JPS63311206A - Optical fiber mode disturbing method and its element - Google Patents

Optical fiber mode disturbing method and its element

Info

Publication number
JPS63311206A
JPS63311206A JP14536887A JP14536887A JPS63311206A JP S63311206 A JPS63311206 A JP S63311206A JP 14536887 A JP14536887 A JP 14536887A JP 14536887 A JP14536887 A JP 14536887A JP S63311206 A JPS63311206 A JP S63311206A
Authority
JP
Japan
Prior art keywords
optical fiber
mode
light
angle
light component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14536887A
Other languages
Japanese (ja)
Inventor
Kazumasa Sasaki
一正 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14536887A priority Critical patent/JPS63311206A/en
Publication of JPS63311206A publication Critical patent/JPS63311206A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent an error in measurement from being generated, by producing a state equivalent to mode distribution in an optical fiber for a long distance by adding disturbance on a mode positively. CONSTITUTION:The propagation mode of light being propagated in the optical fiber can be disturbed by cutting the end face of the tip of the optical fiber 1 at a constant angle (alpha), forming a coarse plane 3 on the end face of the cut plane, and converting the propagation directions of a reflected light component and a refracted light component at the plane to the ones different from the incident direction of the light at random. Therefore, the mode of the light being propagated in the optical fiber 1 is disturbed by the coarse plane 3, and the light whose mode is disturbed in the direction different from that of incident light is taken out and measured as a transmission light component or the reflected light component effectively, thereby, it is possible to respond by a small element. In such a way, it is possible to facilitate the characteristic evaluating work of an optical fiber carrying path and to improve working accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、光ファイバ中を伝播する光の伝播モードを
擾乱させる方法と、これによってマルチモート光ファイ
バの伝播モード分布を均一化させる機能を有する光学素
子に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for disturbing the propagation mode of light propagating in an optical fiber, and a function for uniformizing the propagation mode distribution of a multimode optical fiber. The present invention relates to an optical element having the following.

[技術的背景] 光ファイバを伝播する光は、各種のモードを形成して伝
播している.このとき許される総てのモードが等しく励
起され、また、各モード間での光パワーの交換が頻繁に
なされることが特にマルチモート光ファイバの特性を維
持する上で有用であるとされている。
[Technical background] Light propagating through an optical fiber forms various modes. In this case, all allowed modes are equally excited, and optical power is frequently exchanged between each mode, which is said to be especially useful in maintaining the characteristics of multi-mode optical fibers. .

長距離の光ファイバではこのことが実現されていると考
えられているか、伝播される光か光ファイバ内に入射し
た後数十メートルの範囲まではまだ十分に多くのモード
が成長しておらず、もし、短い光ファイバを用いて長距
離用光ファイバの伝播損失や伝送帯域等の特性を評価し
ようとするときには誤差を生じてしまうことになる。正
確な損失や帯域測定を行なうには、モード分布が許され
る全てにおいて均一かもしくはそれに近いくらいに励起
されている必要があるとされる。したがって、従来この
ような測定を行なうのには、いわゆるダミーと称する長
尺の光ファイバを用いて各モードが充分に励起されたの
ちに測定することが必要となっていた。この方法は、よ
り実用状fMに近い形で測定することが可能であるが、
長尺の光ファイバを使用するために測定系が大がかりに
なり、実用上の問題があった。また、小型化することも
困難であった。
It is believed that this is achieved in long-distance optical fibers, but many modes have not yet grown to a range of tens of meters after the propagated light enters the optical fiber. If one attempts to evaluate the propagation loss, transmission band, and other characteristics of a long-distance optical fiber using a short optical fiber, errors will occur. In order to perform accurate loss and band measurements, it is said that the mode distribution must be uniform or excited to a degree close to uniformity throughout the permitted mode distribution. Therefore, conventionally, in order to perform such measurements, it has been necessary to use a long optical fiber called a dummy to sufficiently excite each mode before making measurements. This method allows measurement in a form closer to the practical fM, but
Since the long optical fiber is used, the measurement system becomes large-scale, which poses a practical problem. It was also difficult to downsize the device.

また、この他に、等価的に光ファイバの特性を生じさせ
るため、光ファイバの径の太さを周期的に変化した特別
の試料を用いて測定する方法や、光ファイバをジグザグ
状に屈曲させることによって測定する方法も考えられて
いたが、いずれも充分なモード擾乱特性を有していなか
った。
In addition, in order to equivalently produce the characteristics of an optical fiber, there is a method of measuring using a special sample in which the diameter of the optical fiber is periodically changed, or a method of bending the optical fiber in a zigzag pattern. A method of measuring the oscillation rate was also considered, but none of them had sufficient mode disturbance characteristics.

[発明か解決しようとする問題点] このように、光ファイバ中を伝播するモートを測定する
ためには、実用状態に近づければ長尺の光ファイバを必
要とする。また、等価的に短い試料で測定するためには
種々の困難な細工を施して行なわなければならない。
[Problems to be Solved by the Invention] As described above, in order to measure moats propagating in an optical fiber, a long optical fiber is required if it is to be put into practical use. Furthermore, in order to measure with an equivalently short sample, various difficult techniques must be used.

この発明は、このような点に鑑みてなされたもので、モ
ードに積極的に擾乱を加えることによって長距離の光フ
ァイバでのモート分布と等価な状態を作り出すことかで
き、測定における誤差を防止することかできる簡単な方
法とその素子を提供することを目的とする。
This invention was made in view of these points, and by actively adding disturbance to the modes, it is possible to create a state equivalent to the moat distribution in a long-distance optical fiber, thereby preventing errors in measurement. The purpose of the present invention is to provide a simple method and a device for the same.

[問題を解決するための手段および作用コこの発明では
、光ファイバ先端の端面をある一定の角度αに切断し、
この切断面の端面にS面を形成し、この面での反射光成
分および屈折光成分の伝播方向を光の入射方向とは異な
る方向へランダムに変換することにより、光ファイバ内
を伝播する光の伝播モートを擾乱させるものである。
[Means and effects for solving the problem] In this invention, the end face of the tip of the optical fiber is cut at a certain angle α,
By forming an S-plane on the end surface of this cut surface and randomly converting the propagation direction of the reflected light component and refracted light component on this surface to a direction different from the incident direction of the light, the light propagating inside the optical fiber is This disturbs the propagation mote of

したがって、光ファイバを伝播する光のモードは、その
端面に形成された粗面で擾乱され、入射光とは別の方向
へモード擾乱された透過光成分あるいは反射光成分とし
て効率的に取り出して測定するようにしたので、小さな
素子にて対応することができる。
Therefore, the mode of light propagating through the optical fiber is disturbed by the rough surface formed on the end face, and the mode is efficiently extracted and measured as a transmitted light component or reflected light component that is disturbed in a direction different from the incident light. Therefore, it is possible to deal with the problem using a small element.

[実施例] 以下、図面を参照してこの発明の詳細な説明する。第1
図において、光ファイバ1の先端は、この光ファイバと
角度αをなすように切断される。この角度αは0″くα
く90°の範囲内の角度である。そして、切断面3を適
当な粗さの粗面に形成する。この粗面は、切断直後の光
ファイバ切断面が平滑面であるので、サンドペーパーや
サンドララスト等により傷を付けることによって容易に
形成される。例えば、サンドペーパーのこする方向、サ
ンドペーパーの粗さの度数によりこの切断面3の粗さの
特性等が変化し、容易に粗面の特性を変えることが可能
である。
[Example] Hereinafter, the present invention will be described in detail with reference to the drawings. 1st
In the figure, the tip of an optical fiber 1 is cut so as to form an angle α with this optical fiber. This angle α is 0″
The angle is within a range of 90°. Then, the cut surface 3 is formed into a rough surface having an appropriate roughness. Since the cut surface of the optical fiber immediately after cutting is a smooth surface, this rough surface is easily formed by scratching with sandpaper, sandpaper, etc. For example, the roughness characteristics of the cut surface 3 change depending on the rubbing direction of the sandpaper and the degree of roughness of the sandpaper, and it is possible to easily change the characteristics of the rough surface.

この粗面を形成した光ファイバlに、同様に先端を角度
αで切断した光ファイバ2をその面か平行に対向するよ
うに一直線に配設する。
An optical fiber 2 whose tip end is similarly cut at an angle .alpha. is arranged in a straight line so that the surface of the optical fiber 1 faces parallel to the rough surface.

光ファイバlの中を矢印A方向に伝播する光は、その端
面に設けられた粗面3で擾乱され、その散乱光は矢印B
で示すように第2の光ファイバ2を透過して取り出すこ
とが可虐となる。このとき、端面の切断する角度αをα
≠90°とすることにより、この粗面3で反射された反
射光成分を第1の光ファイバ1に帰還させないようにす
る。   ゛また、この角度αが0@〈α≦10’の小
さい角度であると、光ファイバlの端面に形成される粗
面3の面積が大きくなり擾乱効果は増大するが、一方そ
の製作は困難となる。
Light propagating in the direction of arrow A in the optical fiber l is disturbed by the rough surface 3 provided on the end face, and the scattered light is transmitted in the direction of arrow B.
As shown in , it is cruel to pass through the second optical fiber 2 and take it out. At this time, the cutting angle α of the end face is α
By making the angle ≠90°, the reflected light component reflected by the rough surface 3 is prevented from returning to the first optical fiber 1.゛If this angle α is a small angle such as 0@<α≦10′, the area of the rough surface 3 formed on the end face of the optical fiber l will increase and the disturbance effect will increase, but on the other hand, it will be difficult to manufacture. becomes.

光ファイバ1.2のコアとクラットの屈折率差Δnが1
%程度の光ファイバの場合、角度αを10’<α〈90
°にするのかよい。これは粗面3で反射した光の成分が
元の光ファイバlに戻ってしまわないための条件である
The refractive index difference Δn between the core and crat of optical fiber 1.2 is 1
%, the angle α is 10'<α<90
Should I change it to °? This is a condition to prevent the light component reflected by the rough surface 3 from returning to the original optical fiber l.

次に、第2図に示すように、角度αで端面を切断し粗面
7を有する光ファイバ5に、第2の光ファイバ6をその
粗面7で反射する反射光の方向に設置する。このとき、
第2の光ファイバ6は上記角度αの補角βの2倍角2β
となるように接合される。そして、粗面7上には金属等
を蒸着して反射面8を形成する。
Next, as shown in FIG. 2, a second optical fiber 6 is installed in the optical fiber 5 whose end face is cut at an angle α and has a rough surface 7 in the direction of the reflected light reflected by the rough surface 7. At this time,
The second optical fiber 6 has an angle 2β which is twice the supplementary angle β of the above angle α.
It is joined so that Then, metal or the like is deposited on the rough surface 7 to form a reflective surface 8.

この例では、上記第1図に示す例とは逆に、粗面7によ
る反射光成分のみを第2の光ファイバ6から取り出すこ
とができる。また、粗面7の擾乱特性を光ファイバをさ
らに切断することなく再調整することが容易に可能とな
る。また、実際に効果を測定しなから粗面の再調整を行
なうことが可能となる。
In this example, only the light component reflected by the rough surface 7 can be extracted from the second optical fiber 6, contrary to the example shown in FIG. Furthermore, the disturbance characteristics of the rough surface 7 can be easily readjusted without further cutting the optical fiber. Furthermore, it is possible to readjust the rough surface without actually measuring the effect.

第3図は、上記第2図に示す光ファイバモード擾乱素子
をケースlOに納めた斜視図を示している。光ファイバ
端面に形成した粗面7がケース10の側面に露出するよ
うに固定される。そして、ケース10のこの側面にはi
llがねじに12によって密閉できるように取り付けら
れる。
FIG. 3 shows a perspective view of the optical fiber mode disturbance element shown in FIG. 2 described above housed in a case IO. The case 10 is fixed so that the rough surface 7 formed on the end face of the optical fiber is exposed on the side surface of the case 10. And this side of case 10 has i
ll is sealingly attached to the screw by 12.

この場合反射膜8は蓋llに設置するとよい、したがっ
て、ねじ12をゆるめて蓋を取り外し粗面7を露出して
実際に効果を測定しなから粗面を再調整することが容易
に可能となる。
In this case, the reflective film 8 is preferably installed on the lid 11. Therefore, it is possible to readjust the rough surface without loosening the screw 12, removing the lid, exposing the rough surface 7, and actually measuring the effect. Become.

[発明の効果] 以上説明したように、粗面の定量的調整によってモード
擾乱特性を制御できるばかりでなく、光ファイバそのも
のを使用することによって測定するため、非常に微小な
素子によって行なうことができ、設置現場や研究室での
光ファイバ伝送路の特性評価作業をきわめて容易にする
ばかりでなく、その作業粘度の向上に寄与するものとな
る。
[Effects of the Invention] As explained above, not only can the mode disturbance characteristics be controlled by quantitatively adjusting the rough surface, but since the measurement is performed using the optical fiber itself, it can be performed using extremely small elements. This not only greatly facilitates the work of evaluating the characteristics of optical fiber transmission lines at installation sites and laboratories, but also contributes to improving the viscosity of the work.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例を示す光ファイバモード
擾乱素子の側面図、 第2図は、この発明の他の実施例を示す光ファイバモー
ト擾乱素子の側面図。 第3図は、光ファイバモード擾乱素子をケースに収めた
状態を示す斜視図である。 1.5.6・・・・光ファイバ 3.7・・・・粗面
FIG. 1 is a side view of an optical fiber mode disturbance element showing one embodiment of the invention, and FIG. 2 is a side view of an optical fiber mode disturbance element showing another embodiment of the invention. FIG. 3 is a perspective view showing a state in which the optical fiber mode disturbance element is housed in a case. 1.5.6...Optical fiber 3.7...Rough surface

Claims (4)

【特許請求の範囲】[Claims] (1)光ファイバ先端の端面をある一定の角度αに切断
し、この切断面に粗面を形成し、この面での反射光成分
および屈折光成分の伝播方向を光の入射方向とは異なる
方向へランダムに変換することにより、光ファイバ内を
伝播する光の伝播モードを擾乱させる方法。
(1) Cut the end surface of the optical fiber tip at a certain angle α, form a rough surface on this cut surface, and make the propagation direction of the reflected light component and refracted light component on this surface different from the direction of light incidence. A method of perturbing the propagation mode of light propagating within an optical fiber by randomly changing the direction.
(2)ファイバ先端の端面をある一定の角度αに切断し
、この切断面に粗面を形成した第1の光ファイバと、こ
の第1の光ファイバと一直線をなすように接続した第2
の光ファイバを配置し、この第2の光ファイバによって
モード擾乱をうけた透過光成分を取り出すようにしたこ
とを特徴とする光ファイバモード擾乱素子。
(2) A first optical fiber whose end face of the fiber tip is cut at a certain angle α and a rough surface is formed on the cut face, and a second optical fiber which is connected in a straight line with the first optical fiber.
1. An optical fiber mode disturbance element characterized in that an optical fiber is disposed, and a transmitted light component subjected to mode disturbance by the second optical fiber is extracted.
(3)第1のファイバに対し、第2の光ファイバを互い
に上記角度αの補角βの2倍角となるように各々の先端
を結合させ、その結合部先端部分を反射粗面に形成し、
この面での反射光成分を第2の光ファイバから取り出す
ようにしたことを特徴とする光ファイバモード擾乱素子
(3) The tips of the second optical fiber are coupled to the first fiber so that the angle is twice the supplementary angle β of the angle α, and the tip of the coupling portion is formed into a reflective rough surface. ,
An optical fiber mode disturbance element characterized in that a reflected light component on this surface is extracted from a second optical fiber.
(4)面の角度αを90度以外の角度にすることにより
、この面からの光の反射成分を第1の光ファイバへの帰
還を防止することができるようにしたことを特徴とする
上記特許請求の範囲第2、第3項に記載の光ファイバモ
ード擾乱素子。
(4) The above feature, wherein the angle α of the surface is set to an angle other than 90 degrees, thereby preventing the reflected component of the light from this surface from returning to the first optical fiber. An optical fiber mode disturbance element according to claims 2 and 3.
JP14536887A 1987-06-12 1987-06-12 Optical fiber mode disturbing method and its element Pending JPS63311206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14536887A JPS63311206A (en) 1987-06-12 1987-06-12 Optical fiber mode disturbing method and its element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14536887A JPS63311206A (en) 1987-06-12 1987-06-12 Optical fiber mode disturbing method and its element

Publications (1)

Publication Number Publication Date
JPS63311206A true JPS63311206A (en) 1988-12-20

Family

ID=15383600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14536887A Pending JPS63311206A (en) 1987-06-12 1987-06-12 Optical fiber mode disturbing method and its element

Country Status (1)

Country Link
JP (1) JPS63311206A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1184339A2 (en) * 2000-09-01 2002-03-06 A.R.T.-Photonics GmbH Optical fibre and manufacturing processes for an optical fibre
JP2012203038A (en) * 2011-03-23 2012-10-22 Olympus Corp Wide-angle light detection member and scan type observation device using the same
CN102866501A (en) * 2012-09-27 2013-01-09 哈尔滨工程大学 Emergent light spot strength homogenizing mode-disturbing device for optical fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1184339A2 (en) * 2000-09-01 2002-03-06 A.R.T.-Photonics GmbH Optical fibre and manufacturing processes for an optical fibre
EP1184339A3 (en) * 2000-09-01 2002-09-04 A.R.T.-Photonics GmbH Optical fibre and manufacturing processes for an optical fibre
US6564587B2 (en) 2000-09-01 2003-05-20 Viatcheslav Artiouchenko Method of producing an optical fiber by gathering material from a molten bath
JP2012203038A (en) * 2011-03-23 2012-10-22 Olympus Corp Wide-angle light detection member and scan type observation device using the same
CN102866501A (en) * 2012-09-27 2013-01-09 哈尔滨工程大学 Emergent light spot strength homogenizing mode-disturbing device for optical fiber

Similar Documents

Publication Publication Date Title
CA1135547A (en) Optical waveguide mode scrambler
US7130496B2 (en) Optical fibre backscatter polarimetry
US4102579A (en) Optical apparatus
JPH0259639A (en) Measurement of automatic collimation angle for grid coupler
Stewart Optical fiber and preform profiling technology
Cordaro et al. Precision fabrication of D-shaped single-mode optical fibers by in situ monitoring
DE3929340A1 (en) Integrated optical gas refractive index sensor - with lithium niobate crystal with proton exchanged niobate and gas sensitive layer on waveguide on cut axis
JPS63311206A (en) Optical fiber mode disturbing method and its element
JPS63307329A (en) Measurement of deviation and double refraction with single mode optical fiber
EP0143583A2 (en) Fiber optic modal coupler
US4688883A (en) Integrated optics stress transducer
Reed Methods of measurement of passive integrated optical waveguides
Pelayo et al. Chromatic dispersion characterization in short single-mode fibers by spectral scanning of phase difference in a Michelson interferometer
Morgan et al. Determination of monomode fiber buffer properties
JP2685591B2 (en) Flying height measuring device for magnetic head slider
El Ghandoor et al. A comparative study of spliced optical fibers
JPH01289903A (en) Optical coupler and non-penetration type tap
Chakraborty et al. Integrated optical waveguides in LiNbO3: modeling and experimental analysis
SU664496A1 (en) Interference method of measuring taper of transparent plates
JPS5831860B2 (en) Optical fiber cutoff wavelength measuring device
SU813214A1 (en) Method of measuring coordinate of solidification zone in chemical fibres
Pal et al. Teaching optical waveguides: a contemporary course with demonstration experiments
JPH01232229A (en) Cutoff wavelength measuring method for single-mode optical waveguide
Watkins INSTRUMENT FOR CONTINUOUSLY MONITORIM FIBER CORE AND OUTER DIAMETERS
Wu Approach to diameter measurement of optical fibres: forward near-axis far-field interference