7, the internal polarization state is reflected in the intensity of scattered light outside the optical path.

ここで、第2図aに示す基本モードであるHE1□モー
ドの場合にはp (@oc cos2(θ十θ。
Here, in the case of HE1□ mode, which is the basic mode shown in FIG. 2a, p (@oc cos2(θ + θ.

)となり、また第2図す、c、dに示すTEol、TM
ol、HE2□モードの第1高次モード群の場合にはP
(/ll’l一定数となる。
), and TEol, TM shown in Figure 2, c and d.
ol, P in the case of the first higher mode group of HE2□ mode
(/ll'l is a constant number.

ただし、θ0は光検出器9の回転角θの基準位置の取り
方により変わる定数である。
However, θ0 is a constant that changes depending on how the reference position of the rotation angle θ of the photodetector 9 is taken.

したがって、モードの場合1となり、TEol、TMo
l、HE2□各モードの第1高次モード群の場合Oとな
る。
Therefore, it becomes 1 in case of mode, TEol, TMo
1, HE2□ is O in the case of the first higher mode group of each mode.

ただし、Iw、、I勉77、は散乱強度がそれぞれ最大
値、最小値のときの値である。
However, Iw, , Iben77 are the values when the scattering intensity is the maximum value and the minimum value, respectively.

また、基準モードであるHE1□モードとTEol、T
Mol、HE2□各モードの第1高次モード群が同時に
伝搬したときは、偏光度Pdはその励起状態に依存し、
Oと1との間の値をとる。
In addition, the reference mode HE1□ mode and TEol, T
When the first higher-order modes of each mode propagate simultaneously, the degree of polarization Pd depends on its excited state,
It takes a value between O and 1.

しかして、光線路7からの散乱光の偏光度がこのような
状況にあるから、演算処理部13で散乱光の角度分布か
らピーク位置検出等をした後、偏光度Pdを算出し、X
−Y記録計のY座標などの表示部14に表示する。
Since the degree of polarization of the scattered light from the optical path 7 is in such a situation, the arithmetic processing unit 13 detects the peak position from the angular distribution of the scattered light, calculates the degree of polarization Pd, and calculates the degree of polarization Pd.
- Display the Y coordinate of the Y recorder on the display section 14.

そして、波長可変光源1の波長λを変化させて、偏光度
Pdが変化する波長から測定点の遮断波長を求める。
Then, the wavelength λ of the wavelength tunable light source 1 is changed, and the cutoff wavelength at the measurement point is determined from the wavelength at which the degree of polarization Pd changes.

ここで、通常、光線路の使用波長域は、予め想定しで製
造されているから、例えば0.85μm帯の光線路の場
合、波長可変光源1としてはN2レーザ励起の色素レー
ザが使用でき、また光検出器9としては5i−PINダ
イオードが使用できる。
Here, the wavelength range in which the optical path is used is usually assumed beforehand when manufacturing the optical path, so for example, in the case of an optical path in the 0.85 μm band, a dye laser pumped by an N2 laser can be used as the wavelength tunable light source 1. Further, as the photodetector 9, a 5i-PIN diode can be used.

かくして、光線路を切断することなく、非破壊で光軸方
向に連続的に高精度な光線路の構造パラメータ測定を行
うことができる。
In this way, the structural parameters of the optical path can be measured non-destructively and continuously in the optical axis direction with high accuracy without cutting the optical path.

第3図は本発明の他の実施例の要部を抽出して示した構
成図で、散乱光強度測定に係わる部分の別の実施例を示
すものである。
FIG. 3 is a block diagram showing an extracted main part of another embodiment of the present invention, and shows another embodiment of the part related to scattered light intensity measurement.

図において、7は光線路、9a、9bは第1および第2
の光検出器、15a、15bは矩形状のスリットである
In the figure, 7 is an optical path, and 9a and 9b are first and second optical paths.
The photodetectors 15a and 15b are rectangular slits.

そして、この2つの光検出器9a 、9bは光線路7の
光軸に垂直な面内で、光線路7の光軸に対し直角をなす
ように配置されている。
The two photodetectors 9a and 9b are arranged in a plane perpendicular to the optical axis of the optical path 7, so as to be perpendicular to the optical axis of the optical path 7.

このように構成された装置において、単一モード条件時
には前述したように、Pθoc cos2(θ+θ。
In the device configured in this way, under the single mode condition, as described above, Pθoc cos2(θ+θ.

)で90度毎に最大値と最小値が存在しているから、第
1および第2の2つの光検出器9a 、9bを光軸のま
わりに回転させ、光検出器からの出力が最大値と最小値
をとる位置で、光軸に垂直な面内での光検出器の位置を
固定する。
), there is a maximum value and a minimum value every 90 degrees, so by rotating the first and second photodetectors 9a and 9b around the optical axis, the output from the photodetectors will be the maximum value. The position of the photodetector in the plane perpendicular to the optical axis is fixed at the position where the minimum value is obtained.

そして、光線路7または第1および第2の光検出器9a
、9bを相対的に移動させて、長さ方向の情報をとると
、さらに測定時間が短縮される。
Then, the optical path 7 or the first and second photodetectors 9a
, 9b are relatively moved to obtain information in the length direction, the measurement time can be further shortened.

このとき、2つの光検出器を用いるので、予め感度を較
正しておく必要がある。
At this time, since two photodetectors are used, it is necessary to calibrate the sensitivity in advance.

以上説明したように、本発明は誘電体光線路の構造測定
において、波長可変光源を用い、光線路からの散乱光強
度の角度分布と光線路を伝搬するモードの偏光状態を対
応づけることにより、散乱光の偏光度の波長に対する変
化点からTEol。
As explained above, the present invention uses a wavelength tunable light source to measure the structure of a dielectric optical path, and by correlating the angular distribution of the intensity of scattered light from the optical path with the polarization state of the mode propagating through the optical path, TEol from the change point of the degree of polarization of scattered light with respect to wavelength.

TMo□、HE21各モードの第1高次モード群の遮断
波長を測定するようにしたので、光線路を切断すること
なく、非破壊で光軸方向に連続的に高精度な光線路の構
造パラメータ測定を行うことができる利点がある。
Since the cutoff wavelength of the first higher-order mode group of each TMo□ and HE21 mode is measured, the structural parameters of the optical path can be determined non-destructively and continuously in the optical axis direction with high accuracy without cutting the optical path. It has the advantage of being able to perform measurements.

また、非破壊のまま誘電体光線路の構造を測定し、他の
測定との対応をつける際に使用することができるという
点においても極めて有効である。
It is also extremely effective in that it can be used to measure the structure of a dielectric optical path in a non-destructive manner and to correlate it with other measurements.

このように本発明によれば、従来のこの種の装置に比し
て多大の効果があり、光伝送システムにおける誘電体光
線路の単一モード動作条件を検出する光フアイバ遮断波
長測定装置としては独自のものである。
As described above, the present invention has great effects compared to conventional devices of this type, and can be used as an optical fiber cutoff wavelength measurement device for detecting the single mode operating condition of a dielectric optical line in an optical transmission system. It is unique.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光フアイバ遮断波長測定装置の一
実施例を示すブロック図、第2図は第1図の動作説明図
、第3図は本発明の他の実施例の要部を抽出して示した
構成図である。 1・・・・・・波長可変光源、2・・・・・・光ビーム
、3・・・・・・偏光子、4・・・・・・偏光ビーム、
5・・・・・・レンズ、6・・・・・・不要モード除去
容器、7・・・・・・光線路、8・・・・・・支持パイ
プ、9,9a、9b・・・・・・光検出器、10・・・
・・・マッチンク液容器、11・・・・・・チョッパー
、12・・・・・・ロックイン増幅器、13・・・・・
・演算処理部、14・・・・・・表示部、15a、15
b・・・・・矩形状スリット。
Fig. 1 is a block diagram showing one embodiment of the optical fiber cutoff wavelength measuring device according to the present invention, Fig. 2 is an explanatory diagram of the operation of Fig. 1, and Fig. 3 extracts the main part of another embodiment of the present invention. FIG. 1... wavelength variable light source, 2... light beam, 3... polarizer, 4... polarized beam,
5... Lens, 6... Unnecessary mode removal container, 7... Light path, 8... Support pipe, 9, 9a, 9b... ...Photodetector, 10...
... Matching liquid container, 11 ... Chopper, 12 ... Lock-in amplifier, 13 ...
- Arithmetic processing unit, 14...Display unit, 15a, 15
b... Rectangular slit.

Claims (1)

【特許請求の範囲】[Claims] 1 散乱光の偏光度の波長に対する変化点から、光ファ
イバの第1高次モード群の遮断波長を測定する光フアイ
バ遮断波長測定装置であって、波長可変光源からの光を
直線偏光させて被測定光線路に入射せしめる入射部と、
前記被測定光線路の任意の点で該光線路の光軸に垂直な
面内で散乱光強度の角度分布を測定する手段と、前記散
乱光強度の角度分布から被測定光線路を伝搬する光の偏
光状態を求める演算処理部と、この演算処理部で求めら
れた偏光状態と前記波長可変光源の波長の対応関係を表
示する部分とからなることを特徴とする光フアイバ遮断
波長測定装置。
1 An optical fiber cutoff wavelength measurement device that measures the cutoff wavelength of the first higher-order mode group of an optical fiber from the point of change of the degree of polarization of scattered light with respect to the wavelength, and is a device that linearly polarizes light from a wavelength tunable light source. an incidence part for making the light incident on the measurement optical path;
means for measuring the angular distribution of scattered light intensity in a plane perpendicular to the optical axis of the optical path at any point on the optical path to be measured; and light propagating through the optical path to be measured based on the angular distribution of the scattered light intensity. An optical fiber cutoff wavelength measuring device comprising: an arithmetic processing section for determining the polarization state of the arithmetic processing section; and a section for displaying the correspondence between the polarization state obtained by the arithmetic processing section and the wavelength of the wavelength tunable light source.
JP6102477A 1977-05-27 1977-05-27 Optical fiber cutoff wavelength measuring device Expired JPS5831860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6102477A JPS5831860B2 (en) 1977-05-27 1977-05-27 Optical fiber cutoff wavelength measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6102477A JPS5831860B2 (en) 1977-05-27 1977-05-27 Optical fiber cutoff wavelength measuring device

Publications (2)

Publication Number Publication Date
JPS53146652A JPS53146652A (en) 1978-12-20
JPS5831860B2 true JPS5831860B2 (en) 1983-07-08

Family

ID=13159312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6102477A Expired JPS5831860B2 (en) 1977-05-27 1977-05-27 Optical fiber cutoff wavelength measuring device

Country Status (1)

Country Link
JP (1) JPS5831860B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1119485B (en) * 1979-11-15 1986-03-10 Cselt Centro Studi Lab Telecom IMPROVEMENTS TO THE METHODS OF DETERMINING THE REFRACTIVE INDEX OF FIBER OPTICS
US4994059A (en) * 1986-05-09 1991-02-19 Gv Medical, Inc. Laser catheter feedback system

Also Published As

Publication number Publication date
JPS53146652A (en) 1978-12-20

Similar Documents

Publication Publication Date Title
KR100326302B1 (en) Apparatus and method for measuring residual stress and photoelastic effect of optical fiber
JP4842930B2 (en) Optical interrogation device for reducing parasitic reflection and method for removing parasitic reflection
JPH0259639A (en) Measurement of automatic collimation angle for grid coupler
US4818071A (en) Fiber optic doppler anemometer
JPH0432704A (en) Gap measuring instrument and surface shape measuring instrument
Arditty et al. Re-entrant fiberoptic approach to rotation sensing
US6411389B1 (en) Optical monitor for real time thickness change measurements via lateral-translation induced phase-stepping interferometry
JPS5831860B2 (en) Optical fiber cutoff wavelength measuring device
JPS6141933A (en) Method and device for measuring stress in body
US6804009B2 (en) Wollaston prism phase-stepping point diffraction interferometer and method
Urbanczyk et al. Novel bifunctional systems for measuring the refractive index profile and residual stress birefringence in optical fibers and preforms
JPS6071936A (en) Method and device for measuring circular double refraction
Corke et al. Polarization maintaining single mode couplers
JPS58223032A (en) Method for measuring beat length of constant polarization fiber
Zhou et al. Three-Dimensional Profile Reconstruction and Internal Defect Detection of Silicon Wafers Using Cascaded Fiber Optic Fabry–Pérot Interferometer and Leaky Field Detection Technologies
JPS5811566B2 (en) Optical path diameter measuring device
JPH05158084A (en) Measuring instrument for linear and nonlinear optical sensing rate
Zhou et al. 3D Profile Reconstruction and Internal Defect Detection of Silicon Wafers Using Cascaded Fiber Optic Fabry-Pérot Interferometer and Leaky Field Detection Technologies
KR100809833B1 (en) Apparatus and method for residual stress measuring of optical fiber
EP0754955A1 (en) Differential measurement method of the angle of incidence of a light beam and device for carrying out the method
JP4116410B2 (en) Polarization state monitoring device
JP3187518B2 (en) Method and apparatus for detecting optical axis of polarization-maintaining optical fiber
JP4713769B2 (en) High-frequency superposition operation inspection system for semiconductor laser
JPH01250039A (en) Measuring instrument for liquid refractive index
JPH061233B2 (en) Automatic method for measuring the coupling length of polarization-maintaining optical fibers