JP2018096880A - Mode field diameter measurement method - Google Patents

Mode field diameter measurement method Download PDF

Info

Publication number
JP2018096880A
JP2018096880A JP2016242533A JP2016242533A JP2018096880A JP 2018096880 A JP2018096880 A JP 2018096880A JP 2016242533 A JP2016242533 A JP 2016242533A JP 2016242533 A JP2016242533 A JP 2016242533A JP 2018096880 A JP2018096880 A JP 2018096880A
Authority
JP
Japan
Prior art keywords
mode
mfd
optical fiber
field diameter
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016242533A
Other languages
Japanese (ja)
Other versions
JP6673812B2 (en
Inventor
松井 隆
Takashi Matsui
隆 松井
中島 和秀
Kazuhide Nakajima
和秀 中島
泰志 坂本
Yasushi Sakamoto
泰志 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2016242533A priority Critical patent/JP6673812B2/en
Publication of JP2018096880A publication Critical patent/JP2018096880A/en
Application granted granted Critical
Publication of JP6673812B2 publication Critical patent/JP6673812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a mode field diameter measurement method capable of establishing measurement method of MFD with respect to a higher mode of multi-mode optical fiber while clarifying a relation between MFD and connection loss.SOLUTION: Disclosed mode field diameter measurement method is a VA method capable of precisely measuring MFD in high mode, in which, defining an angle which is formed by a center axis of the optical fiber and a variable opening as angle θ, by adopting the maximum opening angle θmax to satisfy the following formula 1.SELECTED DRAWING: Figure 1

Description

本開示は、複数の伝搬モードを伝搬可能な光ファイバにおけるモードフィールド径の測定方法に関する。   The present disclosure relates to a method for measuring a mode field diameter in an optical fiber capable of propagating a plurality of propagation modes.

複数のコア領域を有するマルチコア光ファイバや複数の伝搬モードを伝搬可能な数モード光ファイバが、空間多重技術を用いることによる飛躍的な伝送容量拡大に向け、活発に検討されている。特に複数の伝搬モードを用いたモード多重伝送は、伝搬可能なモード数分だけ伝送容量を向上させることができることから、新たな大容量伝送方式として注目を集めている。   A multi-core optical fiber having a plurality of core regions and a number mode optical fiber capable of propagating a plurality of propagation modes have been actively studied for a dramatic increase in transmission capacity by using a spatial multiplexing technique. In particular, mode multiplex transmission using a plurality of propagation modes has been attracting attention as a new large-capacity transmission system because the transmission capacity can be improved by the number of modes that can be propagated.

ここで光通信システムにおいて、光ファイバのモードフィールド径(MFD)は伝搬中の光波の拡がりを示すものであり、特に接続損失の推定に使用できることから通信システム設計に直接的に関係する重要なパラメータである。従来の単一モード光ファイバ(SMF)ではMFDの測定方法として、国際標準にてNFP(Near Field Pattern)法、FFP(Far Field Pattern)法、VA(Variable Aperture)法の3つが規定されている。   Here, in an optical communication system, the mode field diameter (MFD) of an optical fiber indicates the spread of a light wave that is being propagated. Particularly, since it can be used to estimate connection loss, it is an important parameter directly related to communication system design. It is. In the conventional single mode optical fiber (SMF), three methods of MFD measurement are defined by international standards: NFP (Near Field Pattern) method, FFP (Far Field Pattern) method, and VA (Variable Aperture) method. .

数モード光ファイバにおいても、基本モードについてはSMFと同様の振る舞いを示すことから、既存の測定方法が利用できる。しかしながら数モード光ファイバにおける高次モードのMFDについては、電界分布およびFFPが基本モードと大きく異なることから、高次モードにおけるMFDと接続損失の関係が明らかでなく、その測定方法も確立されていない。   Even in a few mode optical fiber, the fundamental mode exhibits the same behavior as the SMF, so that the existing measurement method can be used. However, for the higher-order mode MFD in the several-mode optical fiber, since the electric field distribution and FFP are significantly different from the fundamental mode, the relationship between the MFD and the connection loss in the higher-order mode is not clear, and the measurement method has not been established. .

非特許文献1では、数値計算によって数モード光ファイバの高次モードにおけるMFDを実効断面積の平方根とすることで、接続損失と高い相関を示すことを報告している。また非特許文献2では、NFP法において画像処理技術を適用することで、基本モード及び高次モードのビーム幅を測定できる事を示している。   Non-Patent Document 1 reports that MFD in a higher-order mode of a several-mode optical fiber is numerically calculated to show a high correlation with connection loss by using the square root of the effective area. Non-Patent Document 2 shows that the beam width of the fundamental mode and the higher-order mode can be measured by applying an image processing technique in the NFP method.

K. Ozaki et al., “Effective Mode Field Diameter Definition and Splice Loss Estimation of LP11 Mode in Few Mode Fibers”, Proc. ACP2014, ATh3A−98 (2014).K. Ozaki et al. "Effective Mode Field Diameter Definition and Splice Loss Estimation of LP11 Mode in Few Mode Fibers", Proc. ACP2014, ATh3A-98 (2014). Y. Wakayama et al., “MFD Measurement of a Six−Mode Fiber with Low−Coherence Digital Holography”, Proc. OECC/PS2016, ThC2−3 (2016).Y. Wakayama et al. “MFD Measurement of a Six-Mode Fiber with Low-Coherence Digital Holography”, Proc. OECC / PS2016, ThC2-3 (2016).

しかしながら、高次モードに対するMFDの測定値と接続損失の関係は明らかではなく、MFD測定方法の高次モードに対する適用性も明らかではないため、高次モードに対してどのようにMFDを測定してよいかが不明である、といった課題があった。   However, the relationship between the measured value of the MFD for the higher order mode and the connection loss is not clear, and the applicability of the MFD measurement method to the higher order mode is not clear, so how to measure the MFD for the higher order mode There was a problem that it was unclear whether it was good.

そこで、本発明は、前記課題を解決するために、数モード光ファイバの高次モードに対するMFDの測定方法を確立し、MFDと接続損失の関係を明らかにするモードフィールド径測定方法を提供することを目的とする。   Therefore, in order to solve the above-mentioned problems, the present invention provides a mode field diameter measurement method that establishes an MFD measurement method for higher-order modes of a few-mode optical fiber and clarifies the relationship between MFD and connection loss. With the goal.

上記目的を達成するために、本発明に係るモードフィールド径測定方法は、VA法において被測定光ファイバの出射角に対する最大開口角を予想されるMFDに基づいて設定することとした。   In order to achieve the above object, the mode field diameter measuring method according to the present invention sets the maximum opening angle with respect to the emission angle of the optical fiber to be measured based on the expected MFD in the VA method.

具体的には、本発明に係るモードフィールド径測定方法は、複数のモードを伝搬可能な光ファイバにおける基本モードおよび高次モードの実効モードフィールド径をVA(Variable Aperture)法で測定するモードフィールド径測定方法であって、
任意の伝搬モードを選択的に励振した光を被測定光ファイバに入射し、
前記被測定光ファイバの中心軸と可変開口部の開口部とからなる角度をθとした時、
前記被測定光ファイバからの出射光を、前記可変開口部を通過させる際、前記θをゼロから数1を満たす最大の開口角θmaxまで変化させ、
前記θのときに前記可変開口部を通過した前記出射光の光強度P(θ)と前記θから数2でモードフィールド径MFDを計算することを特徴とするモードフィールド径測定方法。

Figure 2018096880
ただし、MFD*は予想される前記被測定光ファイバのモードフィールド径である。
Figure 2018096880
Specifically, the mode field diameter measuring method according to the present invention is a mode field diameter in which the effective mode field diameter of the fundamental mode and the higher order mode in an optical fiber capable of propagating a plurality of modes is measured by the VA (Variable Aperture) method. A measuring method,
The light selectively excited in any propagation mode is incident on the optical fiber to be measured,
When the angle between the central axis of the optical fiber to be measured and the opening of the variable opening is θ,
When the light emitted from the optical fiber to be measured passes through the variable aperture, the θ is changed from zero to a maximum aperture angle θmax that satisfies Equation 1,
A mode field diameter measuring method characterized in that the mode field diameter MFD is calculated from the light intensity P (θ) of the emitted light that has passed through the variable aperture at the time of θ and the θ, using Equation (2).
Figure 2018096880
Where MFD * is the expected mode field diameter of the optical fiber to be measured.
Figure 2018096880

本モードフィールド径測定方法は、数モード光ファイバのモード毎のMFDをVA法で測定する際に、MFDを算出する数2において、正確なMFDを算出する(例えば、十分に大きなθmaxとした場合のMFDとの誤差が1%以下とする)ために必要最小限のθmaxの値を数1から求めている。θがゼロからθmaxまでの光強度を測定して求めた本モードフィールド径測定方法のMFDに基づく接続損失と実験で測定した接続損失とは概ね一致する。従って、本発明は、数モード光ファイバの高次モードに対するMFDの測定方法を確立し、MFDと接続損失の関係を明らかにするモードフィールド径測定方法を提供することができる。   In this mode field diameter measurement method, when measuring the MFD for each mode of the several-mode optical fiber by the VA method, an accurate MFD is calculated in Equation 2 for calculating the MFD (for example, when sufficiently large θmax is set). Therefore, the minimum value of θmax is obtained from the equation (1). The connection loss based on the MFD of the present mode field diameter measurement method obtained by measuring the light intensity from θ to zero to θmax substantially coincides with the connection loss measured in the experiment. Therefore, the present invention can establish a method for measuring MFD for higher-order modes of a few-mode optical fiber and provide a mode field diameter measuring method for clarifying the relationship between MFD and splice loss.

本発明は、数モード光ファイバの高次モードに対するMFDの測定方法を確立し、MFDと接続損失の関係を明らかにするモードフィールド径測定方法を提供することができる。   The present invention can provide a mode field diameter measurement method that establishes an MFD measurement method for higher-order modes of a few-mode optical fiber and clarifies the relationship between MFD and splice loss.

本発明に係るモードフィールド測定方法を行う装置の概略図である。It is the schematic of the apparatus which performs the mode field measuring method which concerns on this invention. 本発明に係るモードフィールド測定方法を行う装置にて被測定光ファイバから出射するLP01モードおよびLP11モードの光強度を測定した例である。It is the example which measured the light intensity of LP01 mode and LP11 mode radiate | emitted from a to-be-measured optical fiber with the apparatus which performs the mode field measuring method which concerns on this invention. 本発明に係るモードフィールド測定方法で測定したLP01モードおよびLP11モードのMFD精度と開口数範囲の関係を示す一例である。It is an example which shows the relationship between the MFD precision and numerical aperture range of LP01 mode and LP11 mode which were measured with the mode field measuring method concerning the present invention. 本発明に係るモードフィールド測定方法で測定したMFDから推定される接続損失と実測した接続損失との関係を示す一例である。It is an example which shows the relationship between the connection loss estimated from MFD measured with the mode field measuring method which concerns on this invention, and the measured connection loss. 本発明に係るモードフィールド測定方法においてLP01モードおよびLP11モードのMFD測定に最小限必要な最大開口数を説明する図である。It is a figure explaining the maximum numerical aperture required for the MFD measurement of LP01 mode and LP11 mode in the mode field measurement method according to the present invention.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

本実施形態のモードフィールド測定方法は、複数のモードを伝搬可能な光ファイバにおける基本モードおよび高次モードの実効モードフィールド径をVA(Variable Aperture)法で測定するモードフィールド径測定方法であって、
任意の伝搬モードを選択的に励振した光を被測定光ファイバに入射し、
前記被測定光ファイバの中心軸と可変開口部の開口部とからなる角度をθとした時、
前記被測定光ファイバからの出射光を、前記可変開口部を通過させる際、前記θをゼロから数1を満たす最大の開口角θmaxまで変化させ、
前記θのときに前記可変開口部を通過した前記出射光の光強度P(θ)と前記θから数2でモードフィールド径MFDを計算することを特徴とするモードフィールド径測定方法。

Figure 2018096880
ただし、MFD*は予想される前記被測定光ファイバのモードフィールド径である。
Figure 2018096880
The mode field measurement method of the present embodiment is a mode field diameter measurement method that measures the effective mode field diameter of the fundamental mode and the higher-order mode in an optical fiber capable of propagating a plurality of modes by a VA (Variable Aperture) method.
The light selectively excited in any propagation mode is incident on the optical fiber to be measured,
When the angle between the central axis of the optical fiber to be measured and the opening of the variable opening is θ,
When the light emitted from the optical fiber to be measured passes through the variable aperture, the θ is changed from zero to a maximum aperture angle θmax that satisfies Equation 1,
A mode field diameter measuring method characterized in that the mode field diameter MFD is calculated from the light intensity P (θ) of the emitted light that has passed through the variable aperture at the time of θ and the θ, using Equation (2).
Figure 2018096880
Where MFD * is the expected mode field diameter of the optical fiber to be measured.
Figure 2018096880

図1は、本モードフィールド測定方法を行う測定機の概略図である。本測定機は、光源11、モード励振器12、可変開口部13、及び受光部14を有する。光波は、光源11からモード励振器12を経て被測定光ファイバ50に入射され、任意の伝搬モードを選択的に励振する。被測定光ファイバ50を伝搬し出射端より出射された光波は、可変開口部13を通過し受光部14にて受光され、その光強度が計測される。このとき、可変開口部13において開口数を変化させながら受光部14で光強度を計測する。   FIG. 1 is a schematic view of a measuring machine that performs this mode field measurement method. The measuring instrument has a light source 11, a mode exciter 12, a variable aperture 13, and a light receiver 14. The light wave is incident on the measured optical fiber 50 from the light source 11 through the mode exciter 12 and selectively excites an arbitrary propagation mode. A light wave propagating through the optical fiber 50 to be measured and emitted from the emission end passes through the variable opening 13 and is received by the light receiving unit 14, and its light intensity is measured. At this time, the light intensity is measured by the light receiving unit 14 while changing the numerical aperture in the variable opening 13.

光ファイバの中心軸と開口部とからなる角度θに対する受光光強度をP(θ)とすると、MFDは数2で求められる。なお、θmaxは、ゼロから増加させていったときの測定終了時のθである。   If the received light intensity with respect to the angle θ formed by the central axis of the optical fiber and the opening is P (θ), the MFD is obtained by Equation 2. Note that θmax is θ at the end of measurement when increasing from zero.

なお、可変開口部13の開口の中心と被測定光ファイバ50の中心軸を合わせるため、被測定光ファイバ50の出射部に調心台15を設置することが好ましい。また可変開口部13と受光部14の間に光学レンズ(コリメータ)16を設置すると、受光部14における受光効率が向上し、好ましい。   In order to align the center of the opening of the variable opening 13 with the center axis of the optical fiber 50 to be measured, it is preferable to install the aligning table 15 at the emission part of the optical fiber 50 to be measured. In addition, it is preferable to install an optical lens (collimator) 16 between the variable opening 13 and the light receiving unit 14 because the light receiving efficiency in the light receiving unit 14 is improved.

図2は、図1の測定機において可変開口部13の開口(sinθ)を変化させたときの受光部14が測定する光強度を説明する図である。ここでは被測定光ファイバ50をステップ型数モード光ファイバとし、そのコア直径および比屈折率差をそれぞれ14μm、0.4%とした。当該光ファイバは波長1550nmにおいて、2つのLPモードを伝搬することができる。ここでモード励振器12で基本モード(LP01モード)および第1高次モード(LP11モード)を選択的に励振し、開口数に対する光強度の変化を得た。数2を用いてMFDを計算したところ、LP01モード及びLP11モードに対しそれぞれ、12.5μm及び8.1μmであった。   FIG. 2 is a diagram for explaining the light intensity measured by the light receiving unit 14 when the aperture (sin θ) of the variable aperture 13 is changed in the measuring machine of FIG. Here, the measured optical fiber 50 is a step type number mode optical fiber, and the core diameter and the relative refractive index difference are 14 μm and 0.4%, respectively. The optical fiber can propagate two LP modes at a wavelength of 1550 nm. Here, the mode exciter 12 selectively excited the fundamental mode (LP01 mode) and the first higher-order mode (LP11 mode) to obtain a change in light intensity with respect to the numerical aperture. When MFD was calculated using Equation 2, they were 12.5 μm and 8.1 μm for the LP01 mode and the LP11 mode, respectively.

図3は、可変開口部13における最大開口数(sinθmax)を変化させて受光部14で光強度を測定した時に計算されるMFDと接続損失実測値から推定されるMFDとの誤差の関係を説明する図である。いずれのモードに対しても開口数の範囲(sinθmax)が小さいほどMFDの誤差が大きいことがわかる。ここでLP01モード、LP11モードに対し測定誤差1%以下とするためには、最大開口数はそれぞれ0.12、0.18以上必要である事がわかる。   FIG. 3 illustrates the relationship between the error between the MFD calculated when the light intensity is measured by the light receiving unit 14 by changing the maximum numerical aperture (sin θmax) in the variable aperture 13 and the MFD estimated from the measured connection loss. It is a figure to do. It can be seen that the MFD error is larger as the numerical aperture range (sin θmax) is smaller for any mode. Here, it can be seen that the maximum numerical apertures of 0.12 and 0.18 are necessary for the LP01 mode and the LP11 mode to have a measurement error of 1% or less, respectively.

図4は、接続損失実測値と数2のMFDから推定した接続損失値との関係を説明する図である。横軸はLP01モード、LP11モードに対し実験によって得られた接続損失である。縦軸は数2のMFD測定値から次式を用いて推定した接続損失である。

Figure 2018096880
ここでは軸ずれ量dを3μmとした。
黒丸は本モードフィールド径測定方法のVA法によって得られたLP01モードの接続損失、
白丸は本モードフィールド径測定方法のVA法によって得られたLP11モードの接続損失、
黒三角はNFP法によって得られたLP01モードの接続損失、
白三角はNFP法によって得られたLP11モードの接続損失、
を表す。 FIG. 4 is a diagram for explaining the relationship between the measured connection loss and the connection loss value estimated from the MFD of Equation 2. The horizontal axis represents connection loss obtained by experiments for the LP01 mode and the LP11 mode. The vertical axis represents the connection loss estimated from the MFD measurement value of Equation 2 using the following equation.
Figure 2018096880
Here, the axis deviation d was set to 3 μm.
The black circle is the connection loss of the LP01 mode obtained by the VA method of this mode field diameter measurement method,
The white circle is the connection loss of the LP11 mode obtained by the VA method of this mode field diameter measurement method,
The black triangle is the LP01 mode splice loss obtained by the NFP method.
The white triangle is the LP11 mode splice loss obtained by the NFP method.
Represents.

図4より、NFP法ではLP01モードに対しては概ね実験とMFDからの推定値が一致しているのに対し、LP11モードに対しては大きく乖離していることがわかる。実験ではLP11モードの方がLP01モードより接続損失が大きいにもかかわらず、NFP法では高次モードの方がMFDが大きく見積もられるため、接続損失評価の観点ではNFP法は適切ではない。一方、本モードフィールド径測定方法のVA法によって得られた値はLP01、LP11モードいずれに対しても実験値に近接する。この結果より、本モードフィールド径測定方法のVA法によって得られたMFDは、基本モードおよび高次モードいずれに対しても、接続損失の推定に有効であることがわかる。   From FIG. 4, it can be seen that in the NFP method, the estimated values from the experiment and the MFD are generally the same for the LP01 mode, but greatly deviated from the LP11 mode. Although the LP11 mode has a larger connection loss than the LP01 mode in the experiment, the NFP method is not suitable from the viewpoint of connection loss evaluation because the higher order mode has a larger MFD. On the other hand, the value obtained by the VA method of this mode field diameter measurement method is close to the experimental value for both the LP01 and LP11 modes. From this result, it can be seen that the MFD obtained by the VA method of the mode field diameter measurement method is effective in estimating the connection loss for both the fundamental mode and the higher order mode.

図5は、VA法において測定対象のMFDに対して最小限必要となる最大開口数(sinθmax)の関係を示す。横軸は十分に大きな最大開口数(例えば、図1の可変開口部13で設定できる最大の開口数)で得られるMFD(真値)であり、縦軸はこの真値をVA法にて誤差1%以下で測定するために最小限必要となる最大開口数(sinθmax)である。   FIG. 5 shows the relationship between the minimum required numerical aperture (sin θmax) for the MFD to be measured in the VA method. The horizontal axis is the MFD (true value) obtained with a sufficiently large maximum numerical aperture (for example, the maximum numerical aperture that can be set by the variable aperture portion 13 in FIG. 1), and the vertical axis is the error calculated by the VA method. This is the maximum numerical aperture (sin θmax) that is minimum required for measurement at 1% or less.

図中の黒丸はLP01モードの結果、白丸はLP11モードの結果である。この比較結果より、本モードフィールド径測定方法で必要となる最大開口数は測定対象のMFD値に対して数1の指数関数で近似することができる。
つまり、数1を満たす最大開口数(sinθmax)を図1の測定機に設定することで基本モードおよび高次モードいずれに対しても、十分な精度でMFDを測定することが可能となる。
The black circles in the figure are the results of the LP01 mode, and the white circles are the results of the LP11 mode. From this comparison result, the maximum numerical aperture required in this mode field diameter measurement method can be approximated by the exponential function of Formula 1 with respect to the MFD value to be measured.
That is, by setting the maximum numerical aperture (sin θmax) satisfying Equation 1 in the measuring device of FIG. 1, it is possible to measure the MFD with sufficient accuracy in both the basic mode and the higher order mode.

(本発明の効果)
本発明のモードフィールド測定方法では、高次モードに対するMFD測定を可能とし、得られたMFDの値によって高次モードに対する接続損失の推定を可能とする、といった効果を奏する。
(Effect of the present invention)
In the mode field measurement method of the present invention, it is possible to perform the MFD measurement for the higher-order mode and to estimate the connection loss for the higher-order mode based on the obtained MFD value.

本発明は、数モード光ファイバに対する光学特性試験および空間分割多重伝送システムのシステム設計に利用できる。   The present invention can be used for optical characteristic test for several mode optical fibers and system design of a space division multiplexing transmission system.

11:光源
12:モード励振器
13:可変開口部
14:受光部
15:調心台
16:光学レンズ
50:被測定光ファイバ
11: light source 12: mode exciter 13: variable aperture 14: light receiving unit 15: alignment table 16: optical lens 50: optical fiber to be measured

Claims (1)

複数のモードを伝搬可能な光ファイバにおける基本モードおよび高次モードの実効モードフィールド径をVA(Variable Aperture)法で測定するモードフィールド径測定方法であって、
任意の伝搬モードを選択的に励振した光を被測定光ファイバに入射し、
前記被測定光ファイバの中心軸と可変開口部の開口部とからなる角度をθとした時、
前記被測定光ファイバからの出射光を、前記可変開口部を通過させる際、前記θをゼロから数1を満たす最大の開口角θmaxまで変化させ、
前記θのときに前記可変開口部を通過した前記出射光の光強度P(θ)と前記θから数2でモードフィールド径MFDを計算することを特徴とするモードフィールド径測定方法。
Figure 2018096880
ただし、MFD*は予想される前記被測定光ファイバのモードフィールド径である。
Figure 2018096880
A mode field diameter measurement method for measuring an effective mode field diameter of a fundamental mode and a higher-order mode in an optical fiber capable of propagating a plurality of modes by a VA (Variable Aperture) method,
The light selectively excited in any propagation mode is incident on the optical fiber to be measured,
When the angle between the central axis of the optical fiber to be measured and the opening of the variable opening is θ,
When the light emitted from the optical fiber to be measured passes through the variable aperture, the θ is changed from zero to a maximum aperture angle θmax that satisfies Equation 1,
A mode field diameter measuring method characterized in that the mode field diameter MFD is calculated from the light intensity P (θ) of the emitted light that has passed through the variable aperture at the time of θ and the θ, using Equation (2).
Figure 2018096880
Where MFD * is the expected mode field diameter of the optical fiber to be measured.
Figure 2018096880
JP2016242533A 2016-12-14 2016-12-14 Mode field diameter measurement method Active JP6673812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016242533A JP6673812B2 (en) 2016-12-14 2016-12-14 Mode field diameter measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016242533A JP6673812B2 (en) 2016-12-14 2016-12-14 Mode field diameter measurement method

Publications (2)

Publication Number Publication Date
JP2018096880A true JP2018096880A (en) 2018-06-21
JP6673812B2 JP6673812B2 (en) 2020-03-25

Family

ID=62632324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016242533A Active JP6673812B2 (en) 2016-12-14 2016-12-14 Mode field diameter measurement method

Country Status (1)

Country Link
JP (1) JP6673812B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020250310A1 (en) * 2019-06-11 2020-12-17 日本電信電話株式会社 Optical pulse testing method and optical pulse testing device
WO2021048919A1 (en) * 2019-09-10 2021-03-18 日本電信電話株式会社 Test method and test device for mode field diameter
WO2022219740A1 (en) * 2021-04-14 2022-10-20 日本電信電話株式会社 Mode field diameter measurement method and mode field diameter measurement device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104122A (en) * 1996-09-30 1998-04-24 Shin Etsu Chem Co Ltd Method for measuring mode field diameter of optic fiber
US20080277565A1 (en) * 2007-05-07 2008-11-13 Dana Craig Bookbinder Optical fiber for optical power transmission
JP2012150002A (en) * 2011-01-19 2012-08-09 Nippon Telegr & Teleph Corp <Ntt> Cutoff wavelength measuring method, operation mode determination method and apparatus for the methods
JP2013019717A (en) * 2011-07-08 2013-01-31 Nippon Telegr & Teleph Corp <Ntt> Method for measuring mode field diameter of hole structure optical fiber, and device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104122A (en) * 1996-09-30 1998-04-24 Shin Etsu Chem Co Ltd Method for measuring mode field diameter of optic fiber
US20080277565A1 (en) * 2007-05-07 2008-11-13 Dana Craig Bookbinder Optical fiber for optical power transmission
JP2012150002A (en) * 2011-01-19 2012-08-09 Nippon Telegr & Teleph Corp <Ntt> Cutoff wavelength measuring method, operation mode determination method and apparatus for the methods
JP2013019717A (en) * 2011-07-08 2013-01-31 Nippon Telegr & Teleph Corp <Ntt> Method for measuring mode field diameter of hole structure optical fiber, and device using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUTA WAKAYAMA ET AL.: ""MFD Measurement of a Six-Mode Fiber with Low-Coherence Digital Holography"", PROC. OECC/PS2016, JPN6019039120, July 2016 (2016-07-01), pages 2 - 3, ISSN: 0004132416 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020250310A1 (en) * 2019-06-11 2020-12-17 日本電信電話株式会社 Optical pulse testing method and optical pulse testing device
JPWO2020250310A1 (en) * 2019-06-11 2020-12-17
WO2021048919A1 (en) * 2019-09-10 2021-03-18 日本電信電話株式会社 Test method and test device for mode field diameter
JPWO2021048919A1 (en) * 2019-09-10 2021-03-18
JP7251639B2 (en) 2019-09-10 2023-04-04 日本電信電話株式会社 Mode field diameter test method and test equipment
WO2022219740A1 (en) * 2021-04-14 2022-10-20 日本電信電話株式会社 Mode field diameter measurement method and mode field diameter measurement device

Also Published As

Publication number Publication date
JP6673812B2 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
JP6862712B2 (en) Optical fiber evaluation method and optical fiber evaluation device
JP2012208497A (en) Multimode optical fiber
JP6897373B2 (en) Optical fiber emission beam profile measurement method and equipment
WO2018042760A1 (en) Measurment method, measurement device, and measurement program
JP6673812B2 (en) Mode field diameter measurement method
US9377593B2 (en) System and method of estimating beam mode content for waveguide alignment
JP6475591B2 (en) Mode dispersion coefficient measuring apparatus and mode dispersion coefficient measuring method
JP2012150002A (en) Cutoff wavelength measuring method, operation mode determination method and apparatus for the methods
JP5709115B1 (en) Evaluation method and evaluation apparatus
Chou et al. Stable measurement of effective area in coupled multi-core fiber
KR20140068851A (en) Optical transmission line
JP5227152B2 (en) Method for confirming single mode transmission of optical fiber, method and apparatus for measuring cut-off wavelength
WO2019241211A1 (en) Method of identifying wideband mmf from 850 nm dmd measurements
JP6560647B2 (en) Loss measurement system, loss measurement control device, loss measurement method, and program
JP6802173B2 (en) Equipment, systems and methods used for fiber measurements such as multimode fiber shape measurements
JP6393563B2 (en) Optical fiber evaluation method and evaluation apparatus
JP5966672B2 (en) Optical fiber measurement method
JP4322630B2 (en) Evaluation method of cut-off wavelength characteristics of single-mode optical fiber
WO2020036218A1 (en) Raman gain efficiency distribution testing method, and raman gain efficiency distribution testing device
JP7376410B2 (en) Measuring method and measuring device
WO2024069792A1 (en) Device and method for acquiring mode-field diameter of optical fiber
WO2022219740A1 (en) Mode field diameter measurement method and mode field diameter measurement device
JP6162028B2 (en) Optical property measuring instrument
Matsui et al. Effective mode-field diameter measurement for few-mode fibers
JP7435981B2 (en) Mode field diameter measuring device and measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200305

R150 Certificate of patent or registration of utility model

Ref document number: 6673812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150