JP2014206517A - Evaluation method for crosstalk characteristic of multicore optical fiber, and system thereof - Google Patents

Evaluation method for crosstalk characteristic of multicore optical fiber, and system thereof Download PDF

Info

Publication number
JP2014206517A
JP2014206517A JP2013085646A JP2013085646A JP2014206517A JP 2014206517 A JP2014206517 A JP 2014206517A JP 2013085646 A JP2013085646 A JP 2013085646A JP 2013085646 A JP2013085646 A JP 2013085646A JP 2014206517 A JP2014206517 A JP 2014206517A
Authority
JP
Japan
Prior art keywords
optical fiber
light
measured
measurement light
light intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013085646A
Other languages
Japanese (ja)
Other versions
JP5517228B1 (en
Inventor
中島 和秀
Kazuhide Nakajima
和秀 中島
深井 千里
Chisato Fukai
千里 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013085646A priority Critical patent/JP5517228B1/en
Application granted granted Critical
Publication of JP5517228B1 publication Critical patent/JP5517228B1/en
Publication of JP2014206517A publication Critical patent/JP2014206517A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an evaluation method for crosstalk characteristics of a multicore optical fiber that is easy and good in reproducibility, and a system thereof.SOLUTION: When measurement light generated by a light source 1 is made incident in a single-mode operation state on one arbitrary core at one end of a multicore optical fiber (FUT) 10 to be measured through a wavelength scrambler (PS) 2 and an SMF 3 and outgoing light from the other end of the FUT 10 is received by a power meter 7 through an SMF 4 so as to measure light intensity thereof, the phase state of the measurement light is changed by applying tension to the FUT 10 by changing the interval between micromotion bases 5 and 6 to which the one end of the FUT 10 and a region at a predetermined distance from the one end are fixed, a light intensity distribution in a time region accompanying the phase change of the measurement light is acquired while the polarization state of the measurement light is changed by the PS 2, and an average electric power coupling coefficient "h" of the FUT 10 is derived by using a light intensity deviation ΔP corresponding to a triple of a standard deviation of the light intensity distribution.

Description

本発明は、光信号伝搬に供する光ファイバの特性評価技術に関する。   The present invention relates to a technique for evaluating characteristics of an optical fiber used for optical signal propagation.

近年、空間利用効率の拡大を目的とし、同一クラッド内に複数のコアを有する多コア光ファイバの研究開発が盛んに行われている。多コア光ファイバは、各コアを独立した光通信の伝送路として用いることにより、光ファイバ1芯の伝送容量を直接的に増加できる。また、光ファイバの外界特性を断面内の空間分布として、あるいは複数コア間の信号光の干渉として取得することにより、光ファイバセンシングにおける感度向上などの効果も期待できる。   In recent years, research and development of multi-core optical fibers having a plurality of cores in the same cladding have been actively conducted for the purpose of expanding space utilization efficiency. A multi-core optical fiber can directly increase the transmission capacity of one optical fiber by using each core as an independent optical communication transmission line. Further, by obtaining the external characteristics of the optical fiber as a spatial distribution in the cross section or as interference of signal light between a plurality of cores, an effect of improving sensitivity in optical fiber sensing can be expected.

多コア光ファイバの光通信、光ファイバセンシング等への応用では、当該多コア光ファイバ中のコア間のクロストーク特性を詳細に把握する必要がある。クロストーク特性の評価技術としては、光源とパワーメータを用い、光源に対向するコア及びその隣接コアの出射光強度の比を測定する透過法、または基準コア及びその隣接コアの後方散乱光強度を測定するOTDR法(非特許文献1参照)などが知られている。   In application of multi-core optical fiber to optical communication, optical fiber sensing, etc., it is necessary to grasp in detail the crosstalk characteristics between cores in the multi-core optical fiber. Crosstalk characteristics can be evaluated using a light source and a power meter to measure the ratio of the emitted light intensity of the core facing the light source and its adjacent core, or the backscattered light intensity of the reference core and its adjacent core. An OTDR method for measuring (see Non-Patent Document 1) and the like are known.

しかし、前述した透過法やOTDR法では、複数のコアの出射光強度または後方散乱光強度を測定するため、測定が煩雑となり、かつ時間を要するという課題があった。また、特に透過法では、クロストーク特性の時間的な不安定性により出射光強度の収束性が悪く、十分な測定再現性が得られないという課題があった。   However, in the transmission method and the OTDR method described above, there are problems in that the measurement is complicated and time-consuming because the intensity of emitted light or the intensity of backscattered light of a plurality of cores is measured. In particular, the transmission method has a problem in that the convergence of the emitted light intensity is poor due to the temporal instability of the crosstalk characteristics, and sufficient measurement reproducibility cannot be obtained.

本発明は以上のような背景に鑑みてなされたものであり、その目的とするところは簡便で再現性の良い多コア光ファイバのクロストーク特性の評価方法及びそのシステムを提供することにある。   The present invention has been made in view of the above background, and an object of the present invention is to provide a method for evaluating the crosstalk characteristics of a multi-core optical fiber that is simple and has good reproducibility, and a system thereof.

本発明では、多コア光ファイバ中の任意の1つのコアを用い、測定光の位相変化に伴う時間領域における光強度分布、または測定光の波長変化に伴う波長領域における光強度分布を、測定光の偏光状態を変化させながら取得し、前記光強度分布の標準偏差σの3倍に相当する光強度偏差ΔPから平均電力結合係数hを導出することにより、簡便で再現性の良いクロストーク特性の評価方法を実現する手段としている。   In the present invention, an arbitrary one core in a multi-core optical fiber is used, and the light intensity distribution in the time domain accompanying the phase change of the measurement light or the light intensity distribution in the wavelength domain accompanying the wavelength change of the measurement light is measured with the measurement light. By obtaining the average power coupling coefficient h from the light intensity deviation ΔP corresponding to three times the standard deviation σ of the light intensity distribution, it is possible to obtain a simple and reproducible crosstalk characteristic. It is a means to realize the evaluation method.

この際、平均電力結合係数hは関係式(1)   At this time, the average power coupling coefficient h is expressed by the relational expression (1).

Figure 2014206517
但し、Lは多コア光ファイバの長さ、eは自然対数の底を表す。
に光強度偏差ΔPを代入することより求めることができる。
Figure 2014206517
Where L is the length of the multi-core optical fiber and e is the base of the natural logarithm.
Can be obtained by substituting the light intensity deviation ΔP into.

本発明によれば、任意の1つのコアにおける出射光強度を時間領域もしくは波長領域で測定することで、当該コアのクロストーク特性が評価できるため、複数のコアの光強度を測定する従来の評価技術に比べ、簡便に測定を行えるといった効果を奏する。また、測定光の偏光状態を変化させながら出射光強度を取得することとしたため、クロストーク特性の時間的な変動による測定の不確定性を飛躍的に低減できるといった効果も奏する。更に、汎用的な波長可変光源を用いて評価が行えるため、当該多コア光ファイバのクロストーク特性の波長依存性を簡便に評価できるといった効果も奏する。   According to the present invention, since the crosstalk characteristic of the core can be evaluated by measuring the emitted light intensity in any one core in the time domain or the wavelength domain, the conventional evaluation for measuring the light intensity of a plurality of cores is possible. Compared to technology, it has the effect of being able to perform measurements easily. Further, since the emission light intensity is acquired while changing the polarization state of the measurement light, it is possible to dramatically reduce the measurement uncertainty due to the temporal variation of the crosstalk characteristics. Furthermore, since evaluation can be performed using a general-purpose variable wavelength light source, the wavelength dependency of the crosstalk characteristics of the multi-core optical fiber can be easily evaluated.

本発明のクロストーク特性の評価方法を実施するシステムの一例を示す構成図である。It is a block diagram which shows an example of the system which implements the evaluation method of the crosstalk characteristic of this invention. 波長1550nm帯で測定した波長領域における出射光強度分布の測定例を示す図である。It is a figure which shows the measurement example of the emitted light intensity distribution in the wavelength range measured in the wavelength 1550nm band. 本発明の時間領域のクロストーク特性の評価方法による2コア光ファイバの評価結果を示す図である。It is a figure which shows the evaluation result of the 2 core optical fiber by the evaluation method of the cross talk characteristic of the time domain of this invention. 本発明のクロストーク特性の評価方法による時間領域及び波長領域での評価結果を示す図である。It is a figure which shows the evaluation result in the time domain and the wavelength domain by the evaluation method of the crosstalk characteristic of this invention.

以下では、本発明のクロストーク特性の評価方法の実施の形態について図面を用いて説明する。   Hereinafter, an embodiment of a method for evaluating a crosstalk characteristic of the present invention will be described with reference to the drawings.

図1は、本発明のクロストーク特性の評価方法を実施する、クロストーク特性の評価システムの一例を示すもので、本システムは、光源1、偏波スクランブラ(PS)2、シングルモードファイバ(SMF)3,4、微動台(MS)5,6及びパワーメータ(PM)7により構成される。   FIG. 1 shows an example of a crosstalk characteristic evaluation system that implements the crosstalk characteristic evaluation method of the present invention. This system includes a light source 1, a polarization scrambler (PS) 2, a single mode fiber ( SMF) 3, 4, fine movement table (MS) 5, 6 and power meter (PM) 7.

光源1は、所定の測定波長の測定光を発生するためのもので、測定光は少なくとも数百MHz以下の線幅を有することが好ましく、汎用的な分布帰還型レーザ、波長可変光源等が使用できる。偏波スクランブラ2は、光源1からの測定光の偏光状態を変化させるためのもので、光源1と偏波スクランブラ2とは光ファイバあるいはレンズを用いた光学系を用いて接続される。   The light source 1 is for generating measurement light having a predetermined measurement wavelength, and the measurement light preferably has a line width of at least several hundred MHz, and a general-purpose distributed feedback laser, wavelength variable light source, or the like is used. it can. The polarization scrambler 2 is for changing the polarization state of measurement light from the light source 1, and the light source 1 and the polarization scrambler 2 are connected using an optical system using an optical fiber or a lens.

SMF3,4は、被測定多コア光ファイバ(FUT)10を入出力する測定光が単一モード動作状態となるようにするためのもので、それぞれ5m程度の長さを備えている。詳細には、SMF3は偏波スクランブラ2と被測定多コア光ファイバ10の一端(測定光の入射端)との間に配置され、また、SMF4は被測定多コア光ファイバ10の他端(測定光の出射端)とパワーメータ7との間に配置される。   The SMFs 3 and 4 are for making the measurement light input / output to / from the measured multi-core optical fiber (FUT) 10 enter a single mode operation state, and each has a length of about 5 m. Specifically, the SMF 3 is disposed between the polarization scrambler 2 and one end of the multi-core optical fiber 10 to be measured (measurement light incident end), and the SMF 4 is the other end of the multi-core optical fiber 10 to be measured ( It is disposed between the measurement light emission end) and the power meter 7.

微動台5,6は、測定光を被測定多コア光ファイバ10の一端の任意の1つのコアに入射するとともに、被測定多コア光ファイバ10に張力を付与するためのものである。詳細には、微動台5はSMF3の端面及び被測定多コア光ファイバ10の一端の端面とが僅かな間隔を隔てて対向し、SMF3から出射した測定光が被測定多コア光ファイバ10の一端の任意の1つのコアに入射可能となるようにSMF3及び被測定多コア光ファイバ10の一端をそれぞれ固定し、また、微動台6は当該被測定多コア光ファイバ10の一端から所定の長さ(通常、数m)離れた部位を固定し、さらに微動台5,6のいずれか一方または両方(通常は微動台6)を稼動させることにより微動台5,6間の間隔を変化させ、測定多コア光ファイバ10に張力を付与することが可能となっている。なお、被測定多コア光ファイバ10の他端とSMF4とは通常、融着接続される。   The fine movement bases 5 and 6 are for entering measurement light into any one core at one end of the measured multi-core optical fiber 10 and for applying tension to the measured multi-core optical fiber 10. Specifically, the fine adjustment base 5 is opposed to the end face of the SMF 3 and the end face of one end of the multicore optical fiber 10 to be measured with a slight space therebetween, and the measurement light emitted from the SMF 3 is one end of the multicore optical fiber 10 to be measured. One end of each of the SMF 3 and the measured multi-core optical fiber 10 is fixed so as to be incident on any one of the cores, and the fine movement base 6 has a predetermined length from one end of the measured multi-core optical fiber 10. Measurement is performed by changing the interval between the fine movement bases 5 and 6 by fixing a part (usually several meters) apart and further operating one or both of the fine movement bases 5 and 6 (usually the fine movement base 6). It is possible to apply tension to the multi-core optical fiber 10. Note that the other end of the multi-core optical fiber 10 to be measured and the SMF 4 are usually fusion-connected.

パワーメータ7は、被測定多コア光ファイバ10の他端からの出射光をSMF4を介して受光し、その光強度を測定するためのものである。   The power meter 7 receives light emitted from the other end of the multi-core optical fiber 10 to be measured via the SMF 4 and measures the light intensity.

前記構成において、光源1からの測定光は偏波スクランブラ2で任意の偏光状態とされ、SMF3を介して被測定多コア光ファイバ10の被測定対象コアに入射される。被測定多コア光ファイバ10からの出射光はSMF4を介してパワーメータ7で受光され、その光強度が測定される。   In the above configuration, the measurement light from the light source 1 is made into an arbitrary polarization state by the polarization scrambler 2 and is incident on the measurement target core of the measured multi-core optical fiber 10 via the SMF 3. The outgoing light from the multi-core optical fiber 10 to be measured is received by the power meter 7 via the SMF 4 and the light intensity is measured.

ここで、被測定多コア光ファイバ10の両端に接続するSMF3,4は、測定波長で単一モード動作を実現するのに十分な長さがあれば良く、その長さは5mに限定されない。また、微動台5,6間で被測定多コア光ファイバ10に撓みが生じなければ、被測定多コア光ファイバ10の一端から固定部位までの長さ(微動台5,6間の間隔)は任意の長さに設定することが可能である。また、パワーメータ7では平均化処理を行わず、サンプリング速度(時間)は偏波スクランブラ2の偏光状態の変位速度(時間)に比べて十分速い(短い)ことが好ましい。さらにまた、光源1、偏波スクランブラ2、微動台5,6及びパワーメータ7を計算機(PC)8で制御することにより、自動計測を行うようにすることもできる。   Here, the SMFs 3 and 4 connected to both ends of the multicore optical fiber 10 to be measured need only be long enough to realize single mode operation at the measurement wavelength, and the length is not limited to 5 m. If the measured multi-core optical fiber 10 is not bent between the fine movement bases 5 and 6, the length from the one end of the measured multi-core optical fiber 10 to the fixed portion (interval between the fine movement bases 5 and 6) is An arbitrary length can be set. In addition, the power meter 7 does not perform the averaging process, and the sampling speed (time) is preferably sufficiently fast (short) as compared with the displacement speed (time) of the polarization state of the polarization scrambler 2. Furthermore, automatic measurement can be performed by controlling the light source 1, the polarization scrambler 2, the fine movement bases 5, 6 and the power meter 7 with a computer (PC) 8.

図1の測定システムを用い、被測定多コア光ファイバ10の所望のコアに測定光を入射すると、被測定多コア光ファイバ10の当該コアの出射端では、出射光強度の時間変動が観測される。ここで、前記出射光強度の時間変動は、被測定多コア光ファイバ10中の隣接コア間における光波結合特性の伝搬方向における揺らぎと、その偏光状態への依存性に起因して発生する。   When measurement light is incident on a desired core of the multi-core optical fiber 10 to be measured using the measurement system of FIG. 1, temporal variation in the intensity of the emitted light is observed at the exit end of the core of the multi-core optical fiber 10 to be measured. The Here, the temporal variation of the emitted light intensity occurs due to fluctuations in the propagation direction of the light wave coupling characteristics between adjacent cores in the multi-core optical fiber 10 to be measured and its dependence on the polarization state.

そこで、本発明では、微動台6を稼動して被測定多コア光ファイバ10に張力を印加することにより、測定光の位相状態を意図的に変化させ、出射光強度の時間(微動台の移動量)軸上のヒストグラムを検出する。更に、偏波スクランブラ2により測定光の偏光状態を変化させながら出射光強度をサンプリングすることにより、被測定多コア光ファイバ10中のクロストーク特性に起因する出射光強度の変化を高速、かつ簡易に検出することを可能としている。尚、前記偏光状態は、微動台6の移動量において、少なくとも50以上の異なる状態に設定して出射光強度をサンプリングすることが望ましい。   Therefore, in the present invention, by operating the fine movement base 6 and applying tension to the multi-core optical fiber 10 to be measured, the phase state of the measurement light is intentionally changed, and the time of the emitted light intensity (movement of the fine movement base) is changed. Detect the histogram on the (amount) axis. Furthermore, by sampling the emitted light intensity while changing the polarization state of the measurement light by the polarization scrambler 2, the change in the emitted light intensity due to the crosstalk characteristics in the measured multi-core optical fiber 10 can be performed at high speed. It can be easily detected. It is desirable that the polarization state is set to at least 50 different states with respect to the movement amount of the fine movement table 6 and the emitted light intensity is sampled.

ここで、図1において、光源1に波長可変光源を用い、測定光の波長を変化させることにより、波長軸上における出射光強度のヒストグラムを観測し、被測定多コア光ファイバ10中のクロストーク特性に起因する出射光強度の変化を高速、かつ簡易に検出することも可能となる。尚、波長可変光源を用いた波長領域の評価を行う場合、波長可変光源の線幅は数MHz以下で、かつ測定波長は0.02nm以下の精度で制御できることが好ましい。また、波長可変光源を用いた波長領域の評価を行う場合、2台の微動台を設置する必要はない。   Here, in FIG. 1, a variable wavelength light source is used as the light source 1, and the histogram of the emitted light intensity on the wavelength axis is observed by changing the wavelength of the measurement light, and the crosstalk in the measured multi-core optical fiber 10. It also becomes possible to detect a change in the intensity of the emitted light due to the characteristics at high speed and easily. When evaluating a wavelength region using a wavelength tunable light source, it is preferable that the line width of the wavelength tunable light source is several MHz or less and the measurement wavelength can be controlled with an accuracy of 0.02 nm or less. Moreover, when evaluating the wavelength region using a wavelength variable light source, it is not necessary to install two fine movement tables.

図2に、波長1550nm帯で測定した波長領域における出射光強度のヒストグラムを示す。本測定例では、波長を0.02nmの間隔で掃引し、各波長で偏光状態を変化させながら出射光強度を100回サンプリングしている。図2より、光強度分布は概ねガウス型の確率分布を有することが分かる。従って、受光強度の統計的な偏差ΔPは標準偏差σの3倍として考えられる。   FIG. 2 shows a histogram of the emitted light intensity in the wavelength region measured in the wavelength 1550 nm band. In this measurement example, the wavelength is swept at intervals of 0.02 nm, and the emitted light intensity is sampled 100 times while changing the polarization state at each wavelength. FIG. 2 shows that the light intensity distribution has a Gaussian probability distribution. Therefore, the statistical deviation ΔP of the received light intensity can be considered as three times the standard deviation σ.

測定波長領域(もしくは時間領域)における、受光強度分布(ヒストグラム)の標準偏差σから、ΔP=3σ(単位:dB)を求めることにより、被測定多コア光ファイバ10中のクロストーク特性に依存した統計的な光強度変化をより正確に抽出することが可能となる。尚、ΔPを前記受光強度分布の平均値に対する最大偏差として導出することにより、より少ない受光強度のサンプリング数で当該被測定多コア光ファイバ10のクロストーク特性を評価することも可能である。   By obtaining ΔP = 3σ (unit: dB) from the standard deviation σ of the received light intensity distribution (histogram) in the measurement wavelength region (or time region), it depended on the crosstalk characteristics in the multicore optical fiber 10 to be measured. Statistical light intensity changes can be extracted more accurately. It should be noted that by deriving ΔP as the maximum deviation from the average value of the received light intensity distribution, it is possible to evaluate the crosstalk characteristic of the multicore optical fiber 10 to be measured with a smaller number of received light intensity samplings.

ここで、長さL(単位:m)の並行導波路間の電力結合係数をh(単位:m-1)とすると、当該並行導波路中のクロストークによる光強度変化ΔXT(単位:dB)は、次式(2)で与えられる。 Here, if the power coupling coefficient between parallel waveguides of length L (unit: m) is h (unit: m −1 ), the light intensity change ΔXT (unit: dB) due to crosstalk in the parallel waveguide. Is given by the following equation (2).

Figure 2014206517
従って、上述のΔPとΔXTの関係から次式(3)が導かれる。
Figure 2014206517
Therefore, the following equation (3) is derived from the relationship between ΔP and ΔXT described above.

Figure 2014206517
(3)式をhについて解くと、次式(4)が得られる。
Figure 2014206517
When the equation (3) is solved for h, the following equation (4) is obtained.

Figure 2014206517
但し、eは自然対数の底である。
Figure 2014206517
Where e is the base of the natural logarithm.

従って、前記光強度偏差ΔPを関係式(4)に代入することにより、被測定多コア光ファイバ10の測定波長における平均電力結合係数h(単位:m-1)が得られる。 Therefore, the average power coupling coefficient h (unit: m −1 ) at the measurement wavelength of the multi-core optical fiber 10 to be measured is obtained by substituting the light intensity deviation ΔP into the relational expression (4).

更に、前記平均電力結合係数hを次の関係式(5)に代入することにより、被測定多コア光ファイバ10の測定波長におけるクロストークXT(単位:dB)を評価することが出来る。   Further, by substituting the average power coupling coefficient h into the following relational expression (5), the crosstalk XT (unit: dB) at the measurement wavelength of the multicore optical fiber 10 to be measured can be evaluated.

Figure 2014206517
表1にその特性を示す2種類の2コア光ファイバ(TCF)を用い、本発明の時間領域の評価手法によりクロストーク特性を測定した。
Figure 2014206517
Using two types of two-core optical fibers (TCF) whose characteristics are shown in Table 1, crosstalk characteristics were measured by the time domain evaluation method of the present invention.

Figure 2014206517
図3に本発明の時間領域のクロストーク特性の評価方法による上記2種類のTCFの評価結果を示す。図中の2本の実線は表1に示した諸元から数値計算により求めたクロストーク特性を示す。また、図中のプロットは本発明の評価方法による測定結果を示している。図3から本発明の評価方法による測定結果は、計算結果と良く一致しており、被測定TCFのクロストーク特性が、その波長依存性を含め良好に評価出来ていることが分かる。ここで、従来の透過法により、波長1600nmにおけるTCF2のクロストーク特性を評価した場合、その最大偏差は5dB以上であった。一方、本発明の評価方法における最大偏差は2dB以下であり、本発明のクロストーク特性の評価方法が、従来の評価技術よりも優れた再現性を有することが分かる。
Figure 2014206517
FIG. 3 shows the evaluation results of the two types of TCFs according to the method for evaluating the crosstalk characteristics in the time domain of the present invention. Two solid lines in the figure indicate crosstalk characteristics obtained by numerical calculation from the specifications shown in Table 1. The plots in the figure show the measurement results obtained by the evaluation method of the present invention. FIG. 3 shows that the measurement result by the evaluation method of the present invention agrees well with the calculation result, and that the crosstalk characteristic of the TCF to be measured can be evaluated well including its wavelength dependency. Here, when the crosstalk characteristic of TCF2 at a wavelength of 1600 nm was evaluated by a conventional transmission method, the maximum deviation was 5 dB or more. On the other hand, the maximum deviation in the evaluation method of the present invention is 2 dB or less, and it can be seen that the evaluation method of the crosstalk characteristic of the present invention has reproducibility superior to that of the conventional evaluation technique.

図4に本発明のクロストーク特性の評価方法による時間領域及び波長領域の評価結果について示す。図中のプロットは、時間領域及び波長領域の評価方法で求めた、光強度偏差ΔPを示す。図4から時間領域及び波長領域における評価結果は良く一致していることが確認できる。   FIG. 4 shows the evaluation results of the time domain and the wavelength domain by the crosstalk characteristic evaluation method of the present invention. The plot in the figure shows the light intensity deviation ΔP determined by the time domain and wavelength domain evaluation methods. It can be confirmed from FIG. 4 that the evaluation results in the time domain and the wavelength domain are in good agreement.

以上説明したように、本発明によれば、光源、偏波スクランブラ及びパワーメータを用い、以下の関係式(6)を用いて電力結合係数hを導出することとしたため、従来の評価技術よりも簡便かつ再現性に優れたクロストーク特性の評価を行うことを可能とする。   As described above, according to the present invention, the power coupling coefficient h is derived using the following relational expression (6) using the light source, the polarization scrambler, and the power meter. Makes it possible to evaluate crosstalk characteristics that are simple and excellent in reproducibility.

Figure 2014206517
Figure 2014206517

1:光源、2:偏波スクランブラ(PS)、3,4:シングルモードファイバ(SMF)、5,6:微動台、7:パワーメータ(PM)、8:計算機(PC)、10:被測定多コア光ファイバ。   1: Light source, 2: Polarization scrambler (PS), 3, 4: Single mode fiber (SMF), 5, 6: Fine motion table, 7: Power meter (PM), 8: Computer (PC), 10: Covered Measuring multi-core optical fiber.

M. Nakazawa et al., Opt. Express, vol.20, no.11, p.12530-12540, 2012.M. Nakazawa et al., Opt.Express, vol.20, no.11, p.12530-12540, 2012.

Claims (7)

多コア光ファイバのコア間のクロストーク特性を評価する方法であって、
光源で発生した所定の波長の測定光を単一モード動作状態として被測定多コア光ファイバの一端の任意の1つのコアに入射し、当該被測定多コア光ファイバの他端からの出射光をパワーメータで受光してその光強度を測定する際、
張力付与手段により被測定多コア光ファイバに張力を印加して測定光の位相状態を変化させ、測定光の位相変化に伴う時間領域における光強度分布を、偏波スクランブラにより測定光の偏光状態を変化させながら取得し、その光強度分布の標準偏差の3倍に相当する光強度偏差ΔPを用いて被測定多コア光ファイバの平均電力結合係数hを導出する
ことを特徴とするクロストーク特性の評価方法。
A method for evaluating crosstalk characteristics between cores of a multi-core optical fiber,
Measurement light of a predetermined wavelength generated by a light source is incident on one arbitrary core of one end of the multi-core optical fiber to be measured in a single mode operation state, and emitted light from the other end of the multi-core optical fiber to be measured When measuring the intensity of light received by a power meter,
Tension is applied to the multi-core optical fiber to be measured by the tension applying means to change the phase state of the measurement light, the light intensity distribution in the time domain accompanying the phase change of the measurement light, and the polarization state of the measurement light by the polarization scrambler Crosstalk characteristics obtained by obtaining an average power coupling coefficient h of a multi-core optical fiber to be measured using a light intensity deviation ΔP corresponding to three times the standard deviation of the light intensity distribution. Evaluation method.
多コア光ファイバのコア間のクロストーク特性を評価する方法であって、
光源で発生した測定光を単一モード動作状態として被測定多コア光ファイバの一端の任意の1つのコアに入射し、当該被測定多コア光ファイバの他端からの出射光をパワーメータで受光してその光強度を測定する際、
光源に波長可変光源を用いて測定光の波長を変化させ、測定光の波長変化に伴う波長領域における光強度分布を、偏波スクランブラにより測定光の偏光状態を変化させながら取得し、その光強度分布の標準偏差の3倍に相当する光強度偏差ΔPを用いて被測定多コア光ファイバの平均電力結合係数hを導出する
ことを特徴とするクロストーク特性の評価方法。
A method for evaluating crosstalk characteristics between cores of a multi-core optical fiber,
The measurement light generated by the light source is incident on one arbitrary core of one end of the multicore optical fiber to be measured in a single mode operation state, and the output light from the other end of the multicore optical fiber to be measured is received by the power meter. When measuring the light intensity,
Using a tunable light source as the light source, the wavelength of the measurement light is changed, and the light intensity distribution in the wavelength region associated with the change in the wavelength of the measurement light is acquired while changing the polarization state of the measurement light using a polarization scrambler. A method for evaluating crosstalk characteristics, wherein an average power coupling coefficient h of a multicore optical fiber to be measured is derived using a light intensity deviation ΔP corresponding to three times a standard deviation of an intensity distribution.
光強度偏差ΔPを次の関係式
Figure 2014206517
但し、Lは多コア光ファイバの長さ(単位:m)、eは自然対数の底。
に代入することで被測定多コア光ファイバの平均電力結合係数hを求める
ことを特徴とする請求項1または2に記載のクロストーク特性の評価方法。
The light intensity deviation ΔP is expressed by the following relational expression
Figure 2014206517
Where L is the length of the multi-core optical fiber (unit: m), and e is the base of the natural logarithm.
The crosstalk characteristic evaluation method according to claim 1, wherein an average power coupling coefficient h of the multicore optical fiber to be measured is obtained by substituting into.
多コア光ファイバのコア間のクロストーク特性を評価するシステムであって、
所定の波長の測定光を発生する光源と、
光源からの測定光の偏光状態を変化させる偏波スクランブラと、
偏波スクランブラを通過した測定光を単一モード動作状態で被測定多コア光ファイバの一端の任意の1つのコアに入射する単一モード動作状態付与手段と、
被測定多コア光ファイバに張力を付与する張力付与手段と、
被測定多コア光ファイバの他端からの出射光を受光してその光強度を測定するパワーメータとを具備し、
張力付与手段により被測定多コア光ファイバに張力を印加して測定光の位相状態を変化させ、測定光の位相変化に伴う時間領域における光強度分布を、偏波スクランブラにより測定光の偏光状態を変化させながら取得し、その光強度分布の標準偏差の3倍に相当する光強度偏差ΔPを用いて被測定多コア光ファイバの平均電力結合係数hを導出する
ことを特徴とするクロストーク特性の評価システム。
A system for evaluating crosstalk characteristics between cores of a multi-core optical fiber,
A light source that generates measurement light of a predetermined wavelength;
A polarization scrambler that changes the polarization state of the measurement light from the light source;
Single mode operation state applying means for injecting measurement light that has passed through the polarization scrambler into any one core of one end of the multicore optical fiber to be measured in a single mode operation state;
Tension applying means for applying tension to the multi-core optical fiber to be measured;
A power meter that receives light emitted from the other end of the multi-core optical fiber to be measured and measures its light intensity;
Tension is applied to the multi-core optical fiber to be measured by the tension applying means to change the phase state of the measurement light, the light intensity distribution in the time domain accompanying the phase change of the measurement light, and the polarization state of the measurement light by the polarization scrambler Crosstalk characteristics obtained by obtaining an average power coupling coefficient h of a multi-core optical fiber to be measured using a light intensity deviation ΔP corresponding to three times the standard deviation of the light intensity distribution. Evaluation system.
張力付与手段は、被測定多コア光ファイバの一端及び当該一端から所定の長さ離れた部位をそれぞれ固定した2台の微動台からなる
ことを特徴とする請求項4に記載のクロストーク特性の評価システム。
5. The crosstalk characteristic of claim 4, wherein the tension applying means includes two fine movement bases each fixing one end of the multi-core optical fiber to be measured and a portion separated from the one end by a predetermined length. Evaluation system.
多コア光ファイバのコア間のクロストーク特性を評価するシステムであって、
波長が変化する測定光を発生する波長可変光源と、
波長可変光源からの測定光の偏光状態を変化させる偏波スクランブラと、
偏波スクランブラを通過した測定光を単一モード動作状態で被測定多コア光ファイバの一端の任意の1つのコアに入射する単一モード動作状態付与手段と、
被測定多コア光ファイバの他端からの出射光を受光してその光強度を測定するパワーメータとを具備し、
波長可変光源により測定光の波長を変化させ、測定光の波長変化に伴う波長領域における光強度分布を、偏波スクランブラにより測定光の偏光状態を変化させながら取得し、その光強度分布の標準偏差の3倍に相当する光強度偏差ΔPを用いて被測定多コア光ファイバの平均電力結合係数hを導出する
ことを特徴とするクロストーク特性の評価システム。
A system for evaluating crosstalk characteristics between cores of a multi-core optical fiber,
A wavelength tunable light source that generates measurement light whose wavelength changes;
A polarization scrambler that changes the polarization state of the measurement light from the variable wavelength light source;
Single mode operation state applying means for injecting measurement light that has passed through the polarization scrambler into any one core of one end of the multicore optical fiber to be measured in a single mode operation state;
A power meter that receives light emitted from the other end of the multi-core optical fiber to be measured and measures its light intensity;
The wavelength of the measurement light is changed by the wavelength tunable light source, and the light intensity distribution in the wavelength region accompanying the change in the wavelength of the measurement light is acquired while changing the polarization state of the measurement light by the polarization scrambler. A crosstalk characteristic evaluation system, wherein an average power coupling coefficient h of a measured multi-core optical fiber is derived using a light intensity deviation ΔP corresponding to three times the deviation.
光強度偏差ΔPを次の関係式
Figure 2014206517
但し、Lは多コア光ファイバの長さ(単位:m)、eは自然対数の底。
に代入することで被測定多コア光ファイバの平均電力結合係数hを求める
ことを特徴とする請求項4乃至6のいずれかに記載のクロストーク特性の評価システム。
The light intensity deviation ΔP is expressed by the following relational expression
Figure 2014206517
Where L is the length of the multi-core optical fiber (unit: m), and e is the base of the natural logarithm.
The crosstalk characteristic evaluation system according to any one of claims 4 to 6, wherein an average power coupling coefficient h of the multicore optical fiber to be measured is obtained by substituting
JP2013085646A 2013-04-16 2013-04-16 Method and system for evaluating crosstalk characteristics of multi-core optical fiber Expired - Fee Related JP5517228B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013085646A JP5517228B1 (en) 2013-04-16 2013-04-16 Method and system for evaluating crosstalk characteristics of multi-core optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013085646A JP5517228B1 (en) 2013-04-16 2013-04-16 Method and system for evaluating crosstalk characteristics of multi-core optical fiber

Publications (2)

Publication Number Publication Date
JP5517228B1 JP5517228B1 (en) 2014-06-11
JP2014206517A true JP2014206517A (en) 2014-10-30

Family

ID=51031251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013085646A Expired - Fee Related JP5517228B1 (en) 2013-04-16 2013-04-16 Method and system for evaluating crosstalk characteristics of multi-core optical fiber

Country Status (1)

Country Link
JP (1) JP5517228B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225899A (en) * 2015-06-02 2016-12-28 日本電信電話株式会社 Crosstalk estimation system and crosstalk estimation method
JP2018189600A (en) * 2017-05-11 2018-11-29 日本電信電話株式会社 Optical pulse test device and optical pulse test method
CN111044171A (en) * 2019-12-13 2020-04-21 北京航天控制仪器研究所 Method and device for light source parameter self-adaption of distributed optical fiber sensing system
WO2020171187A1 (en) * 2019-02-22 2020-08-27 住友電気工業株式会社 Mode-dependent loss measurement device and mode-dependent loss measurement method
JPWO2022038767A1 (en) * 2020-08-21 2022-02-24
WO2023219019A1 (en) * 2022-05-10 2023-11-16 株式会社フジクラ Crosstalk measuring method, and crosstalk measuring device
WO2024055360A1 (en) * 2022-09-16 2024-03-21 苏州大学 Multi-core few-mode fiber inter-mode crosstalk measurement method and apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113155031B (en) * 2020-12-03 2022-07-29 河北工业大学 Measuring device for coil offset of wireless power transmission system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445324B2 (en) * 2010-05-17 2014-03-19 住友電気工業株式会社 Alignment device, core position specifying method, core loss measuring method, and crosstalk measuring method between cores
JP5910087B2 (en) * 2011-02-25 2016-04-27 住友電気工業株式会社 Light receiving method and separation device for light output from multi-core optical fiber
US8842268B2 (en) * 2011-02-25 2014-09-23 Sumitomo Electric Industries, Ltd. Measuring method for crosstalk between cores in multi-core optical fiber
JP5685763B2 (en) * 2011-03-25 2015-03-18 国立大学法人東北大学 Mode coupling measuring method and measuring apparatus for multi-core optical fiber
JP5792679B2 (en) * 2012-06-13 2015-10-14 株式会社フジクラ Crosstalk measurement method
JP5588050B2 (en) * 2012-06-22 2014-09-10 株式会社フジクラ Crosstalk measurement method and crosstalk measurement device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225899A (en) * 2015-06-02 2016-12-28 日本電信電話株式会社 Crosstalk estimation system and crosstalk estimation method
JP2018189600A (en) * 2017-05-11 2018-11-29 日本電信電話株式会社 Optical pulse test device and optical pulse test method
WO2020171187A1 (en) * 2019-02-22 2020-08-27 住友電気工業株式会社 Mode-dependent loss measurement device and mode-dependent loss measurement method
CN113424038A (en) * 2019-02-22 2021-09-21 住友电气工业株式会社 Mode-dependent loss measuring device and mode-dependent loss measuring method
US11754466B2 (en) 2019-02-22 2023-09-12 Sumitomo Electric Industries, Ltd. Mode-dependent loss measurement device and mode-dependent loss measuring method
CN111044171A (en) * 2019-12-13 2020-04-21 北京航天控制仪器研究所 Method and device for light source parameter self-adaption of distributed optical fiber sensing system
CN111044171B (en) * 2019-12-13 2021-11-16 北京航天控制仪器研究所 Method and device for light source parameter self-adaption of distributed optical fiber sensing system
JPWO2022038767A1 (en) * 2020-08-21 2022-02-24
WO2022038767A1 (en) * 2020-08-21 2022-02-24 日本電信電話株式会社 Power coupling coefficient measurement method and power coupling coefficient measurement device
JP7375942B2 (en) 2020-08-21 2023-11-08 日本電信電話株式会社 Power coupling coefficient measuring method and power coupling coefficient measuring device
WO2023219019A1 (en) * 2022-05-10 2023-11-16 株式会社フジクラ Crosstalk measuring method, and crosstalk measuring device
WO2024055360A1 (en) * 2022-09-16 2024-03-21 苏州大学 Multi-core few-mode fiber inter-mode crosstalk measurement method and apparatus

Also Published As

Publication number Publication date
JP5517228B1 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
JP5517228B1 (en) Method and system for evaluating crosstalk characteristics of multi-core optical fiber
JP4781746B2 (en) Optical fiber birefringence measuring method and measuring apparatus, and optical fiber polarization mode dispersion measuring method
JP6862712B2 (en) Optical fiber evaluation method and optical fiber evaluation device
Tosi et al. Rayleigh scattering characterization of a low-loss MgO-based nanoparticle-doped optical fiber for distributed sensing
JP2017032979A (en) High backscattering waveguides
JP6897373B2 (en) Optical fiber emission beam profile measurement method and equipment
Rademacher et al. Time-dependent crosstalk from multiple cores in a homogeneous multi-core fiber
CN104458217A (en) Method for synchronously measuring attenuation coefficient and cut-off wavelength of optical fiber
Sun et al. Fiber ring cavity laser based on modal interference for curvature sensing
JP5990624B1 (en) Optical fiber sensor system, optical fiber sensor and measuring method
CN104617473A (en) Brillouin three-loop narrow-linewidth fiber laser with low insertion loss
Li et al. Modal delay and modal bandwidth measurements of bi-modal optical fibers through a frequency domain method
CN108369154B (en) Systems, methods, and media for identifying fiber bandwidth and selecting optical fibers
JP6475591B2 (en) Mode dispersion coefficient measuring apparatus and mode dispersion coefficient measuring method
WO2018207915A1 (en) Nonlinearity measuring method and nonlinearity measuring device
Li et al. Dual core optical fiber for distributed Brillouin fiber sensors
CN104344881A (en) Novel distributed fiber vibration sensing system based on POTDR
CN104655193A (en) Brillouin optical coherent reflectometer based on noise modulation
JP6393563B2 (en) Optical fiber evaluation method and evaluation apparatus
Li et al. Modal delay and bandwidth measurements of bi-modal fibers facilitated by analytical transfer function model
JP2022085974A (en) Optical characteristic measurement method and optical characteristic measurement device
Moro et al. Experimental validation and uncertainty quantification of a single-mode optical fiber transmission model
US7151249B2 (en) Method for determining the cut-off wavelength of an optical fibre as well as a device suitable for that purpose
Grüner-Nielsen Brillouin Gain Spectra of Few Mode Fibres
TWI408912B (en) Optical fiber communication method and transmitting device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140326

R150 Certificate of patent or registration of utility model

Ref document number: 5517228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees