JP2012150002A - Cutoff wavelength measuring method, operation mode determination method and apparatus for the methods - Google Patents

Cutoff wavelength measuring method, operation mode determination method and apparatus for the methods Download PDF

Info

Publication number
JP2012150002A
JP2012150002A JP2011008853A JP2011008853A JP2012150002A JP 2012150002 A JP2012150002 A JP 2012150002A JP 2011008853 A JP2011008853 A JP 2011008853A JP 2011008853 A JP2011008853 A JP 2011008853A JP 2012150002 A JP2012150002 A JP 2012150002A
Authority
JP
Japan
Prior art keywords
wavelength
light wave
mode
optical fiber
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011008853A
Other languages
Japanese (ja)
Inventor
Takashi Matsui
隆 松井
Kazuhide Nakajima
和秀 中島
Yukihiro Goto
幸弘 五藤
Toshio Kurashima
利雄 倉嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2011008853A priority Critical patent/JP2012150002A/en
Publication of JP2012150002A publication Critical patent/JP2012150002A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To specify a cutoff wavelength even in an optical fiber in which a wavelength characteristic of a loss difference between a basic mode and a first higher order mode is easy.SOLUTION: A light wave of a predetermined wavelength is extracted from a light wave generated from a wide band light source 1 by a spectrometer 2, the extracted light wave is made to incident on one end of an optical fiber A to be measured, and based on optical power outputted from a light receiving part 4 when an aperture angle on a variable aperture 3 is successively changed in a state excited in a multimode, a mode field diameter is calculated. The calculation of the mode field diameter is repeated by changing the wavelength extracted by the spectrometer 2 to measure the wavelength characteristics of mode field diameters in multimode excitation. A higher order mode remover 7 is inserted between the spectrometer 2 and one end of the optical fiber A to be measured, the wavelength characteristics of mode field diameters in single mode excitation is similarly measured, and a wavelength indicating that a compared value between both the wavelength characteristics becomes a predetermined value is set as a cutoff wavelength.

Description

本発明は、光ファイバの遮断波長の測定および任意の波長帯における光ファイバの動作モードの判定技術に関する。   The present invention relates to a technique for measuring a cutoff wavelength of an optical fiber and determining an operation mode of the optical fiber in an arbitrary wavelength band.

高速かつ広帯域な光伝送を実現するため、使用波長帯域における伝搬モード数が1であり、モード分散を生じない単一モードファイバ(SMF)が広く利用されている。SMFではファイバ構造によって決定されるモードフィールド径(MFD)、遮断波長、曲げ損失が主なパラメータであるが、単一モード伝送を保証するために遮断波長は重要なパラメータとなっている。また最近では空孔構造を導入した光ファイバにおいて、どの波長帯でも単一モード動作を保証できるEndlessly single modeと呼ばれる単一モード特性が知られており、伝送波長帯域の拡大による超大容量伝送の実現が期待されている。   In order to realize high-speed and wide-band optical transmission, a single mode fiber (SMF) that has one propagation mode in the used wavelength band and does not cause mode dispersion is widely used. In SMF, the mode field diameter (MFD), cut-off wavelength, and bending loss determined by the fiber structure are the main parameters, but cut-off wavelength is an important parameter to ensure single-mode transmission. Recently, single-mode characteristics called endlessly single mode, which can guarantee single-mode operation in any wavelength band, are known in optical fibers with a hole structure. Realization of ultra-high-capacity transmission by expanding the transmission wavelength band Is expected.

従来、遮断波長を測定するためには、曲げ法およびマルチモード励振法が利用されており、光ファイバ中の基本モードおよび第1高次モードの損失差の波長特性を測定し、損失差が急激に変化する波長を遮断波長として特定していた。また特許文献1では、軸ずれ励振時のFar field pattern測定を行い、測定結果の形状から測定波長での単一モード動作性を確認する方法が提案されており、曲げ損失を低減した低曲げ損失ファイバに適用可能であった。   Conventionally, a bending method and a multi-mode excitation method have been used to measure the cutoff wavelength. The wavelength characteristic of the loss difference between the fundamental mode and the first higher-order mode in the optical fiber is measured. The wavelength that changes to is specified as the cutoff wavelength. Patent Document 1 proposes a method of performing Far field pattern measurement at the time of off-axis excitation and confirming single mode operability at the measurement wavelength from the shape of the measurement result, and has a low bending loss with reduced bending loss. Applicable to fiber.

しかしながら、空孔構造を有する光ファイバなど、第1高次モードの漏洩損失が波長に対して緩やかに変化する光ファイバでは、遮断波長の特定、即ち損失差が急激に変化する波長の抽出が困難であり、また任意の波長の測定結果から当該波長における動作モードを判定、即ち単一モード(Single Mode:SM)動作であるかマルチモード(Multi Mode:MM)動作であるかを判定することが困難であるという課題があった。また特許文献1の方法を用いて広い波長帯で測定を行う際には、測定を行いたい波長帯に応じて複数の光源が必要であるという課題があった。   However, in an optical fiber such as an optical fiber having a hole structure in which the leakage loss of the first higher-order mode changes gently with respect to the wavelength, it is difficult to specify the cutoff wavelength, that is, extract the wavelength at which the loss difference changes abruptly. In addition, it is possible to determine the operation mode at the wavelength from the measurement result of an arbitrary wavelength, that is, to determine whether the operation is a single mode (SM) operation or a multi mode (MM) operation. There was a problem that it was difficult. Moreover, when measuring in a wide wavelength band using the method of Patent Document 1, there is a problem that a plurality of light sources are required depending on the wavelength band to be measured.

本発明では、周知のVariable Aperture(VA)法を用いて単一モード励振時およびマルチモード励振時のモードフィールド径の波長特性を測定し、両者を比較することにより、前記課題を解決する。   In the present invention, the wavelength characteristic of the mode field diameter at the time of single mode excitation and multimode excitation is measured using the well-known Variable Aperture (VA) method, and the both are compared, thereby solving the above-mentioned problem.

本発明によれば、空孔構造光ファイバなど、基本モードと第1高次モードとの損失差の波長特性が緩やかな光ファイバに対しても遮断波長を特定でき、任意の波長帯における動作モードを判定することができる、といった効果を奏する。   According to the present invention, it is possible to specify a cutoff wavelength even for an optical fiber having a gradual wavelength characteristic of a loss difference between a fundamental mode and a first higher-order mode, such as a hole structure optical fiber, and an operation mode in an arbitrary wavelength band. It is possible to determine whether or not.

本発明の遮断波長測定および動作モード判定装置の実施の形態の一例を示す構成図である。It is a block diagram which shows an example of embodiment of the cutoff wavelength measurement of this invention, and an operation mode determination apparatus. 本発明装置における基本モードおよび第1高次モードが混在したときに算出されるMFDの一例を示す特性図である。It is a characteristic view which shows an example of MFD calculated when the basic mode and 1st high-order mode in this invention apparatus are mixed. 本発明装置による遮断波長の測定結果の一例を示す特性図である。It is a characteristic view which shows an example of the measurement result of the cutoff wavelength by this invention apparatus. 本発明装置による遮断波長の測定結果の他の例を示す特性図である。It is a characteristic view which shows the other example of the measurement result of the cut-off wavelength by this invention apparatus. 本発明装置による動作モードの判定結果の一例を示す特性図である。It is a characteristic view which shows an example of the determination result of the operation mode by this invention apparatus. 本発明装置におけるMFDの比較値とMPIとの関係の一例を示す特性図である。It is a characteristic view which shows an example of the relationship between the comparison value of MFD in this invention apparatus, and MPI. 本発明装置における測定手順の一例を示すフローチャートである。It is a flowchart which shows an example of the measurement procedure in this invention apparatus.

以下、図面を参照して発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の遮断波長測定および動作モード判定装置の実施の形態の一例を示すもので、図中、1は広帯域光源、2は分光器、3は可変開口(Variable Aperture)部、4は受光部、5は信号処理部、6は表示部、7は高次モード除去器、8は調芯台、9はレンズである。   FIG. 1 shows an example of an embodiment of a cutoff wavelength measurement and operation mode determination apparatus according to the present invention. In the figure, 1 is a broadband light source, 2 is a spectroscope, 3 is a variable aperture unit, 4 is A light receiving unit, 5 is a signal processing unit, 6 is a display unit, 7 is a high-order mode remover, 8 is an alignment table, and 9 is a lens.

広帯域光源1は、比較的広い波長帯に亘る光波を発生するもので、白色光源、LED、SLD、SC光などが利用できる。分光器2は、広帯域光源1で発せられた光波から被測定光ファイバ、例えばAの一端に入射するための任意の波長の光波を取り出す。   The broadband light source 1 generates a light wave over a relatively wide wavelength band, and a white light source, LED, SLD, SC light, or the like can be used. The spectroscope 2 extracts a light wave having an arbitrary wavelength for entering one end of the optical fiber to be measured, for example, A from the light wave emitted from the broadband light source 1.

可変開口部3は、被測定光ファイバAの他端と受光部4との間に設置され、被測定光ファイバAの他端から出射される光波の開口角を任意に設定する。受光部4は、可変開口部3を介して被測定光ファイバAの他端から出射される光波を受光し、その光パワーに応じた電気信号に変換する。信号処理部5は、受光部4から出力された電気信号を記録し、後述する如く処理して遮断波長測定および動作モード判定を行う。表示部6は、信号処理部5で処理された結果を表示する。   The variable opening 3 is installed between the other end of the measured optical fiber A and the light receiving unit 4 and arbitrarily sets the opening angle of the light wave emitted from the other end of the measured optical fiber A. The light receiving unit 4 receives a light wave emitted from the other end of the optical fiber A to be measured through the variable opening 3 and converts the light wave into an electric signal corresponding to the optical power. The signal processing unit 5 records the electrical signal output from the light receiving unit 4 and processes it as described later to perform the cutoff wavelength measurement and the operation mode determination. The display unit 6 displays the result processed by the signal processing unit 5.

高次モード除去器7は、分光器2の出力光から高次モード光を除去するためのもので、測定波長帯で単一モード動作が可能な単一モード光ファイバなどが利用できる。なお、後述するように、高次モード除去器7はSM励振を行う場合にのみ、分光器2と被測定光ファイバAの一端との間に挿入される。調芯台8は、被測定光ファイバAの他端を可変開口部3に対する所定の位置に位置合わせするためのものであり、また、レンズ9は可変開口部3を通過した光波を受光部4に集光するためのものである。   The high-order mode remover 7 is for removing high-order mode light from the output light of the spectroscope 2, and a single-mode optical fiber capable of single-mode operation in the measurement wavelength band can be used. As will be described later, the higher-order mode remover 7 is inserted between the spectroscope 2 and one end of the optical fiber A to be measured only when SM excitation is performed. The alignment base 8 is for aligning the other end of the optical fiber A to be measured to a predetermined position with respect to the variable opening 3, and the lens 9 receives the light wave that has passed through the variable opening 3 as the light receiving unit 4. For condensing light.

前記構成において、広帯域光源1から発せられた光波は分光器2により所定の波長、例えばλの光波が取り出された後、被測定光ファイバAの一端に入射される。被測定光ファイバAを伝搬し、その他端から出射された光波は可変開口部3により任意の開口角に絞られ、受光部4に受光され、このときの光パワーが信号処理部5で記録される。可変開口部3における開口角を逐次変化させ、それぞれの開口角における光パワーを取得し、これらに基づき、下記式(1)、(2)、(3)によって波長λにおけるMFDに変換する。   In the above configuration, the light wave emitted from the broadband light source 1 is incident on one end of the optical fiber A to be measured after the spectroscope 2 extracts a light wave having a predetermined wavelength, for example, λ. A light wave propagating through the optical fiber A to be measured and emitted from the other end is narrowed to an arbitrary opening angle by the variable opening 3 and received by the light receiving unit 4, and the optical power at this time is recorded by the signal processing unit 5. The The aperture angle in the variable aperture 3 is sequentially changed, the optical power at each aperture angle is acquired, and based on these, it is converted to MFD at the wavelength λ by the following equations (1), (2), and (3).

Figure 2012150002
Figure 2012150002

Figure 2012150002
Figure 2012150002

Figure 2012150002
Figure 2012150002

ここで、θiは開口角(i=1,2,…n)、P(θi)は開口角θiにおける光パワー、2W(λ)は波長λにおけるMFDを表す。なお、VA法によるMFDの測定手順および計算手順は非特許文献1に詳述されている。 Here, θ i represents the aperture angle (i = 1, 2,... N), P (θ i ) represents the optical power at the aperture angle θ i , and 2W (λ) represents the MFD at the wavelength λ. The MFD measurement procedure and calculation procedure by the VA method are described in detail in Non-Patent Document 1.

本発明の遮断波長測定および動作モード判定装置では、分光器2により取り出す波長を変更、例えば所定の波長間隔で変更して前記同様の動作を繰り返すことにより、MFDの波長特性を測定する。   In the cutoff wavelength measurement and operation mode determination device of the present invention, the wavelength characteristic of the MFD is measured by changing the wavelength extracted by the spectrometer 2, for example, by changing the wavelength at a predetermined wavelength interval and repeating the same operation.

また、本発明の遮断波長測定および動作モード判定装置では、測定するMFDの波長特性として、複数のモードが伝搬可能な状態(マルチモード励振:MM励振)におけるMFDの波長特性と、基本モードのみが伝搬可能な状態(単一モード励振:SM励振)におけるMFDの波長特性とを測定し、これらを比較することにより、遮断波長の特定および動作モードの判定を行う。   Further, in the cutoff wavelength measurement and operation mode determination apparatus of the present invention, only the fundamental mode and the MFD wavelength characteristics in a state in which a plurality of modes can propagate (multi-mode excitation: MM excitation) are used as the wavelength characteristics of the MFD to be measured. The wavelength characteristics of the MFD in a state where propagation is possible (single mode excitation: SM excitation) is measured, and these are compared to identify the cutoff wavelength and determine the operation mode.

ここで、MM励振を行う場合には、分光器2から空間結合により直接、被測定光ファイバAの一端に光波を入射するか、マルチモードファイバなどの伝搬モード数が2以上である光ファイバを分光器2と被測定光ファイバAの一端との間に挿入する。またSM励振を行う場合には、高次モード除去器7を分光器2と被測定光ファイバAの一端との間に挿入する。ここで、高次モード除去器7を単一モード光ファイバで構成した場合、当該単一モード光ファイバに曲げを加えると、光ファイバ中のクラッドモード(クラッド層もしくは被覆を伝搬する光)を除去でき、これによって測定波長帯で安定な単一モード動作を実現することができるため、測定結果の誤差を小さくできる。   Here, when performing MM excitation, a light wave is directly incident on one end of the optical fiber A to be measured from the spectroscope 2 by spatial coupling, or an optical fiber having a propagation mode number of 2 or more such as a multimode fiber is used. It is inserted between the spectroscope 2 and one end of the optical fiber A to be measured. When performing SM excitation, the higher-order mode remover 7 is inserted between the spectrometer 2 and one end of the optical fiber A to be measured. Here, when the higher-order mode remover 7 is composed of a single mode optical fiber, if the single mode optical fiber is bent, the cladding mode (light propagating through the cladding layer or coating) in the optical fiber is removed. This makes it possible to realize a stable single mode operation in the measurement wavelength band, thereby reducing errors in measurement results.

図2は本発明の遮断波長測定および動作モード判定装置における、基本モードおよび第1高次モードが混在したときに算出されるMFDの一例を示す特性図である。ここで、横軸は基本モード(LP01)のパワーP01に対する第1高次モード(LP11)のパワーP11の割合(P11/P01)を表し、縦軸(左:実線)は両モードが混ざり合った電界分布φ(x,y)を用いて下記式(4)のFFPモーメントを用いて数値計算によって求めたMFDである。また、縦軸(右:破線)は、SM励振時(P11/P01=0)のMFD(2W0)と任意のパワー比のMFD(2W)を用いて10log(W/W0)にて求めた比較値である。 FIG. 2 is a characteristic diagram showing an example of MFD calculated when the fundamental mode and the first higher-order mode coexist in the cutoff wavelength measurement and operation mode determination device of the present invention. Here, the horizontal axis represents the ratio (P11 / P01) of the power P11 of the first higher-order mode (LP11) to the power P01 of the basic mode (LP01), and the vertical axis (left: solid line) is a mixture of both modes. It is MFD calculated | required by numerical calculation using the FFP moment of following formula (4) using electric field distribution (phi) (x, y). The vertical axis (right: broken line) is obtained at 10 logs (W / W 0 ) using MFD (2W 0 ) at SM excitation (P11 / P01 = 0) and MFD (2W) of an arbitrary power ratio. Comparison value.

Figure 2012150002
Figure 2012150002

被測定光ファイバは、コアの直径2aが9.0μm、比屈折率差Δが0.35%であるステップ型屈折率分布の単一モードファイバ(SMF)とし、波長は1200nmとした。P11/P01=0となるSM励振時では、MFDは8.83μmだった。   The optical fiber to be measured was a single-mode fiber (SMF) having a step-type refractive index distribution with a core diameter 2a of 9.0 μm and a relative refractive index difference Δ of 0.35%, and a wavelength of 1200 nm. At the time of SM excitation where P11 / P01 = 0, the MFD was 8.83 μm.

また図2よりP11/P01が大きくなると、算出されるMFDが小さくなることがわかる。これはLP11の電界分布が足し合わされることで式(4)中の電界分布φ(x,y)が変化し、特にファイバ中心付近における電界分布の変化が大きくなり、式(4)の分子が増加することに起因する。LP01とLP11が混ざり合った状態は、測定ではMM励振に対応する。   Further, FIG. 2 shows that the calculated MFD decreases as P11 / P01 increases. This is because the electric field distribution φ (x, y) in the equation (4) changes due to the addition of the electric field distribution of LP11, and the change in the electric field distribution particularly near the center of the fiber becomes large. Due to the increase. The state where LP01 and LP11 are mixed corresponds to MM excitation in the measurement.

ここで、単一モード動作領域では高次モードが伝搬不可能となるため即座に漏洩し、当該波長帯でMM励振を行っても、受光端では基本モードのみが出射される。即ち、SM励振およびMM励振でMFDを測定した場合、単一モード動作領域では両者は同じ測定結果を示し、マルチモード動作領域では両者は異なる結果を示す。従って、図1に示したSM励振およびMM励振それぞれにおけるMFDを測定し、それぞれのMFDの測定値の差分を検出することにより、測定波長における単一モード動作またはマルチモード動作を判定できる。   Here, in the single mode operation region, the higher order mode cannot be propagated, so that it immediately leaks, and even when MM excitation is performed in the wavelength band, only the fundamental mode is emitted at the light receiving end. That is, when MFD is measured by SM excitation and MM excitation, both show the same measurement result in the single mode operation region, and both show different results in the multimode operation region. Therefore, by measuring the MFD in each of the SM excitation and the MM excitation shown in FIG. 1 and detecting the difference between the measured values of each MFD, it is possible to determine single mode operation or multimode operation at the measurement wavelength.

次に、本発明を用いて遮断波長を測定した一例を示す。   Next, an example of measuring the cutoff wavelength using the present invention is shown.

図3は本発明の遮断波長測定および動作モード判定装置による測定結果の一例を示す特性図である。ここで、被測定光ファイバは一般的な1.3μm帯SMFとし、長さは22mとした。   FIG. 3 is a characteristic diagram showing an example of a measurement result obtained by the cutoff wavelength measurement and operation mode determination device of the present invention. Here, the optical fiber to be measured was a general 1.3 μm band SMF, and the length was 22 m.

図3(a)は従来のMM励振法を用いた測定結果を示す。MM励振法では被測定光ファイバの出射光パワーとマルチモードファイバの出射光パワーとを比較し、長波長帯で両者のパワー差を直線近似した直線から+0.1dB平行移動した直線を引き、これと測定結果との交点を遮断波長として特定する。図3(a)より、ここで用いたSMFの遮断波長は1184nmと特定される。   FIG. 3A shows a measurement result using the conventional MM excitation method. In the MM excitation method, the output light power of the optical fiber to be measured and the output light power of the multimode fiber are compared, and a straight line that is translated by +0.1 dB is drawn from a straight line approximating the power difference between the two in the long wavelength band. And the intersection of the measurement results is specified as the cutoff wavelength. From FIG. 3A, the cutoff wavelength of the SMF used here is specified as 1184 nm.

図3(b)は本発明の遮断波長測定方法を用いた測定結果を示す。ここで、図中の□および◇はそれぞれSM励振およびMM励振時におけるMFDの測定結果WSMおよびWMMを表し、●は両者の測定結果の比10log(WMM/WSM)を表す。図3(b)では、波長1200nm以上ではそれぞれの励振条件で同等のMFDの値が得られ、●で表される両者の比は0.1dB以下であるが、1180〜1200nmの波長帯で変化が急激に大きくなっていることがわかる。 FIG.3 (b) shows the measurement result using the cutoff wavelength measuring method of this invention. Here, □ and ◇ in the figure represent MFD measurement results W SM and W MM at the time of SM excitation and MM excitation, respectively, and ● represents the ratio 10 log (W MM / W SM ) of both measurement results. In FIG. 3B, the same MFD value is obtained under each excitation condition at a wavelength of 1200 nm or more, and the ratio of both represented by ● is 0.1 dB or less, but changes in the wavelength band of 1180 to 1200 nm. It turns out that it grows rapidly.

単一モード動作波長帯では、SM励振とMM励振では理論的には同じMFDが得られるため、それぞれの励振条件における測定結果の差は測定精度に起因するものであり、ここでのMFDの測定精度は比にして0.1dB以下と考えられる。従って、1200nm未満の波長ではマルチモード伝搬によりMFDの測定結果の差が生じていると考えられる。従って、MFD比が−0.1dB以下となる波長がマルチモード領域とすると、図3(b)で破線で示したMFD比が−0.1dBの直線との交点から遮断波長は約1200nmと得られ、本発明の測定方法により従来の測定方法と同等の精度で遮断波長を特定できることが確認できる。なお、ここでは20nmの波長間隔でMFD測定を行った場合を示しているが、より短い間隔で測定を行うことにより、更に高精度な遮断波長測定が行える。   In the single-mode operating wavelength band, the same MFD is theoretically obtained for SM excitation and MM excitation. Therefore, the difference in measurement results under each excitation condition is due to measurement accuracy. The accuracy is considered to be 0.1 dB or less. Therefore, it is considered that there is a difference in MFD measurement results due to multimode propagation at wavelengths less than 1200 nm. Accordingly, if the wavelength at which the MFD ratio is −0.1 dB or less is in the multimode region, the cutoff wavelength is obtained as about 1200 nm from the intersection with the straight line having the MFD ratio of −0.1 dB shown by the broken line in FIG. It can be confirmed that the cutoff wavelength can be specified with the same accuracy as the conventional measurement method by the measurement method of the present invention. Although the case where MFD measurement is performed at a wavelength interval of 20 nm is shown here, the cutoff wavelength measurement can be performed with higher accuracy by measuring at a shorter interval.

図4は本発明の遮断波長測定および動作モード判定装置による測定結果の他の例を示す特性図である。ここで、被測定光ファイバは空孔を付与することにより曲げ損失を大幅に改善した、空孔アシスト型光ファイバであり、長さは2mとした。   FIG. 4 is a characteristic diagram showing another example of a measurement result obtained by the cutoff wavelength measurement and operation mode determination device of the present invention. Here, the optical fiber to be measured is a hole assist type optical fiber in which bending loss is greatly improved by providing holes, and the length is 2 m.

図4(a)は従来のMM励振法を用いた測定結果を示す。図4(a)では実線と破線の交点が1200nmおよび1300nmである上、波長1200〜1300nmにおいて雑音成分が多く重畳され、単一モード動作を判定することが難しく、遮断波長を特定することが困難である。   FIG. 4A shows the measurement result using the conventional MM excitation method. In FIG. 4A, the intersections of the solid line and the broken line are 1200 nm and 1300 nm, and many noise components are superimposed at wavelengths of 1200 to 1300 nm, making it difficult to determine single mode operation and to specify the cutoff wavelength. It is.

図4(b)は本発明の遮断波長測定方法を用いた測定結果を示し、図中の凡例は図3(b)と同じである。図4(b)では、長波長側では●で表されるSM励振およびMM励振におけるMFDの比は、図3(b)で得られた測定精度(±0.1dB)内の差だったが、1340nm未満の波長帯においてMFDの比が単調に減少した。従って、図3(b)と同様に、MFDの比が−0.1dB以下となる波長はマルチモード領域と考えられると、図4(b)では遮断波長を約1330nmとなる。さらに従来のMM励振法と比較すると、遮断波長付近の雑音成分が小さく、遮断波長を特定する際の誤差を低減できる。従って、本発明の測定法により、空孔アシスト型光ファイバを含む低曲げ損失光ファイバの遮断波長の特定を、精度良く行えることがわかる。   FIG. 4 (b) shows the measurement results using the cutoff wavelength measuring method of the present invention, and the legend in the figure is the same as FIG. 3 (b). In FIG. 4B, on the long wavelength side, the ratio of MFD in SM excitation and MM excitation represented by ● is a difference within the measurement accuracy (± 0.1 dB) obtained in FIG. The MFD ratio monotonously decreased in the wavelength band below 1340 nm. Therefore, as in FIG. 3B, when the wavelength at which the MFD ratio is −0.1 dB or less is considered to be a multimode region, the cutoff wavelength is about 1330 nm in FIG. 4B. Furthermore, compared with the conventional MM excitation method, the noise component near the cutoff wavelength is small, and the error in specifying the cutoff wavelength can be reduced. Therefore, it can be understood that the cutoff wavelength of the low bending loss optical fiber including the hole-assisted optical fiber can be specified with high accuracy by the measurement method of the present invention.

次に、本発明を用いた動作モードの判定方法、および判定結果を用いた伝送特性の推定方法を示す。   Next, an operation mode determination method using the present invention and a transmission characteristic estimation method using the determination result will be described.

図5は本発明の遮断波長測定および動作モード判定装置による動作モードの測定結果の一例を示す特性図である。ここで、被測定光ファイバは均一な純石英ガラス中に複数の空孔を有するフォトニック結晶ファイバ(PCF)を2種類(PCF−1,PCF−2)用い、長さは2mとした。また、PCF−1の空孔直径dと空孔間ピッチΛとの比d/Λは約0.31であり、非特許文献2に記載されるEndlessly single-modeの条件(d/Λ<0.43)を満たす。即ち、PCF−1は遮断波長を持たず、任意の波長において単一モード動作を実現できる。一方、PCF−2のd/Λは約0.73であり、非特許文献2より、任意の波長においてマルチモード動作と推定される。図5(a)および(b)はそれぞれ、従来のMM励振法および本発明の測定方法を用いた測定結果を示す。   FIG. 5 is a characteristic diagram showing an example of the measurement result of the operation mode by the cutoff wavelength measurement and operation mode determination device of the present invention. Here, two types of photonic crystal fibers (PCF) (PCF-1 and PCF-2) having a plurality of holes in uniform pure silica glass were used as the optical fiber to be measured, and the length was 2 m. The ratio d / Λ between the hole diameter d of PCF-1 and the pitch Λ between holes is about 0.31, and the endlessly single-mode condition (d / Λ <0.43) described in Non-Patent Document 2 is satisfied. Fulfill. That is, PCF-1 does not have a cutoff wavelength, and can realize single mode operation at an arbitrary wavelength. On the other hand, d / Λ of PCF-2 is about 0.73, and it is estimated from Non-Patent Document 2 that multimode operation is performed at an arbitrary wavelength. 5 (a) and 5 (b) show measurement results using the conventional MM excitation method and the measurement method of the present invention, respectively.

図5(a)ではPCF−1およびPCF−2に対して、測定波長帯(1000〜1600nm)において基本モードと高次モードの損失差が変化する波長が存在しないため、遮断波長を特定できず、さらには測定波長帯における単一モード動作を判定することはできない。一方、図5(b)では、SM励振とMM励振のMFDの差が変化する波長はPCF−1,PCF−2どちらでも存在しないため、測定波長帯の中には遮断波長は存在しない。   In FIG. 5A, the cutoff wavelength cannot be specified because there is no wavelength at which the loss difference between the fundamental mode and the higher-order mode changes in the measurement wavelength band (1000 to 1600 nm) with respect to PCF-1 and PCF-2. Furthermore, single mode operation in the measurement wavelength band cannot be determined. On the other hand, in FIG. 5B, there is no cutoff wavelength in the measurement wavelength band because the wavelength at which the difference in MFD between SM excitation and MM excitation changes does not exist in either PCF-1 or PCF-2.

またPCF−1では測定波長帯全体に亘って両者のMFDは一致し、MFD比は±0.1dBの範囲であったが、PCF−2ではどの波長でもMFDは一致せず、MFD比は−0.1dB未満であった。従って、PCF−1は測定波長帯において単一モード動作、PCF−2はマルチモード動作と判定できる。   In PCF-1, both MFDs coincided over the entire measurement wavelength band, and the MFD ratio was in a range of ± 0.1 dB. However, in PCF-2, MFDs did not coincide at any wavelength, and the MFD ratio was −0.1. It was less than dB. Therefore, it can be determined that PCF-1 is a single mode operation in the measurement wavelength band and PCF-2 is a multimode operation.

これらの結果より、本発明の遮断波長測定および動作モード判定装置を用い、励振条件の違いによるMFD偏差の有無、もしくはMFD比率の変化に着目することで、従来では判定できなかった動作モードの判定を行うことができる。   From these results, using the cutoff wavelength measurement and operation mode determination device of the present invention, focusing on the presence or absence of MFD deviation due to the difference in excitation conditions or the change in MFD ratio, determination of the operation mode that could not be determined conventionally It can be performed.

上述のように、単一モードと判定した波長帯では単一モード伝送による高速伝送を保証することができる。一方、マルチモード動作と判定した波長帯においては、MFDの比較値を用いて伝送特性を推定することが可能である。非特許文献3によれば、多重経路干渉(MPI:Multi-Path Interference)を受光パワーの時間変動量ΔPを用いて、下記式(5)により算出できる。   As described above, high-speed transmission by single mode transmission can be guaranteed in the wavelength band determined to be single mode. On the other hand, in the wavelength band determined to be multimode operation, it is possible to estimate the transmission characteristics using the MFD comparison value. According to Non-Patent Document 3, multi-path interference (MPI) can be calculated by the following equation (5) using a temporal variation amount ΔP of received light power.

Figure 2012150002
Figure 2012150002

ここで、MPIは光信号の伝送特性と関係し、MPIの増加とともに伝送特性は劣化することが知られている(例えば、非特許文献4参照)。 Here, it is known that the MPI is related to the transmission characteristic of the optical signal, and the transmission characteristic deteriorates as the MPI increases (for example, see Non-Patent Document 4).

図6は計算によって求めた多光路干渉(MPI)を示す。ここで、計算に用いた光ファイバは図2で計算に用いたSMFと同じ構造とし、波長を1200nmとした。また計算ではLP01モードとLP11モードとの干渉により、(P01−P11)〜(P01+P11)の間でパワー変動が生じると仮定した。横軸は図2の縦軸(右)に対応し、縦軸はLP01モードとLP11モードとの比P11/P01を用いて式(5)により求めたMPIである。   FIG. 6 shows the multi-path interference (MPI) obtained by calculation. Here, the optical fiber used for the calculation had the same structure as the SMF used for the calculation in FIG. 2, and the wavelength was 1200 nm. In the calculation, it is assumed that power fluctuation occurs between (P01−P11) and (P01 + P11) due to interference between the LP01 mode and the LP11 mode. The horizontal axis corresponds to the vertical axis (right) in FIG. 2, and the vertical axis represents the MPI obtained by the equation (5) using the ratio P11 / P01 between the LP01 mode and the LP11 mode.

図6より、得られるMFDの値がSM励振時から乖離するほどMPIの値が大きくなり、伝送特性が劣化することがわかる。従って、MM励振時およびSM励振時のMFDを比較した値を用い、図2の関係によりLP01モードとLP11モードとのパワー比を導出し、式(5)を用いてMPI特性を計算することによって、本発明の方法により伝送特性の推定が可能となる。   FIG. 6 shows that the MPI value increases as the obtained MFD value deviates from that during SM excitation, and the transmission characteristics deteriorate. Therefore, by using the value obtained by comparing the MFD during MM excitation and SM excitation, the power ratio between the LP01 mode and the LP11 mode is derived from the relationship shown in FIG. 2, and the MPI characteristic is calculated using equation (5). The transmission characteristics can be estimated by the method of the present invention.

図7は本発明の遮断波長測定および動作モード判定装置における測定手順の一例を示すフローチャートである。MM励振およびSM励振を行い、被測定光ファイバに光波を入射し、式(1)〜(3)を用いてMFDの波長特性を測定する(s1,s2)。このとき、測定の順番は、MM励振およびSM励振のどちらを先に行っても良い。次に、測定によって得られたMFDの波長特性の比較を行う(s3)。   FIG. 7 is a flowchart showing an example of a measurement procedure in the cutoff wavelength measurement and operation mode determination apparatus of the present invention. MM excitation and SM excitation are performed, a light wave is incident on the optical fiber to be measured, and the wavelength characteristics of the MFD are measured using equations (1) to (3) (s1, s2). At this time, the order of measurement may be either MM excitation or SM excitation first. Next, the wavelength characteristics of the MFD obtained by the measurement are compared (s3).

このとき、MM励振およびSM励振におけるMFD波長特性をそれぞれ2WMM(λ)、2WSM(λ)とすると、比較値R(λ)を得る手法として、
差分:2WMM(λ)−2WSM(λ) (単位はμm)、
比:2WMM(λ)/2WSM(λ)、
対数比:10log10(2WMM(λ)/2WSM(λ)) (単位はdB)、
などの計算方法がある。
At this time, if the MFD wavelength characteristics in the MM excitation and the SM excitation are 2 W MM (λ) and 2 W SM (λ), respectively, as a method of obtaining the comparison value R (λ),
Difference: 2W MM (λ) -2W SM (λ) (unit: μm),
Ratio: 2W MM (λ) / 2W SM (λ),
Log ratio: 10log10 (2W MM (λ) / 2W SM (λ)) (unit is dB),
There is a calculation method.

なお、本発明では両者を比較することによって遮断波長の特定および動作モードの判定を行うので、比較方法は上記の3つに限定されない。   In the present invention, since the cut-off wavelength is specified and the operation mode is determined by comparing both, the comparison method is not limited to the above three methods.

R(λ)を取得した後、予め決めた閾値Rthを用いて遮断波長の特定および動作モードの判定を行う(s4,s5)。即ち、R(λ)=Rthとなる波長λが存在する場合、当該波長をλとして特定する(s6)。さらにR(λ)<Rthとなる波長帯は単一モード動作、R(λ)>Rthとなる波長帯はマルチモード動作として判定する(s7,s8)。ここで、遮断波長を特定する閾値と、単一モード動作およびマルチモード動作を判定する閾値は異なる値でも良い。 After acquiring R (λ), the cutoff wavelength is specified and the operation mode is determined using a predetermined threshold R th (s4, s5). That is, when there is a wavelength λ that satisfies R (λ) = R th , the wavelength is specified as λ (s6). Further, the wavelength band where R (λ) <R th is determined as single mode operation, and the wavelength band where R (λ)> R th is determined as multimode operation (s7, s8). Here, the threshold value for specifying the cutoff wavelength and the threshold value for determining the single mode operation and the multimode operation may be different values.

本発明は、光ファイバの遮断波長または動作モードの判定を行う試験に利用できる。   The present invention can be used for a test for determining the cutoff wavelength or the operation mode of an optical fiber.

1:広帯域光源、2:分光器、3:可変開口部、4:受光部、5:信号処理部、6:表示部、7:高次モード除去器、8:調芯台、9:レンズ、A:被測定光ファイバ。   1: broadband light source, 2: spectroscope, 3: variable aperture, 4: light receiving unit, 5: signal processing unit, 6: display unit, 7: higher-order mode remover, 8: alignment table, 9: lens, A: Optical fiber to be measured.

特許4322630号公報Japanese Patent No. 4322630

"Measurement methods and test procedures Mode field diameter," IEC 60793-1-45, 2001."Measurement methods and test procedures Mode field diameter," IEC 60793-1-45, 2001. M.Koshiba and K.Saitoh, "Applicability of classical optical fiber theories to holey fibers," Optics Letters, vol.29, no.15, pp.1739-1741, Aug. 2004.M.Koshiba and K.Saitoh, "Applicability of classical optical fiber theories to holey fibers," Optics Letters, vol.29, no.15, pp.1739-1741, Aug. 2004. S.Ramachandran, etc, "Measurement of multipath interference in the coherent crosstalk regime," IEEE Photon. Technol. Lett., vol.15, pp.1171-1173, 2003.S.Ramachandran, etc, "Measurement of multipath interference in the coherent crosstalk regime," IEEE Photon. Technol. Lett., Vol.15, pp.1171-1173, 2003. C.Fukai, etc, "Relationship between optical wiring conditions and MPI degradation," OFC2010, OWA1, 2010.C. Fukai, etc, "Relationship between optical wiring conditions and MPI degradation," OFC2010, OWA1, 2010.

Claims (4)

広帯域光源と、
前記広帯域光源で発せられた光波から被測定光ファイバの一端に入射するための任意の波長の光波を取り出す分光器と、
被測定光ファイバの他端から出射される光波の開口角を任意に設定する可変開口部と、
前記可変開口部を介して被測定光ファイバの他端から出射される光波を受光し、その光パワーに応じた電気信号に変換する受光部と、
受光部から出力される電気信号を記録して処理する信号処理部とを少なくとも用い、
前記信号処理部により、
広帯域光源で発せられた光波から所定の波長の光波を分光器により取り出して被測定光ファイバの一端に入射し、マルチモード励振させた状態で可変開口部における開口角を逐次変化させた時に受光部から出力される光パワーに基づいてモードフィールド径を算出し、これを分光器により取り出す波長を変えて繰り返してマルチモード励振時のモードフィールド径の波長特性を測定し、
広帯域光源で発せられた光波から所定の波長の光波を分光器により取り出して被測定光ファイバの一端に入射し、単一モード励振させた状態で可変開口部における開口角を逐次変化させた時に受光部から出力される光パワーに基づいてモードフィールド径を算出し、これを分光器により取り出す波長を変えて繰り返して単一モード励振時のモードフィールド径の波長特性を測定し、
マルチモード励振時のモードフィールド径の波長特性と、単一モード励振時のモードフィールド径の波長特性とを比較し、
前記比較値が所定の値となる波長を計測して遮断波長を測定する
ことを特徴とする遮断波長測定方法。
A broadband light source;
A spectroscope for extracting a light wave of an arbitrary wavelength to be incident on one end of an optical fiber to be measured from the light wave emitted from the broadband light source;
A variable opening for arbitrarily setting the opening angle of the light wave emitted from the other end of the optical fiber to be measured;
A light receiving unit that receives a light wave emitted from the other end of the optical fiber to be measured through the variable opening, and converts the light wave into an electric signal according to the optical power;
Using at least a signal processing unit that records and processes an electrical signal output from the light receiving unit,
By the signal processing unit,
A light receiving unit when a light wave of a predetermined wavelength is extracted from a light wave emitted from a broadband light source by a spectrograph and incident on one end of an optical fiber to be measured, and the aperture angle in the variable aperture is sequentially changed in a multimode excited state. Calculate the mode field diameter based on the optical power output from, and repeat this by changing the wavelength extracted by the spectrometer, and measure the wavelength characteristics of the mode field diameter during multi-mode excitation,
A light wave of a predetermined wavelength is extracted from the light wave emitted from a broadband light source by a spectrograph and incident on one end of the optical fiber to be measured, and received when the aperture angle at the variable aperture is sequentially changed in a single mode excited state. The mode field diameter is calculated based on the optical power output from the unit, and the wavelength characteristic of the mode field diameter at the time of single mode excitation is measured repeatedly by changing the wavelength extracted by the spectrometer,
Compare the wavelength characteristics of the mode field diameter during multimode excitation with the wavelength characteristics of the mode field diameter during single mode excitation.
A cutoff wavelength measurement method, wherein the cutoff wavelength is measured by measuring a wavelength at which the comparison value is a predetermined value.
広帯域光源と、
前記広帯域光源で発せられた光波から被測定光ファイバの一端に入射するための任意の波長の光波を取り出す分光器と、
被測定光ファイバの他端から出射される光波の開口角を任意に設定する可変開口部と、
前記可変開口部を介して被測定光ファイバの他端から出射される光波を受光し、その光パワーに応じた電気信号に変換する受光部と、
受光部から出力される電気信号を記録して処理する信号処理部とを少なくとも用い、
前記信号処理部により、
広帯域光源で発せられた光波から所定の波長の光波を分光器により取り出して被測定光ファイバの一端に入射し、マルチモード励振させた状態で可変開口部における開口角を逐次変化させた時に受光部から出力される光パワーに基づいてモードフィールド径を算出し、これを分光器により取り出す波長を変えて繰り返してマルチモード励振時のモードフィールド径の波長特性を測定し、
広帯域光源で発せられた光波から所定の波長の光波を分光器により取り出して被測定光ファイバの一端に入射し、単一モード励振させた状態で可変開口部における開口角を逐次変化させた時に受光部から出力される光パワーに基づいてモードフィールド径を算出し、これを分光器により取り出す波長を変えて繰り返して単一モード励振時のモードフィールド径の波長特性を測定し、
マルチモード励振時のモードフィールド径の波長特性と、単一モード励振時のモードフィールド径の波長特性とを比較し、
前記比較値が所定の値以下であるか否かを判定することによって、測定波長帯で被測定光ファイバの動作モードが単一モード動作かマルチモード動作かを判定する
ことを特徴とする動作モード判定方法。
A broadband light source;
A spectroscope for extracting a light wave of an arbitrary wavelength to be incident on one end of an optical fiber to be measured from the light wave emitted from the broadband light source;
A variable opening for arbitrarily setting the opening angle of the light wave emitted from the other end of the optical fiber to be measured;
A light receiving unit that receives a light wave emitted from the other end of the optical fiber to be measured through the variable opening, and converts the light wave into an electric signal according to the optical power;
Using at least a signal processing unit that records and processes an electrical signal output from the light receiving unit,
By the signal processing unit,
A light receiving unit when a light wave of a predetermined wavelength is extracted from a light wave emitted from a broadband light source by a spectrograph and incident on one end of an optical fiber to be measured, and the aperture angle in the variable aperture is sequentially changed in a multimode excited state. Calculate the mode field diameter based on the optical power output from, and repeat this by changing the wavelength extracted by the spectrometer, and measure the wavelength characteristics of the mode field diameter during multi-mode excitation,
A light wave of a predetermined wavelength is extracted from the light wave emitted from a broadband light source by a spectrograph and incident on one end of the optical fiber to be measured, and received when the aperture angle at the variable aperture is sequentially changed in a single mode excited state. The mode field diameter is calculated based on the optical power output from the unit, and the wavelength characteristic of the mode field diameter at the time of single mode excitation is measured repeatedly by changing the wavelength extracted by the spectrometer,
Compare the wavelength characteristics of the mode field diameter during multimode excitation with the wavelength characteristics of the mode field diameter during single mode excitation.
By determining whether or not the comparison value is a predetermined value or less, it is determined whether the operation mode of the optical fiber under measurement is a single mode operation or a multimode operation in the measurement wavelength band. Judgment method.
広帯域光源と、
前記広帯域光源で発せられた光波から被測定光ファイバの一端に入射するための任意の波長の光波を取り出す分光器と、
被測定光ファイバの他端から出射される光波の開口角を任意に設定する可変開口部と、
前記可変開口部を介して被測定光ファイバの他端から出射される光波を受光し、その光パワーに応じた電気信号に変換する受光部と、
受光部から出力される電気信号を記録して処理する信号処理部とを少なくとも備え、
前記信号処理部は、さらに
広帯域光源で発せられた光波から所定の波長の光波を分光器により取り出して被測定光ファイバの一端に入射し、マルチモード励振させた状態で可変開口部における開口角を逐次変化させた時に受光部から出力される光パワーに基づいてモードフィールド径を算出し、これを分光器により取り出す波長を変えて繰り返してマルチモード励振時のモードフィールド径の波長特性を測定する手段と、
広帯域光源で発せられた光波から所定の波長の光波を分光器により取り出して被測定光ファイバの一端に入射し、単一モード励振させた状態で可変開口部における開口角を逐次変化させた時に受光部から出力される光パワーに基づいてモードフィールド径を算出し、これを分光器により取り出す波長を変えて繰り返して単一モード励振時のモードフィールド径の波長特性を測定する手段と、
マルチモード励振時のモードフィールド径の波長特性と、単一モード励振時のモードフィールド径の波長特性とを比較する手段と、
前記比較値が所定の値となる波長を計測して遮断波長を測定する手段とを含む
ことを特徴とする遮断波長測定装置。
A broadband light source;
A spectroscope for extracting a light wave of an arbitrary wavelength to be incident on one end of an optical fiber to be measured from the light wave emitted from the broadband light source;
A variable opening for arbitrarily setting the opening angle of the light wave emitted from the other end of the optical fiber to be measured;
A light receiving unit that receives a light wave emitted from the other end of the optical fiber to be measured through the variable opening, and converts the light wave into an electric signal according to the optical power;
A signal processing unit that records and processes an electrical signal output from the light receiving unit;
The signal processing unit extracts a light wave having a predetermined wavelength from a light wave emitted from a broadband light source by a spectroscope, and enters the one end of the optical fiber to be measured. Means for calculating the mode field diameter based on the optical power output from the light receiving unit when it is sequentially changed, and measuring the wavelength characteristics of the mode field diameter during multi-mode excitation by changing the wavelength extracted by the spectrometer When,
A light wave of a predetermined wavelength is extracted from the light wave emitted from a broadband light source by a spectrograph and incident on one end of the optical fiber to be measured, and received when the aperture angle at the variable aperture is sequentially changed in a single mode excited state. Calculating the mode field diameter based on the optical power output from the unit, changing the wavelength extracted by the spectrometer, and repeating the measurement to measure the wavelength characteristics of the mode field diameter during single mode excitation;
Means for comparing the wavelength characteristics of the mode field diameter during multi-mode excitation with the wavelength characteristics of the mode field diameter during single-mode excitation;
And a means for measuring a cutoff wavelength by measuring a wavelength at which the comparison value is a predetermined value.
広帯域光源と、
前記広帯域光源で発せられた光波から被測定光ファイバの一端に入射するための任意の波長の光波を取り出す分光器と、
被測定光ファイバの他端から出射される光波の開口角を任意に設定する可変開口部と、
前記可変開口部を介して被測定光ファイバの他端から出射される光波を受光し、その光パワーに応じた電気信号に変換する受光部と、
受光部から出力される電気信号を記録して処理する信号処理部とを少なくとも備え、
前記信号処理部は、さらに
広帯域光源で発せられた光波から所定の波長の光波を分光器により取り出して被測定光ファイバの一端に入射し、マルチモード励振させた状態で可変開口部における開口角を逐次変化させた時に受光部から出力される光パワーに基づいてモードフィールド径を算出し、これを分光器により取り出す波長を変えて繰り返してマルチモード励振時のモードフィールド径の波長特性を測定する手段と、
広帯域光源で発せられた光波から所定の波長の光波を分光器により取り出して被測定光ファイバの一端に入射し、単一モード励振させた状態で可変開口部における開口角を逐次変化させた時に受光部から出力される光パワーに基づいてモードフィールド径を算出し、これを分光器により取り出す波長を変えて繰り返して単一モード励振時のモードフィールド径の波長特性を測定する手段と、
マルチモード励振時のモードフィールド径の波長特性と、単一モード励振時のモードフィールド径の波長特性とを比較する手段と、
前記比較値が所定の値以下であるか否かを判定することによって、測定波長帯で被測定光ファイバの動作モードが単一モード動作かマルチモード動作かを判定する手段とを含む
ことを特徴とする動作モード判定装置。
A broadband light source;
A spectroscope for extracting a light wave of an arbitrary wavelength to be incident on one end of an optical fiber to be measured from the light wave emitted from the broadband light source;
A variable opening for arbitrarily setting the opening angle of the light wave emitted from the other end of the optical fiber to be measured;
A light receiving unit that receives a light wave emitted from the other end of the optical fiber to be measured through the variable opening, and converts the light wave into an electric signal according to the optical power;
A signal processing unit that records and processes an electrical signal output from the light receiving unit;
The signal processing unit extracts a light wave having a predetermined wavelength from a light wave emitted from a broadband light source by a spectroscope, and enters the one end of the optical fiber to be measured. Means for calculating the mode field diameter based on the optical power output from the light receiving unit when it is sequentially changed, and measuring the wavelength characteristics of the mode field diameter during multi-mode excitation by changing the wavelength extracted by the spectrometer When,
A light wave of a predetermined wavelength is extracted from the light wave emitted from a broadband light source by a spectrograph and incident on one end of the optical fiber to be measured, and received when the aperture angle at the variable aperture is sequentially changed in a single mode excited state. Calculating the mode field diameter based on the optical power output from the unit, changing the wavelength extracted by the spectrometer, and repeating the measurement to measure the wavelength characteristics of the mode field diameter during single mode excitation;
Means for comparing the wavelength characteristics of the mode field diameter during multi-mode excitation with the wavelength characteristics of the mode field diameter during single-mode excitation;
Means for determining whether the operation mode of the optical fiber under measurement is a single mode operation or a multimode operation in the measurement wavelength band by determining whether or not the comparison value is equal to or less than a predetermined value. An operation mode determination device.
JP2011008853A 2011-01-19 2011-01-19 Cutoff wavelength measuring method, operation mode determination method and apparatus for the methods Pending JP2012150002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011008853A JP2012150002A (en) 2011-01-19 2011-01-19 Cutoff wavelength measuring method, operation mode determination method and apparatus for the methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011008853A JP2012150002A (en) 2011-01-19 2011-01-19 Cutoff wavelength measuring method, operation mode determination method and apparatus for the methods

Publications (1)

Publication Number Publication Date
JP2012150002A true JP2012150002A (en) 2012-08-09

Family

ID=46792378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011008853A Pending JP2012150002A (en) 2011-01-19 2011-01-19 Cutoff wavelength measuring method, operation mode determination method and apparatus for the methods

Country Status (1)

Country Link
JP (1) JP2012150002A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096880A (en) * 2016-12-14 2018-06-21 日本電信電話株式会社 Mode field diameter measurement method
CN108957644A (en) * 2017-05-19 2018-12-07 矢崎总业株式会社 Optical connector
WO2021048919A1 (en) * 2019-09-10 2021-03-18 日本電信電話株式会社 Test method and test device for mode field diameter
WO2022219740A1 (en) * 2021-04-14 2022-10-20 日本電信電話株式会社 Mode field diameter measurement method and mode field diameter measurement device
JP7376410B2 (en) 2020-03-31 2023-11-08 株式会社フジクラ Measuring method and measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131857A (en) * 1977-04-22 1978-11-17 Nippon Telegr & Teleph Corp <Ntt> Measuring device of optical fiber cut-off wavelength
JPH10104122A (en) * 1996-09-30 1998-04-24 Shin Etsu Chem Co Ltd Method for measuring mode field diameter of optic fiber
JP2005140609A (en) * 2003-11-06 2005-06-02 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for evaluating cut-off wavelength characteristics of single mode optical fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131857A (en) * 1977-04-22 1978-11-17 Nippon Telegr & Teleph Corp <Ntt> Measuring device of optical fiber cut-off wavelength
JPH10104122A (en) * 1996-09-30 1998-04-24 Shin Etsu Chem Co Ltd Method for measuring mode field diameter of optic fiber
JP2005140609A (en) * 2003-11-06 2005-06-02 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for evaluating cut-off wavelength characteristics of single mode optical fiber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096880A (en) * 2016-12-14 2018-06-21 日本電信電話株式会社 Mode field diameter measurement method
CN108957644A (en) * 2017-05-19 2018-12-07 矢崎总业株式会社 Optical connector
WO2021048919A1 (en) * 2019-09-10 2021-03-18 日本電信電話株式会社 Test method and test device for mode field diameter
JPWO2021048919A1 (en) * 2019-09-10 2021-03-18
JP7251639B2 (en) 2019-09-10 2023-04-04 日本電信電話株式会社 Mode field diameter test method and test equipment
JP7376410B2 (en) 2020-03-31 2023-11-08 株式会社フジクラ Measuring method and measuring device
WO2022219740A1 (en) * 2021-04-14 2022-10-20 日本電信電話株式会社 Mode field diameter measurement method and mode field diameter measurement device

Similar Documents

Publication Publication Date Title
US8223323B2 (en) Cutoff wavelength measuring method and optical communication system
JP5948368B2 (en) Optical fiber characterization method
JP2012208497A (en) Multimode optical fiber
JP2012150002A (en) Cutoff wavelength measuring method, operation mode determination method and apparatus for the methods
JP2012042389A (en) Method of measuring distribution of bent loss in longitudinal direction of optical fiber and optical fiber line, method of testing optical line, and method of manufacturing optical fiber
US20160252673A1 (en) Polarization Maintaining Single-Mode Low-Loss Hollow-Core Fiber
JP2014206517A (en) Evaluation method for crosstalk characteristic of multicore optical fiber, and system thereof
JP6673812B2 (en) Mode field diameter measurement method
JP5770517B2 (en) Optical fiber cut-off wavelength measurement method
KR20140068851A (en) Optical transmission line
JP5365338B2 (en) Cut-off wavelength measuring method and optical communication system
Laurila et al. Spatial and spectral imaging of LMA photonic crystal fiber amplifiers
WO2020036218A1 (en) Raman gain efficiency distribution testing method, and raman gain efficiency distribution testing device
JP6393563B2 (en) Optical fiber evaluation method and evaluation apparatus
Laurila et al. Cross-correlated imaging of single-mode photonic crystal rod fiber with distributed mode filtering
JP7376410B2 (en) Measuring method and measuring device
Fokoua et al. Analysis and comparison of intermodal coupling coefficient of standard and hollow core few moded fibres
Iho et al. Characterization of modal coupling of Bragg gratings in large-mode-area fibers
Sunak Single-mode fiber measurements
WO2023012875A1 (en) Device, method, and system for calculating inter-core power coupling coefficient
JP2013019717A (en) Method for measuring mode field diameter of hole structure optical fiber, and device using the same
JP4322630B2 (en) Evaluation method of cut-off wavelength characteristics of single-mode optical fiber
WO2024069792A1 (en) Device and method for acquiring mode-field diameter of optical fiber
Baker et al. Simultaneous measurement of the core diameter and the numerical aperture in dual-mode step-index optical fibers
JP4146762B2 (en) Estimation method of loss wavelength characteristics of optical fiber transmission line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140416