JPH01232229A - Cutoff wavelength measuring method for single-mode optical waveguide - Google Patents

Cutoff wavelength measuring method for single-mode optical waveguide

Info

Publication number
JPH01232229A
JPH01232229A JP5824588A JP5824588A JPH01232229A JP H01232229 A JPH01232229 A JP H01232229A JP 5824588 A JP5824588 A JP 5824588A JP 5824588 A JP5824588 A JP 5824588A JP H01232229 A JPH01232229 A JP H01232229A
Authority
JP
Japan
Prior art keywords
optical waveguide
optical fiber
wavelength
optical
cutoff wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5824588A
Other languages
Japanese (ja)
Inventor
Yasuji Omori
保治 大森
Kaname Jinguji
神宮寺 要
Yasubumi Yamada
泰文 山田
Makoto Yamada
誠 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5824588A priority Critical patent/JPH01232229A/en
Publication of JPH01232229A publication Critical patent/JPH01232229A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/335Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using two or more input wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To realize the easy, nondestructive cutoff wavelength measuring method for the single-mode optical waveguide by putting one end of an optical fiber in contact with or nearby one end of the single-mode optical waveguide. CONSTITUTION:The white light from a light source 262 is made into monochromatic light 261, which is entered into the optical fiber 23 where the light can be propagated in two modes with the cutoff wavelength of an optical waveguide 21, and a high-order mode removal part 25 which is formed by winding the fiber nearby the incidence end around a column removes the high-order mode and the light in single mode is entered into the optical waveguide 21. Its output is photodetected completely by a multimode optical fiber 24 for photodetection which is put in contact while having its optical axis aligned and while photodetection parts 281-283 measure the output light, the optical axes of the fiber 23 and waveguide 21 are aligned with each other, so that the output light intensity of 0.7-1.7mum in wavelength is measured at prescribed intervals. Consequently, the loss value varies abruptly right below the cutoff wavelength lambdaCW of the waveguide 21 as shown in a figure (a) and the wavelength dependency of variation in the loss value is reduced on a shorter wavelength side than said wavelength. The cutoff wavelength of the waveguide 21 is measured without any destruction.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は非破壊にして簡便な単一モード光導波路の伝送
特性の測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a non-destructive and simple method for measuring the transmission characteristics of a single mode optical waveguide.

(従来の技術) 単一モード光導波路の伝送特性の基本的なものとして、
損失値とカットオフ波長とがある。このうち、カットオ
フ波長は、従来の技術では直接測定する方法がほとんど
なく、主に光導波路のコア寸法とコアとクラッドとの比
屈折率差から数値計算により求めていた。この計算は光
導波路の一般的な構造が3次元の矩形型であるので、非
常に膨大な計算量を必要としていた。さらにこの計算で
はコアとクラッドとの比屈折率を測定する必要があった
。光導波路のコアとクラッドとの比屈折率差を精度良く
測定するためには、干渉顕微鏡法による方法が従来行わ
れている。この方法では光導波路から薄片の試料を切り
出す必要があり、非破壊で測定できないという欠点があ
った。
(Prior art) The basic transmission characteristics of a single mode optical waveguide are as follows:
There is a loss value and a cutoff wavelength. Among these, the cutoff wavelength has almost no direct measurement method in the prior art, and is mainly determined by numerical calculation from the core dimensions of the optical waveguide and the relative refractive index difference between the core and the cladding. This calculation required an extremely large amount of calculation since the general structure of the optical waveguide is a three-dimensional rectangular shape. Furthermore, this calculation required measuring the relative refractive index of the core and cladding. In order to accurately measure the relative refractive index difference between the core and cladding of an optical waveguide, a method using interference microscopy has been conventionally used. This method requires cutting a thin sample from the optical waveguide, and has the disadvantage that it cannot be measured non-destructively.

一方、光導波路の損失値は、光導波路への入力光条件を
一定にして、光導波路の長さを変えて光導波路からの出
力光強度を測定することにより、求めることが従来行わ
れていた。この方法は光導波路の長さを変化させるたび
に入力光条件を一定にする必要があり、コア径が数μm
と非常に小さい単一モード光導波路では、この作業に膨
大な時間を費やすとともに、光導波路を切断する必要が
あるという欠点があった。
On the other hand, the loss value of an optical waveguide has conventionally been determined by keeping the input light conditions to the optical waveguide constant, changing the length of the optical waveguide, and measuring the output light intensity from the optical waveguide. . This method requires constant input light conditions each time the length of the optical waveguide is changed, and the core diameter is several μm.
However, in the case of very small single-mode optical waveguides, this work requires a huge amount of time and has the disadvantage that it is necessary to cut the optical waveguide.

すなわち従来の技術では単一モード光導波路の伝送特性
の測定方法は非常に未熟な状態にあり、厳密な意味で簡
便で、かつ非破壊な測定方法は全くないといってよい。
That is, in the prior art, methods for measuring the transmission characteristics of single mode optical waveguides are in a very immature state, and it can be said that there is no measurement method that is simple and non-destructive in the strict sense.

。 (発明が解決しようとする課題) 本発明は前記の欠点に鑑みなされたもので、光ファイバ
と光導波路との伝ぱんモードの特性の差異を利用した、
簡便かつ非破壊な単一モード光導波路のカットオフ波長
測定方法を提供することにある。
. (Problems to be Solved by the Invention) The present invention was made in view of the above-mentioned drawbacks, and utilizes the difference in propagation mode characteristics between an optical fiber and an optical waveguide.
An object of the present invention is to provide a simple and nondestructive method for measuring the cutoff wavelength of a single mode optical waveguide.

(課題を解決するための手段) 本発明は、第2図に示すように、光ファイバと接続した
単一モード光導波路を測定試料とみなし、従来の技術が
光導波路のみを測定試料としていたのと大きく異なる。
(Means for Solving the Problems) As shown in FIG. 2, the present invention considers a single mode optical waveguide connected to an optical fiber as a measurement sample, unlike the conventional technology in which only an optical waveguide was used as a measurement sample. It is very different.

第2図に示す光ファイバ付き導波路の損失値は、光ファ
イバの損失、光導波路の損失および光ファイバと光導波
路との接続損失の三つの損失要因で決定される。そこで
、使用する光ファイバに伝ぱんするモードを基本モード
(HE++ モード)のみにすると、光ファイバと光導
波路との接続損失が非常に小さくなるとともに、光導波
路の伝ぱんモードのパワー分布を反映したものになる。
The loss value of the optical fiber-attached waveguide shown in FIG. 2 is determined by three loss factors: optical fiber loss, optical waveguide loss, and connection loss between the optical fiber and the optical waveguide. Therefore, by setting only the fundamental mode (HE++ mode) as the mode that propagates in the optical fiber used, the connection loss between the optical fiber and the optical waveguide becomes extremely small, and the power distribution of the propagation mode of the optical waveguide is reflected. Become something.

さらに光導波路の損失が実用的な数d B / cn+
以下の低損失になると、光導波路の損失の要因がコアと
クラッドの界面不整による損失が主要因となる。
Furthermore, the loss of the optical waveguide is a practical number dB/cn+
When the loss becomes as low as below, the main cause of loss in the optical waveguide is loss due to the irregular interface between the core and the cladding.

そこで光導波路の損失も光導波路の伝ぱんモードのパワ
ー分布に敏感になる。
Therefore, the loss in the optical waveguide also becomes sensitive to the power distribution of the propagation mode in the optical waveguide.

また光ファイバは、伝ぱんするモードが基本モードのみ
であるので、非常に大きな曲率を与えない限り、数10
mの光ファイバでも光ファイバの損失はほとんど零dB
とみなせる。
In addition, optical fibers propagate only the fundamental mode, so unless a very large curvature is applied, the
The loss of the optical fiber is almost 0 dB even if the optical fiber is
It can be considered as

従って本発明の光ファイバ付き導波路の損失値は、光導
波路の伝ぱんモードのパワー分布の変化を反映したもの
になり、カットオフ波長のように、そこの波長で伝ぱん
モードが変化する場合、光ファイバ付き導波路の損失値
は、光導波路のカットオフ波長で大きな変化を示す。
Therefore, the loss value of the optical fiber-equipped waveguide of the present invention reflects the change in the power distribution of the propagation mode of the optical waveguide, and when the propagation mode changes at that wavelength, such as at the cutoff wavelength. , the loss value of a waveguide with optical fiber shows a large change depending on the cutoff wavelength of the optical waveguide.

以上説明したように、本発明は、光ファイバと光導波路
とを一体とみなして伝送特性を測定することを基本概念
としている。
As explained above, the basic concept of the present invention is to measure the transmission characteristics by considering the optical fiber and the optical waveguide as one.

すなわち本発明は、光ファイバの一端を単一モード光導
波路の一端に接触または接近させ、光導波路のカットオ
フ波長の近傍で光ファイバの伝ぱんモードを基本モード
(HE++ モード)にして、光ファイバと光導波路を
一体とした損失値の波長依存性を測定する。
That is, the present invention brings one end of an optical fiber into contact with or approaches one end of a single-mode optical waveguide, and sets the propagation mode of the optical fiber to the fundamental mode (HE++ mode) near the cutoff wavelength of the optical waveguide, thereby forming an optical fiber. The wavelength dependence of the loss value of the optical waveguide and the optical waveguide is measured.

(実施例) 以下、実施例に基づいて本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail based on Examples.

ス11汁上 第1図は本発明による第1の実施例を説明する図であっ
て、21は測定する光導波路で火炎堆積法と反応性イオ
ンエツチングにより作製された石英系単一モード光導波
路である。コア部22の諸元は断面構造が8×8μmの
正方形であり、コアとクラッドとの比屈折率差が0.2
%であり、カットオフ波長が1.08μ…である。23
は2モード光フアイバである。光導波路21からの出力
光を完全に受光するため、コア径50μm、比屈折率差
1%の受光用多モード光ファイバ24を光導波路21と
光軸を合わせて接触させである。受光用多モード光ファ
イバ24からの出力光は受光器281で電気信号へ変換
され、増幅器282を経てロックイン増幅器283へ入
力される。ハロゲン光源262からの白色光を分光器2
61で単色光とした後、比屈折率差が0.2%、コア直
径11μm、カットオフ波長が1.32μmであり、光
導波路のカットオフ波長で2モード伝ぱんできる光ファ
イバ23に入射した。2モード光フアイバ23の入射端
近傍の光ファイバを直径4 cmの円柱に巻き付けた高
次モード除去部25で高次モードを除去して、高次モー
ド除去部25を通過した後゛の光ファイバの伝ぱんモー
ドを基本モードのみにした。24.281〜283から
なる受光部で光導波路からの出力光を測定しながら、2
モード光フアイバ23と光導波路の光軸を合わせた後、
波長0.7 μm〜1.7μmの出力光強度を0.01
μm間隔で測定した。
Figure 1 is a diagram for explaining the first embodiment of the present invention, in which 21 is an optical waveguide to be measured, which is a silica-based single mode optical waveguide fabricated by flame deposition and reactive ion etching. It is. The dimensions of the core part 22 are that the cross-sectional structure is a square of 8 x 8 μm, and the relative refractive index difference between the core and the cladding is 0.2.
%, and the cutoff wavelength is 1.08μ... 23
is a bimode optical fiber. In order to completely receive the output light from the optical waveguide 21, a multimode optical fiber 24 for light reception with a core diameter of 50 μm and a relative refractive index difference of 1% is brought into contact with the optical waveguide 21 with its optical axis aligned. Output light from the light-receiving multimode optical fiber 24 is converted into an electrical signal by a light receiver 281, and is input to a lock-in amplifier 283 via an amplifier 282. The white light from the halogen light source 262 is transferred to the spectroscope 2.
61, the light was made into monochromatic light, and then entered into an optical fiber 23 with a relative refractive index difference of 0.2%, a core diameter of 11 μm, a cutoff wavelength of 1.32 μm, and capable of propagating in two modes at the cutoff wavelength of the optical waveguide. . The optical fiber near the input end of the two-mode optical fiber 23 is removed by a higher-order mode removing section 25 which is wound around a cylinder with a diameter of 4 cm, and the optical fiber after passing through the higher-order mode removing section 25 is Changed the mission mode to basic mode only. 24. While measuring the output light from the optical waveguide with the light receiving section consisting of 281 to 283,
After aligning the optical axes of the mode optical fiber 23 and the optical waveguide,
The output light intensity for wavelengths of 0.7 μm to 1.7 μm is 0.01
Measurements were made in μm intervals.

次に2モード光フアイバ23からの出力光強度を測定し
、光ファイバ付き光導波路の損失特性を求めた。その結
果を第3図に示す。第3図から明らかなように、光導波
路のカットオフ波長λ。の手前で損失値が急激に変化し
ており、カットオフ波長より長波長側では損失4Ii変
化の波長依存性が小さくなっている。
Next, the output light intensity from the two-mode optical fiber 23 was measured to determine the loss characteristics of the optical waveguide with the optical fiber. The results are shown in FIG. As is clear from FIG. 3, the cutoff wavelength λ of the optical waveguide. The loss value changes rapidly just before , and the wavelength dependence of loss 4Ii change becomes smaller on the longer wavelength side than the cutoff wavelength.

従って本発明により光導波路の力・ントオフ波長を非破
壊で測定できることになる。第3図には光ファイバと単
一モード光導波路の接触端面に屈折率整合剤を塗布して
光導波路の接続端面の微小な界面乱れに依存する損失を
除去した場合を破線で示しである。
Therefore, according to the present invention, the force and off wavelength of an optical waveguide can be measured non-destructively. In FIG. 3, a broken line shows a case where a refractive index matching agent is applied to the contact end surface of the optical fiber and the single mode optical waveguide to eliminate loss depending on minute interface disturbances at the connection end surface of the optical waveguide.

この結果、屈折率整合剤を塗布することにより、より明
確にカットオフ波長を決定できることがわかる。
The results show that the cutoff wavelength can be determined more clearly by applying a refractive index matching agent.

なおこの実施例で2モード光フアイバを用いたことは、
波長0.7 μm〜1.7 μmで光ファイバを伝ぱん
する基本モードを安定にするためであり、単一モード光
ファイバを使うことは、本発明の本質に何ら変更を加え
るものでない。
The fact that a two-mode optical fiber was used in this example
This is to stabilize the fundamental mode propagating through the optical fiber at a wavelength of 0.7 μm to 1.7 μm, and using a single mode optical fiber does not change the essence of the present invention.

また、同じ主旨から、より多モード光ファイバを使って
もよく、本発明の本質は光ファイバを伝ぱんするモード
を基本モードのみにすることにある。
Moreover, from the same point of view, a multi-mode optical fiber may be used, and the essence of the present invention is to limit the mode propagated through the optical fiber to only the fundamental mode.

1媚!l!iλ 第4図は波長変調分光法を利用した本発明による第2の
実施例を説明する図であって、実施例1と大きく異なる
のは、出力光強度の波長依存性を測定するのが1回です
むことである。第4図において、分光器461内の出口
スリット近傍に光路変調器462を備えており、分光器
461からの出力光が50人幅で変調された光になって
いる。この光をカットオフ波長0.95μmの単一モー
ド光ファイバ43に入射させ、実施例1で使用した光導
波路4I、受光用多モード晃ファイバ44を通過させた
後、受光器481で光信号を電気信号へ変換している。
1 love! l! iλ FIG. 4 is a diagram illustrating a second embodiment of the present invention using wavelength modulation spectroscopy. The major difference from the first embodiment is that the wavelength dependence of the output light intensity is measured by It only takes a few times. In FIG. 4, an optical path modulator 462 is provided near the exit slit in a spectrometer 461, and the output light from the spectrometer 461 is modulated with a width of 50. This light is input into a single mode optical fiber 43 with a cutoff wavelength of 0.95 μm, and after passing through the optical waveguide 4I used in Example 1 and the multimode optical fiber 44 for light reception, the optical signal is received by a light receiver 481. It is converted into an electrical signal.

受光25481からの電気信号は直流・交流分別回路4
83で直流成分と交流成分に分けられる。
The electric signal from the light receiver 25481 is sent to the DC/AC separation circuit 4.
83, it is divided into a DC component and an AC component.

直流成分は受光器電源482へ制御信号として入り、受
光器の感度を調整することにより、測定波長領域で一定
の直流強度になるようにしである。
The DC component enters the photoreceiver power supply 482 as a control signal, and by adjusting the sensitivity of the photoreceiver, it is made to have a constant DC intensity in the measurement wavelength range.

交流成分はロックイン増幅器484に入り、波長変調成
分を検出している。この結果、ロックイン増幅器484
での値は測定対象の損失値の波長変化率を与えることに
なる。
The alternating current component enters a lock-in amplifier 484, and the wavelength modulation component is detected. As a result, lock-in amplifier 484
The value at will give the wavelength change rate of the loss value to be measured.

第5図に実施例2による測定結果を示す。FIG. 5 shows the measurement results according to Example 2.

第5図において、λrは光ファイバのカットオフ波長、
■。は電流信号の直流成分、Δrは電流信号の交流成分
を示す。
In FIG. 5, λr is the cutoff wavelength of the optical fiber,
■. represents the DC component of the current signal, and Δr represents the AC component of the current signal.

第5図から明らかなように、光導波路のカットオフ波長
λ。の手前で出力が変化している。第5図の波長特性は
損失値の波長微分に対応しており、波長変化がある損失
特性を精度良く測定できる方法である。なお第5図の0
.9μm近傍の変化は使用した単一モード光ファイバの
カットオフ波長に起因したものである。
As is clear from FIG. 5, the cutoff wavelength λ of the optical waveguide. The output changes just before. The wavelength characteristic shown in FIG. 5 corresponds to the wavelength differentiation of the loss value, and is a method that can accurately measure loss characteristics with wavelength changes. Note that 0 in Figure 5
.. The change in the vicinity of 9 μm is due to the cutoff wavelength of the single mode optical fiber used.

(発明の効果) 以上説明したように、光ファイバと光導波路とを一体と
みなした本発明のカットオフ波長測定方法によれば、非
破壊で、かつ簡便に、単一モード光導波路のカットオフ
波長を測定できる。またカットオフ波長の測定から光導
波路の比屈折率差も計算することができ、本発明を光導
波路の比屈折率差の非破壊な測定方法とすることができ
る七いう利点もある。
(Effects of the Invention) As explained above, according to the cutoff wavelength measuring method of the present invention that considers an optical fiber and an optical waveguide as one, it is possible to nondestructively and easily measure the cutoff wavelength of a single mode optical waveguide. Can measure wavelength. Furthermore, the relative refractive index difference of the optical waveguide can be calculated from the measurement of the cutoff wavelength, and the present invention has the advantage of being a non-destructive method for measuring the relative refractive index difference of the optical waveguide.

さらに使用する光ファイバの構造と光導波路との構造か
ら光ファイバと光導波路の接続損失を計算することがで
き、第3図に示した破線の損失値から接続損失分を差し
引くと、光導波路の損失値を求めることができ、本発明
を光導波路の損失特性の非破壊な測定方法に応用できる
という利点もある。
Furthermore, the splice loss between the optical fiber and the optical waveguide can be calculated from the structure of the optical fiber used and the structure of the optical waveguide, and by subtracting the splice loss from the loss value shown in the broken line shown in Figure 3, it is possible to calculate the splice loss between the optical fiber and the optical waveguide. Another advantage is that the loss value can be determined, and the present invention can be applied to a method for nondestructively measuring the loss characteristics of an optical waveguide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による実施例1の光導波路のカットオフ
波長の測定系を示す図、 第2図は本発明の方法により測定する光ファイバと接続
した単一モード光導波路とからなる測定試料の構成図、 第3図は本発明の実施例1による損失特性の測定結果を
示す図、 第4図は本発明の実施例2による光導波路のカットオフ
波長の測定系を示す図、 第5図は本発明の実施例2による測定結果を示す図であ
る。 21・・・光導波路     22・・・コア部23・
・・2モード光フアイバ 24・・・受光用多モード光ファイバ 25・・・光ファイバの高次モード除去部261・・・
分光器     262・・・ハロゲン光源263・・
・分光器駆動部  27・・・光チョッパ281・・・
受光器     282・・・増幅器283・・・ロッ
クイン増幅器 29・・・制御およびデータ処理部 41・・・光導波路     42・・・コア部43・
・・単一モード光ファイバ 44・・・受光用多モード光ファイバ 461・・・分光器     462・・・光路変調器
481・・・受光器     482・・・受光器用電
源483・・・直流・交流分別回路 484・・・ロックイン増幅器 第2図 第3図 q紀12()Uり一ン 第、4図 4153− ・tNF変l器の駈1肝
FIG. 1 is a diagram showing a measurement system for the cutoff wavelength of an optical waveguide according to Example 1 according to the present invention. FIG. 2 is a measurement sample consisting of an optical fiber and a connected single-mode optical waveguide to be measured by the method of the present invention. 3 is a diagram showing the measurement results of loss characteristics according to Example 1 of the present invention. FIG. 4 is a diagram showing a measurement system for the cutoff wavelength of an optical waveguide according to Example 2 of the present invention. The figure is a diagram showing measurement results according to Example 2 of the present invention. 21... Optical waveguide 22... Core part 23.
...Two-mode optical fiber 24...Multi-mode optical fiber for light reception 25...Higher-order mode removal section 261 of optical fiber...
Spectrometer 262...Halogen light source 263...
・Spectrometer drive unit 27... Optical chopper 281...
Light receiver 282...Amplifier 283...Lock-in amplifier 29...Control and data processing section 41...Optical waveguide 42...Core section 43...
... Single mode optical fiber 44 ... Multimode optical fiber for light reception 461 ... Spectrometer 462 ... Optical path modulator 481 ... Light receiver 482 ... Power source for light receiver 483 ... DC/AC Separation circuit 484...Lock-in amplifier Fig. 2 Fig. 3

Claims (1)

【特許請求の範囲】 1、光ファイバの一端を単一モード光導波路の一端に接
触または接近させ、光導波路のカットオフ波長の近傍で
光ファイバの伝ぱんモードを基本モード(HE_1_1
モード)にして、光ファイバと光導波路とを一体とした
損失値の波長依存性を測定することを特徴とする単一モ
ード光導波路のカットオフ波長測定方法。 2、前記光ファイバとして、光導波路のカットオフ波長
で伝ぱんするモードが2モードである光ファイバを用い
、光ファイバの入射端近傍を巻き付け等により大きな曲
率を与え、カットバック法で大きな曲率を与えた部分を
通過した後の光ファイバの伝ぱんモードを基本モードの
みとし、光ファイバと光導波路の損失値を測定すること
を特徴とする特許請求の範囲第1項記載の単一モード光
導波路のカットオフ波長測定方法。 3、前記の光ファイバと単一モード光導波路の接触端面
に屈折率整合剤を塗布することを特徴とする特許請求の
範囲第1項記載の単一モード光導波路のカットオフ波長
測定方法。4、前記の損失値の波長依存性を測定する方
法として、波長変調分光法を用いることを特徴とする特
許請求の範囲第1項記載の単一モード光導波路のカット
オフ波長測定方法。
[Claims] 1. One end of an optical fiber is brought into contact with or close to one end of a single mode optical waveguide, and the propagation mode of the optical fiber is changed to the fundamental mode (HE_1_1) near the cutoff wavelength of the optical waveguide.
A method for measuring the cutoff wavelength of a single mode optical waveguide, characterized by measuring the wavelength dependence of a loss value of an optical fiber and an optical waveguide as a single unit. 2. As the optical fiber, use an optical fiber in which two modes propagate at the cutoff wavelength of the optical waveguide, give a large curvature near the input end of the optical fiber by winding, etc., and use a cutback method to create a large curvature. The single mode optical waveguide according to claim 1, characterized in that the propagation mode of the optical fiber after passing through a given portion is set to only the fundamental mode, and the loss value of the optical fiber and the optical waveguide is measured. Cutoff wavelength measurement method. 3. The method for measuring the cutoff wavelength of a single mode optical waveguide according to claim 1, which comprises applying a refractive index matching agent to the contact end surface between the optical fiber and the single mode optical waveguide. 4. The method for measuring the cutoff wavelength of a single mode optical waveguide according to claim 1, wherein wavelength modulation spectroscopy is used as a method for measuring the wavelength dependence of the loss value.
JP5824588A 1988-03-14 1988-03-14 Cutoff wavelength measuring method for single-mode optical waveguide Pending JPH01232229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5824588A JPH01232229A (en) 1988-03-14 1988-03-14 Cutoff wavelength measuring method for single-mode optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5824588A JPH01232229A (en) 1988-03-14 1988-03-14 Cutoff wavelength measuring method for single-mode optical waveguide

Publications (1)

Publication Number Publication Date
JPH01232229A true JPH01232229A (en) 1989-09-18

Family

ID=13078735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5824588A Pending JPH01232229A (en) 1988-03-14 1988-03-14 Cutoff wavelength measuring method for single-mode optical waveguide

Country Status (1)

Country Link
JP (1) JPH01232229A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498874B1 (en) * 1997-12-22 2002-12-24 Sumitomo Electric Industries, Ltd. Optical transmission line
JP2015210239A (en) * 2014-04-30 2015-11-24 住友電気工業株式会社 Cutoff wavelength measurement method of optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498874B1 (en) * 1997-12-22 2002-12-24 Sumitomo Electric Industries, Ltd. Optical transmission line
JP2015210239A (en) * 2014-04-30 2015-11-24 住友電気工業株式会社 Cutoff wavelength measurement method of optical fiber

Similar Documents

Publication Publication Date Title
Eisenmann et al. Single-mode fused biconical coupler optimized for polarization beamsplitting
US4668264A (en) Method for making self-aligning optical fiber with accessible guiding region
CA2447660A1 (en) Optical fibre backscatter polarimetry
JP2004525388A5 (en)
EP0539877A1 (en) Optical fiber having internal partial mirrors
EP0196168B1 (en) Fiber optic doppler anemometer
Cordaro et al. Precision fabrication of D-shaped single-mode optical fibers by in situ monitoring
JPH01232229A (en) Cutoff wavelength measuring method for single-mode optical waveguide
JPS60262028A (en) Method and device for measuring cutoff length of primary higher mode of optical fiber
JPH0549057B2 (en)
Reed Methods of measurement of passive integrated optical waveguides
JP3257197B2 (en) Method and apparatus for evaluating single mode optical fiber characteristics
US4934819A (en) Apparatus for measuring transverse moment of an electromagnetic field associated with an optical beam
JP3063138B2 (en) Waveguide type wavelength measuring device
JPH03144337A (en) Measuring method for characteristic of optical fiber
JPH05272920A (en) Optical-fiber displacement gage
JPH0658289B2 (en) Optical fiber measurement method
Gonthier et al. Circularly symmetric modal interferometers: Equalization wavelength and equivalent step determination for matched-cladding fibers
Corke et al. Polarization maintaining single mode couplers
Ragdale et al. Review of fused single-mode coupler technology
JPH10160633A (en) Method for evaluating characteristic of single-mode optical fiber
JPH07181087A (en) Optical waveguide temperature sensor
Li et al. Extraction of Coupling Coefficients of Directional Couplers Using Resonance Splitting
JPS5831860B2 (en) Optical fiber cutoff wavelength measuring device
JPH037061B2 (en)