JPH03144337A - Measuring method for characteristic of optical fiber - Google Patents

Measuring method for characteristic of optical fiber

Info

Publication number
JPH03144337A
JPH03144337A JP28430889A JP28430889A JPH03144337A JP H03144337 A JPH03144337 A JP H03144337A JP 28430889 A JP28430889 A JP 28430889A JP 28430889 A JP28430889 A JP 28430889A JP H03144337 A JPH03144337 A JP H03144337A
Authority
JP
Japan
Prior art keywords
optical fiber
mode
light
light source
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28430889A
Other languages
Japanese (ja)
Inventor
Tomochika Fukada
深田 知周
Isamu Sakurai
勇 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP28430889A priority Critical patent/JPH03144337A/en
Publication of JPH03144337A publication Critical patent/JPH03144337A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To make measurement of a transmission loss accurately by measuring an incident light by putting a light source light in a stable mode distribution by winding an optical fiber in the shape of a character 8 and by putting it further in a steady mode distribution by making it pass through a mode filter, when characteristics are measured by comparing light outputs at an incidence end and an emission end of the optical fiber with each other. CONSTITUTION:An optical fiber measuring device is constructed of a light source 1, an optical fiber exciting unit composed of a mode scrambler 2 and a mode filter 3, and a power meter 5. As to an optical fiber constituting the exciting unit, an optical fiber similar to an optical fiber 4 of which a transmission loss and others are to be measured is used, and it is constituted of a multicomponent optical fiber of high numerical aperture and large aperture, for instance. The incidence end 4a of the optical fiber 4 is connected to the mode filter 3 of the exciting unit and the emission end 4b thereof is connected to the power meter 5, while LED and a spectroscope are used for the light source 1. In this constitution, the optical fiber 4 is wound in the shape of a character 8 in a number of times on the mode scrambler 2. As for the filter 3, a fiber obtained by stretching the optical fiber in the shape of a taper is employed therefor.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、光ファイバの伝送損失測定等の特性測定方
法に係り、特に多成分系光フアイバ等屈折率の大きな光
ファイバの特性測定方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for measuring characteristics such as transmission loss measurement of an optical fiber, and particularly relates to a method for measuring characteristics of an optical fiber with a large refractive index such as a multi-component optical fiber. .

[従来の技術及び発明が解決すべき課題]例えば、第9
図に示すように光源10からの光を光ファイバ40によ
って伝送し、その出射端P、に接続されたパワーメータ
50で伝送損失を測定する場合、カットバック法により
光源から所定路離の位fi! P sを切断し、位置P
、における出力とP、における出力を比較する。この場
合、一般にマルチモード光ファイバの伝送損失は入射励
振条件に大きく依存するため入射する光のモードを規定
することが重要であり、石英系マルチモード光ファイバ
では入射励振条件が標準化されている。
[Problems to be solved by conventional techniques and inventions] For example, No. 9
As shown in the figure, when transmitting light from a light source 10 through an optical fiber 40 and measuring transmission loss with a power meter 50 connected to the output end P, ! Cut P s and position P
Compare the output at , and the output at P. In this case, it is important to specify the mode of the incident light because the transmission loss of a multimode optical fiber generally depends greatly on the incident excitation conditions, and the input excitation conditions are standardized for silica-based multimode optical fibers.

しかし、ステップインデックス型の多成分系光ファイバ
など大口径の高NAファイバにおいては、屈折率差が大
きいため光の閉じ込めが強く、いろいろなモードの光が
生じ、標準の励振条件を作ることが困難であった。この
対策として光源から入射端の間に例えば500m〜1k
g+の長尺のダミーファイバを用い、定常モードを作り
出す方法がある。
However, in large-diameter, high-NA fibers such as step-index multicomponent optical fibers, the large difference in refractive index causes strong light confinement, producing various modes of light, making it difficult to create standard excitation conditions. Met. As a countermeasure for this, for example, 500 m to 1 k between the light source and the incident end.
There is a method of creating a steady mode using a long dummy fiber of g+.

定常モードの光を用いた場合には入射端と出射端のモー
ド分布が一致するので正確な測定が可能となるが、この
場合ダミーファイバを伝送する間に光のパワーが低下し
、入射端での出力が低いため、測定できる範囲が限られ
るという難点がある。
When using steady mode light, the mode distributions at the input end and output end match, making accurate measurements possible, but in this case, the power of the light decreases while transmitting through the dummy fiber, and the The problem is that the measurable range is limited because the output is low.

[発明の目的] この発明は、このような従来の問題点を解決し、定常モ
ードに極めて近いモードの入射光を作ることができ、こ
れによって屈折率差の大きいマルチモード光ファイバで
あっても正確に特性測定できる方法を提供することを目
的とする。
[Purpose of the Invention] The present invention solves these conventional problems and can create incident light in a mode extremely close to the steady mode, thereby making it possible to create an incident light beam with a mode extremely close to the steady mode. The purpose is to provide a method that can accurately measure characteristics.

[課題を解決するための手段] このような目的を達成する本発明の光ファイバの特性測
定方法は、光ファイバの入射端と出射端における光出力
を比較してその特性を測定するに際し、光ファイバを8
の字に巻き付けてなるモードスクランブラにより光源光
を安定したモード分布とした後、モードフィルタを通過
させて前記安定したモード分布の光を実質的に定常モー
ド分布として前記光ファイバの入射端に入射するように
したものである。
[Means for Solving the Problems] The method for measuring characteristics of an optical fiber according to the present invention achieves the above-mentioned object. 8 fibers
After the light source light is made into a stable mode distribution using a mode scrambler wound in the shape of an arrow, the light with the stable mode distribution is passed through a mode filter to enter the input end of the optical fiber as a substantially steady mode distribution. It was designed to do so.

[実施例] 第1図は本発明の光ファイバの特性測定方法を適用する
ための光フアイバ測定装置の一実施例を示す図であり、
光源1、モードスクランブラ2及びモードフィルタ3か
ら成る光フアイバ励振器とパワーメータ5から成る。光
励振器を構成する光ファイバは、伝送損失等を測定すべ
き被測定光ファイバ4と同様のもので、例えば高開口数
(例えばNA=0.5) 、大口径(例えばコア径20
0μm。
[Example] FIG. 1 is a diagram showing an example of an optical fiber measuring device for applying the optical fiber characteristic measuring method of the present invention.
It consists of an optical fiber exciter consisting of a light source 1, a mode scrambler 2 and a mode filter 3, and a power meter 5. The optical fiber constituting the optical exciter is similar to the optical fiber to be measured 4 whose transmission loss etc. are to be measured, and has, for example, a high numerical aperture (for example, NA=0.5) and a large diameter (for example, a core diameter of 20 mm).
0μm.

クラツド径250μm)の多成分系光ファイバから成る
It consists of a multi-component optical fiber with a cladding diameter of 250 μm.

被測定光ファイバ4の入射端4aはこのような光フアイ
バ励振器のモードフィルタ3に接続されており、出射端
4bはパワーメータ5に接続されている。光源lはLE
D光源および分光器等任意の光源を用いることができる
The input end 4a of the optical fiber to be measured 4 is connected to the mode filter 3 of such an optical fiber exciter, and the output end 4b is connected to the power meter 5. Light source l is LE
Any light source can be used, such as a D-light source and a spectrometer.

モードスクランブラ2は第2図に示すように光ファイバ
を多数回8の字に巻き付けたもので、多成分系光フアイ
バ内の複数モード間で光パワーの相互伝達を引き起こし
実効的にモードをスクランブルし、光源1の開口数(N
A)に依存しない安定したモード分布を得ることができ
る。
As shown in Figure 2, the mode scrambler 2 consists of an optical fiber wound many times in a figure-eight pattern, and effectively scrambles the modes by causing mutual transmission of optical power between multiple modes within the multi-component optical fiber. and the numerical aperture (N
A) A stable mode distribution that does not depend on A) can be obtained.

第3図に入射光源のNAを変えて入射した場合の出射端
のファーフィールドパターン(F F P)を測定した
結果を示す。同図からも明らかなように、巻き付は回数
を多くした場合、FFPピークの50%値は入射光源の
NAに関係なく、一定値に収束し、モードスクランブラ
によって安定したモード分布が得られることがわかる。
FIG. 3 shows the results of measuring the far field pattern (F F P) at the output end when the NA of the incident light source is changed. As is clear from the figure, when the number of windings is increased, the 50% value of the FFP peak converges to a constant value regardless of the NA of the incident light source, and a stable mode distribution is obtained by the mode scrambler. I understand that.

モードスクランブラ2の巻き付は回数はNA=0.5、
口径200/250の多成分系光ファイバの場合、15
0タ一ン以上必要である。但し、巻き付は回数が多すぎ
ると伝送損失増加が増えるので、200タ一ン程度が好
適である。尚、上記光ファイバで曲げ径φ10、巻き付
は回数200ターンとした場合のモードスクランブラの
伝送損失増加は入射NAが0.65の場合1.6dB、
0.25の場合0.8dBであり、長尺(2000m)
ダミーファイバを用いた場合に比べ、非常に小さい。
The number of windings of mode scrambler 2 is NA=0.5,
In the case of a multi-component optical fiber with a diameter of 200/250, 15
0 tan or more is required. However, if the number of windings is too large, the transmission loss will increase, so about 200 turns is preferable. In addition, when the above optical fiber has a bending diameter of φ10 and a winding of 200 turns, the increase in transmission loss of the mode scrambler is 1.6 dB when the incident NA is 0.65.
0.25 is 0.8dB, long length (2000m)
This is much smaller than when using a dummy fiber.

モードフィルタ3は、特定のモードを除去するもので、
モードスクランブラによって得られた安定したモード分
布の光を定常モード化する。すなわち、モードスクラン
ブラ2で得られた安定したモード分布の光は、光ファイ
バ4を伝搬させた場合、出射端4bではモードが変化す
るが、定常モード化することにより入射端4aにおける
モード分布と出射端4bにおけるモード分布とを実質的
に等しくすることができる。
Mode filter 3 removes a specific mode,
The light with a stable mode distribution obtained by the mode scrambler is converted into a steady mode. That is, when the light with a stable mode distribution obtained by the mode scrambler 2 is propagated through the optical fiber 4, the mode changes at the output end 4b, but by changing to a steady mode, the mode distribution at the input end 4a changes. The mode distribution at the output end 4b can be made substantially equal.

このようなフィルタ3としては第4図に示すような光フ
ァイバをテーパ状に引き伸ばしたものが好適である。モ
ードフィルタ3の小径部3aの径、長さ等は定常モード
の基準とする分布によって設計されるが、口径200/
250の光ファイバの場合、小径部の径は160〜17
0μm程度とする。このモードフィルタ設計のためのモ
ード分布の決定は多成分系光ファイバの場合、定常モー
ド分布となるに充分な距離を伝搬させてモード分布を決
めることができないので、通常条長1〜2に園の光ファ
イバに伝搬させた時の出射端のFFPの平均から求める
ことができる。
As such a filter 3, an optical fiber stretched into a tapered shape as shown in FIG. 4 is suitable. The diameter, length, etc. of the small diameter portion 3a of the mode filter 3 are designed according to the standard distribution of the steady mode.
In the case of 250 optical fiber, the diameter of the small diameter part is 160 to 17
The thickness should be approximately 0 μm. In the case of multi-component optical fibers, the mode distribution for this mode filter design cannot be determined by propagating a sufficient distance to obtain a steady mode distribution, so it is usually difficult to determine the mode distribution for the fiber length 1 or 2. It can be determined from the average FFP at the output end when propagating through the optical fiber.

このようなモードフィルタによる損失増加は、0.5d
B程度であり、モードスクランブラ2の損失増加と合わ
せても、本光フアイバ励振器の損失増加は2dB程度に
押えることができる。このように光源1からの光は8の
字モードスクランブラ2を伝搬することにより入射条件
に依存しない安定したモードとなり、更にモードフィル
タ3によって定常モード分布になる。従って、被測定光
ファイバ4の入射端4aと出射端4bとでのモト分布が
実質的に等しくなるので、伝送損失等の特性を正しく測
定することができる。
The loss increase due to such a mode filter is 0.5d
Even when combined with the increase in loss of the mode scrambler 2, the increase in loss of the present optical fiber exciter can be suppressed to about 2 dB. In this way, the light from the light source 1 becomes a stable mode independent of the incident conditions by propagating through the figure-eight mode scrambler 2, and further becomes a steady mode distribution by the mode filter 3. Therefore, the moto distributions at the input end 4a and the output end 4b of the optical fiber 4 to be measured are substantially equal, so that characteristics such as transmission loss can be accurately measured.

又、入射励振光が定常モード分布なので、伝送損失にお
いてロス相加則が成立し、再現性よく伝送損失測定でき
る。
Furthermore, since the incident excitation light has a steady mode distribution, the loss addition law holds true for transmission loss, and transmission loss can be measured with good reproducibility.

実施例1 第1図に示す測定装置で光ファイバ4としては2P径2
00μm、クラッド径250μm、開口数0650、条
長2000mの多成分系S1型光フアイバを用い、又モ
ードスクランブラ2は曲げ径φ10、巻き回数200タ
ーンのものを、モードフィルタ3は小径部の口径165
μmのものを用いた。このようなモードスクランブラ2
及びモードフィルタ3を組み合わせて励振させた場合の
光ファイバ4の入射端4aと出射端4bの各FFPを測
定した。尚、光源1は、850nmのLEDを用いた。
Example 1 In the measuring device shown in Fig. 1, the optical fiber 4 was 2P diameter 2
A multicomponent type S1 optical fiber with a diameter of 00 μm, a cladding diameter of 250 μm, a numerical aperture of 0650, and a length of 2000 m is used.The mode scrambler 2 has a bending diameter of φ10 and the number of windings is 200 turns.The mode filter 3 has a diameter of the small diameter part. 165
A micrometer was used. Such mode scrambler 2
The FFP of each of the input end 4a and output end 4b of the optical fiber 4 was measured when the optical fiber 4 was excited in combination with the mode filter 3 and the mode filter 3. Note that as the light source 1, an 850 nm LED was used.

又、本実施例におけるモードフィルタは基準NAがFF
Pピークの15%値で0642.50%値で0.32と
なるように構成されている。
In addition, the mode filter in this embodiment has a reference NA of FF.
The 15% value of the P peak is 0642, and the 50% value is 0.32.

結果を第5図に示す。The results are shown in Figure 5.

比較例としてモードフィルタ3を用いず、実施例1と同
様のモードスクランブラ2のみを用いた場合の入射端及
び出射端の各FFPを第8図に示す。第5図及び第8図
から明らかなように、本発明の測定方法によれば、入射
端と出射端のパターンが殆ど一致しており、はぼ定常モ
ード分布が得られることがわかる。
As a comparative example, FIG. 8 shows each FFP at the input end and the output end when only the mode scrambler 2 similar to Example 1 was used without using the mode filter 3. As is clear from FIGS. 5 and 8, according to the measurement method of the present invention, the patterns at the incident end and the exit end almost match, and a nearly steady mode distribution can be obtained.

尚、本実施例で伝送損失の異なる5種類の光ファイバ4
について損失値を測定したところ、2000mの長尺ダ
ミーファイバを用いた測定値とほぼ−致し、両者の励振
効果には差がなかった。
In this example, five types of optical fibers 4 with different transmission losses were used.
When the loss value was measured, it almost matched the value measured using a 2000 m long dummy fiber, and there was no difference in the excitation effect between the two.

実施例2 実施例1と同様の光源1、モードスクランブラ2及びモ
ードフィルタ3を用いて、伝送損失の異なる5種類の条
長200mの光ファイバ41〜45を融着接続して接続
時の損失を測定した(第6図)。
Example 2 Using the same light source 1, mode scrambler 2, and mode filter 3 as in Example 1, five types of optical fibers 41 to 45 with different transmission losses and lengths of 200 m were fused and spliced to calculate the loss during splicing. was measured (Figure 6).

各光ファイバを接続せず別々に測定した場合の損失和と
接続時の損失の関係を第7図に示す。同図から明らかな
ように本発明の測定方法によれば伝送損失測定の際、相
加則が成立することが確認された。
FIG. 7 shows the relationship between the sum of losses and the loss upon connection when each optical fiber is measured separately without being connected. As is clear from the figure, it was confirmed that according to the measurement method of the present invention, the law of addition holds true when measuring transmission loss.

実施例3 実施例1と同様のモードスクランブラ及びモードフィル
タを用いて、条長L = 1000mの光ファイバの伝
送損失を10回縁返し測定した。
Example 3 Using the same mode scrambler and mode filter as in Example 1, the transmission loss of an optical fiber having a length L = 1000 m was measured 10 times.

表 表に示す結果からも明らかなように非常に測定の再現性
がよかった。
As is clear from the results shown in the table, the reproducibility of the measurements was very good.

[発明の効果] 以上の実施例からも明らかなように、本発明の光ファイ
バの特性測定方法によれば、特殊な形状のモードスクラ
ンブラ及びモードフィルタを用いることにより、従来励
振条件を作ることが困難であった大口径、高NAファイ
バの標準の励振条件を確立することができ、実質的に定
常モードで光ファイバを励振することができるので、伝
送損失の正確な測定ができる。又、長尺ダミーファイバ
を用いることなく、低い損失増加で励振できるので、条
長の長い光ファイバの測定が可能である。
[Effects of the Invention] As is clear from the above embodiments, according to the optical fiber characteristic measuring method of the present invention, the conventional excitation conditions can be created by using a specially shaped mode scrambler and mode filter. It is possible to establish standard excitation conditions for large-diameter, high-NA fibers, which have been difficult to achieve, and it is possible to excite the optical fiber in a substantially steady mode, making it possible to accurately measure transmission loss. Furthermore, since it is possible to excite with a small increase in loss without using a long dummy fiber, it is possible to measure a long optical fiber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光ファイバの特性測定方法が適用され
る光フアイバ測定装置の一実施例を示す構成図、第2図
は本発明に係るモードスクランブラの一実施例を示す図
、第3図はモードスクランブラによるモードの安定と巻
き付は回数との関係を示すグラフ、第4図は本発明に係
るモードフィルタの一実施例を示す図、第5図は本発明
の光ファイバの特性測定方法における入射端と出射端の
ファーフィルドパターンを示す図、第6図は実施例2の
損失測定の構成を示す図、第7図は同実施例における各
光ファイバ損失和と接続時損失の関係を示すグラフ、第
8図はモードスクランブラのみを用いた場合の入射端と
出射端のファーフィールドパターンを示す図、第9図は
従来の光フアイバ損失測定方法を示す図である。 1・・・・・・光源 2・・・・・・モードスクランブラ 3・・・・・・モードフィルタ 4・・・・・・被測定光ファイバ 5・・・・・・パワーメータ
FIG. 1 is a block diagram showing an embodiment of an optical fiber measuring device to which the optical fiber characteristic measuring method of the present invention is applied; FIG. 2 is a diagram showing an embodiment of a mode scrambler according to the present invention; Figure 3 is a graph showing the relationship between mode stability and the number of windings by the mode scrambler, Figure 4 is a diagram showing an embodiment of the mode filter according to the present invention, and Figure 5 is a graph showing the relationship between the stability of the mode by the mode scrambler and the number of wraps. A diagram showing the far-field pattern at the input end and output end in the characteristic measurement method, Figure 6 is a diagram showing the configuration of loss measurement in Example 2, and Figure 7 is the sum of each optical fiber loss and connection loss in the same example. FIG. 8 is a graph showing the far-field pattern at the input end and output end when only a mode scrambler is used, and FIG. 9 is a diagram showing a conventional optical fiber loss measurement method. 1... Light source 2... Mode scrambler 3... Mode filter 4... Optical fiber to be measured 5... Power meter

Claims (1)

【特許請求の範囲】[Claims] 光ファイバの入射端と出射端における光出力を比較して
その特性を測定するに際し、光ファイバを8の字に巻き
付けてなるモードスクランブラにより光源光を安定した
モード分布とした後、モードフィルタを通過させて前記
安定したモード分布の光を実質的に定常モード分布とし
て前記光ファイバの入射端に入射することを特徴とする
光ファイバの特性測定方法。
When comparing the optical output at the input end and the output end of an optical fiber to measure its characteristics, the light source light is made into a stable mode distribution using a mode scrambler made by winding the optical fiber in a figure 8 pattern, and then a mode filter is applied. A method for measuring characteristics of an optical fiber, characterized in that the light having the stable mode distribution is made to pass through and enter the input end of the optical fiber as a substantially steady mode distribution.
JP28430889A 1989-10-31 1989-10-31 Measuring method for characteristic of optical fiber Pending JPH03144337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28430889A JPH03144337A (en) 1989-10-31 1989-10-31 Measuring method for characteristic of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28430889A JPH03144337A (en) 1989-10-31 1989-10-31 Measuring method for characteristic of optical fiber

Publications (1)

Publication Number Publication Date
JPH03144337A true JPH03144337A (en) 1991-06-19

Family

ID=17676859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28430889A Pending JPH03144337A (en) 1989-10-31 1989-10-31 Measuring method for characteristic of optical fiber

Country Status (1)

Country Link
JP (1) JPH03144337A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187774A (en) * 2006-01-12 2007-07-26 Shinka Jitsugyo Kk Method of manufacturing optical module for multimode
JP2009136323A (en) * 2007-12-03 2009-06-25 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring apparatus
JP2015175958A (en) * 2014-03-14 2015-10-05 浜松ホトニクス株式会社 Semiconductor laser module, semiconductor laser light source, and semiconductor laser system
WO2017014195A1 (en) * 2015-07-17 2017-01-26 アダマンド株式会社 Mode scrambler
JP2017223684A (en) * 2012-05-07 2017-12-21 フルークコーポレイションFluke Corporation Optical fiber mode conditioner
US10845523B2 (en) 2013-09-20 2020-11-24 Asml Netherlands B.V. Laser-operated light source

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187774A (en) * 2006-01-12 2007-07-26 Shinka Jitsugyo Kk Method of manufacturing optical module for multimode
JP2009136323A (en) * 2007-12-03 2009-06-25 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring apparatus
JP2017223684A (en) * 2012-05-07 2017-12-21 フルークコーポレイションFluke Corporation Optical fiber mode conditioner
US10845523B2 (en) 2013-09-20 2020-11-24 Asml Netherlands B.V. Laser-operated light source
JP2015175958A (en) * 2014-03-14 2015-10-05 浜松ホトニクス株式会社 Semiconductor laser module, semiconductor laser light source, and semiconductor laser system
WO2017014195A1 (en) * 2015-07-17 2017-01-26 アダマンド株式会社 Mode scrambler
JPWO2017014195A1 (en) * 2015-07-17 2018-06-28 アダマンド並木精密宝石株式会社 Mode scrambler
US10254482B2 (en) 2015-07-17 2019-04-09 Adamant Co., Ltd. Mode scrambler

Similar Documents

Publication Publication Date Title
SE443243B (en) OPTICAL SQUARE CONTROLLERS
JPS61264304A (en) Optical fiber terminal and making thereof
JPH03144337A (en) Measuring method for characteristic of optical fiber
Horiguchi et al. Low-attenuation variable mode control using twist processing for step-index optical fiber loops
JP2012150002A (en) Cutoff wavelength measuring method, operation mode determination method and apparatus for the methods
EP3447553A1 (en) Method for manufacturing optical device, method for manufacturing laser device, method for adjusting beam quality of laser device
JPWO2019167959A1 (en) Mode controller
JP5365338B2 (en) Cut-off wavelength measuring method and optical communication system
Szarka et al. A review of biconical taper couplers
JP4322630B2 (en) Evaluation method of cut-off wavelength characteristics of single-mode optical fiber
RU173145U1 (en) Vortex fiber optic filter
Lieber et al. Three-step index strictly single-mode, only F-doped silica fibers for broad-band low dispersion
JPH037061B2 (en)
JPH05272920A (en) Optical-fiber displacement gage
WO2019073623A1 (en) Optical-fiber-type measurement device and optical-fiber-type measurement method
CN111999815B (en) Tunable optical fiber filter based on few-mode-multimode-few-mode structure
JP3151053B2 (en) Optical fiber transmission equipment
Duan et al. All-fiber spectrometer based on coreless fiber
JPH0658289B2 (en) Optical fiber measurement method
Tokuda et al. Design and characteristics of standard launching fiber for optical loss measurement
JPH0235928B2 (en) HIKARIFUAIBANOKOZOPARAMEETASOKUTEIHOHO
JPH0280935A (en) Method for measuring cut-off wavelength of single mode optical fiber
JPH01133007A (en) Optical fiber
Gonthier et al. Circularly symmetric modal interferometers: Equalization wavelength and equivalent step determination for matched-cladding fibers
JPH0293612A (en) Mode conversion adapter