JPH02246277A - Mos transistor and manufacture thereof - Google Patents

Mos transistor and manufacture thereof

Info

Publication number
JPH02246277A
JPH02246277A JP6803789A JP6803789A JPH02246277A JP H02246277 A JPH02246277 A JP H02246277A JP 6803789 A JP6803789 A JP 6803789A JP 6803789 A JP6803789 A JP 6803789A JP H02246277 A JPH02246277 A JP H02246277A
Authority
JP
Japan
Prior art keywords
gate
drain
thin film
mos transistor
thick film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6803789A
Other languages
Japanese (ja)
Inventor
Eiji Fujii
英治 藤井
Koji Senda
耕司 千田
Fumiaki Emoto
文昭 江本
Yasuhiro Uemoto
康裕 上本
Akira Nakamura
晃 中村
Atsuya Yamamoto
敦也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP6803789A priority Critical patent/JPH02246277A/en
Publication of JPH02246277A publication Critical patent/JPH02246277A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To enable the leakage current under reverse voltage to be restrained from occurring by a method wherein polysilicon film to be a drain in a single gate shape is formed as a thin part near a gate while as thick film parts outside the gate and then the impurity concentration in the thin film part is lowered compared with that in the thick film parts. CONSTITUTION:A thin film type single gate MOS transistor formed on the surface of a quartz substrate 9 is composed of a gate 12 through the intermediary of a gate oxide film 11 provided on a thin film part 10a of a polysilicon film 10 in the central part, a source 13 and a drain 14 comprising thick film parts 10b implanted with an impurity and formed of two layered polysilicon films 10 distant from the thin film part 10a and both sides of the central gate 12. Accordingly, the field intensity between the gate 12 and the drain 14 can be decreased. Through these procedures, the numbers of electrons and holes excited by field emission can be decreased to restrain the leakage current from occurring.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、MOSトランジスタおよびその製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a MOS transistor and a method for manufacturing the same.

(従来の技術) 近年、高速LSIや表示素子を開発するため、透明基板
上に形成した非晶質膜やポリシリコン膜あるいは再結晶
化シリコン膜の研究が盛んに進められている。特に、実
用段階にあるポケットTVなどの液晶表示素子は、液晶
操作用のスイッチングトランジスタおよびそのドライバ
ICの性能を向上するため、様々なアプローチがなされ
ている。
(Prior Art) In recent years, in order to develop high-speed LSIs and display elements, research has been actively conducted on amorphous films, polysilicon films, or recrystallized silicon films formed on transparent substrates. In particular, various approaches have been taken to improve the performance of switching transistors for operating liquid crystals and their driver ICs for liquid crystal display devices such as pocket TVs that are in the practical stage.

この種の従来のMoSトランジスタについて、表示素子
用の基板として最もよく知られている石英基板上のポリ
シリコン膜に形成された液晶操作用のスイッチトランジ
スタを例として、第5図の要部拡大断面図により説明す
る。
Regarding this type of conventional MoS transistor, an enlarged cross-section of the main part shown in FIG. This will be explained using figures.

同図において、従来のスイッチングトランジスタは、石
英基板1の表面に形成されたポリシリコン膜2に形成し
たデュアルゲート形MOSトランジスタで、ソース3.
第1ドレイン4および第2ドレイン5と、ゲート酸化膜
6で隔てた第1ゲート7および第2ゲート8とから構成
されている。
In the figure, the conventional switching transistor is a dual-gate type MOS transistor formed on a polysilicon film 2 formed on the surface of a quartz substrate 1, with sources 3.
It is composed of a first drain 4 and a second drain 5, and a first gate 7 and a second gate 8 separated by a gate oxide film 6.

このように構成されたスイッチングトランジスタでは、
ソース3を接地し、第1ドレイン4はフローティングと
して第2ドレイン5に電圧を印加し、第1および第2ゲ
ート7および8に同電圧をかけて使用する。
In a switching transistor configured in this way,
The source 3 is grounded, the first drain 4 is left floating, a voltage is applied to the second drain 5, and the same voltage is applied to the first and second gates 7 and 8.

(発明が解決しようとする課題) しかしながら、上記の構成では、デュアルゲート形のた
めに多くの面積をとり、微細化が難しいという問題があ
った。また、第1および第2ゲート7および8に負電圧
が、また、第2ドレイン5に正電圧がそれぞれかかった
場合(以下、逆方向電圧と呼ぶ)、第2ドレイン5と第
2ゲート8の接点に高電界が発生するという問題があっ
た。電界強度が大きいと、ポリシリコン膜2の粒界レベ
ルからフィールドエミッションによって電子、正孔がそ
れぞれ発生する0発生した電子が第2ドレイン5に流れ
込むと、逆方向電圧下なのでリーク電流となる。さらに
、第2ドレイン5の電圧が大きくなると、なだれ増幅に
よりリーク電流はさらに増大するという問題があった。
(Problems to be Solved by the Invention) However, the above configuration has a problem in that it takes up a large area due to the dual gate type and is difficult to miniaturize. Further, when a negative voltage is applied to the first and second gates 7 and 8 and a positive voltage is applied to the second drain 5 (hereinafter referred to as a reverse voltage), the second drain 5 and the second gate 8 There was a problem in that a high electric field was generated at the contacts. When the electric field strength is large, electrons and holes are generated by field emission from the grain boundary level of the polysilicon film 2. When the generated electrons flow into the second drain 5, it becomes a leak current because it is under a reverse voltage. Furthermore, when the voltage of the second drain 5 increases, there is a problem in that the leakage current further increases due to avalanche amplification.

本発明は上記の問題を解決するもので、逆方向電圧下の
リーク電流を抑制するMoSトランジスタおよびその製
造方法を提供するものである。
The present invention solves the above problems and provides a MoS transistor that suppresses leakage current under reverse voltage and a method for manufacturing the same.

(課題を解決するための手段) 上記の課題を解決するため1本発明はシングルゲート形
とし、ドレインとなるポリシリコン膜をゲート近傍に薄
膜部、その外側に厚膜部を形成し、薄膜部の不純物濃度
を厚膜部より低くするものである。その製造方法は、ポ
リシリコン膜にソースおよびドレイン領域を形成するイ
オン注入の際に、注入された不純物の濃度が最大となる
表面からの距離(以下、R,と呼ぶ)が厚膜部の膜厚と
同程度となる注入エネルギで行うものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention adopts a single gate type, forms a thin film portion of the polysilicon film serving as a drain near the gate, a thick film portion outside of the thin film portion, and The impurity concentration in the thick film portion is lower than that in the thick film portion. The manufacturing method is such that during ion implantation to form source and drain regions in a polysilicon film, the distance from the surface (hereinafter referred to as R) where the concentration of the implanted impurity is maximum is the thickness of the thick film part. The implantation energy is approximately the same as the thickness.

(作 用) 上記製造方法により、ゲート近傍のポリシリコン膜は薄
膜部で形成され、R2に等しいドレインの厚膜部より薄
いため、注入された不純物のほとんどが石英基板に注入
されるため、薄膜部の不純物濃度は厚膜部の不純物濃度
よりも小さくなる。
(Function) With the above manufacturing method, the polysilicon film near the gate is formed in a thin film part, which is thinner than the thick film part of the drain equal to R2, so most of the implanted impurities are implanted into the quartz substrate. The impurity concentration in the thick film portion is lower than that in the thick film portion.

すなわち、ドレインはゲート近傍の不純物濃度が小さく
なるような構成となる。上記の構成により、ゲートとド
レイン間の電界強度を小さくすることができ、従って、
フィールドエミッションにより励起される電子、正孔の
数が減少する。すなわち、リーク電流が抑制されること
になる。
That is, the drain has a structure in which the impurity concentration near the gate is reduced. With the above configuration, the electric field strength between the gate and drain can be reduced, and therefore,
The number of electrons and holes excited by field emission decreases. In other words, leakage current is suppressed.

(実施例) 本発明の一実施例を第1図ないし第4図により説明する
。第1図は本発明によるシングルゲートのMOSトラン
ジスタの要部拡大断面図、第2図(a)ないしく8)は
その各製造工程を示す要部拡大断面図、第3図はn形不
純物を注入した時の表面からの濃度分布図、第4図は本
発明によるMOSトランジスタのゲート電圧(v6)と
ドレイン電流(L)の関係を示す特性図である。
(Example) An example of the present invention will be described with reference to FIGS. 1 to 4. FIG. 1 is an enlarged sectional view of the main part of a single-gate MOS transistor according to the present invention, FIGS. 2(a) to 8) are enlarged sectional views of the main part showing each manufacturing process, and FIG. FIG. 4, which is a concentration distribution diagram from the surface when implanted, is a characteristic diagram showing the relationship between the gate voltage (v6) and drain current (L) of the MOS transistor according to the present invention.

第1図において、石英基板9の表面に形成した薄膜形の
シングルゲートMoSトランジスタは。
In FIG. 1, a thin film type single gate MoS transistor is formed on the surface of a quartz substrate 9.

中央にポリシリコン膜10の薄膜部10aに設けたゲー
ト酸化膜11を介したゲート12と、上記の薄膜部10
aおよびその両側に中央のゲート12から距離を置いて
ポリシリコン膜を2層に形成した厚膜部10bに不純物
を注入して設けたソース13およびドレイン14とから
構成されている。
In the center, there is a gate 12 via a gate oxide film 11 provided on the thin film portion 10a of the polysilicon film 10, and the thin film portion 10 described above.
a, and a source 13 and a drain 14 provided on both sides thereof by implanting impurities into a thick film portion 10b formed of two layers of polysilicon film at a distance from the central gate 12.

第3図は、第1図に示したポリシリコン膜10の厚膜部
10bに注入された不純物の濃度分布図で、横軸は表面
からの深さを、縦軸は体積lea当たりの原子数をそれ
ぞれ表わす、注入された不純物濃度は、表面からほぼ直
線的に増加して山形を描き、最大点を過ぎると減少に移
る。
FIG. 3 is a concentration distribution diagram of impurities implanted into the thick film portion 10b of the polysilicon film 10 shown in FIG. 1, where the horizontal axis represents the depth from the surface and the vertical axis represents the number of atoms per volume lea. The implanted impurity concentration, respectively, increases almost linearly from the surface to form a mountain shape, and begins to decrease after passing the maximum point.

第1図に示すMoSトランジスタでは、ポリシリコン1
ilOの膜厚は、厚膜部10bが第3図のt工に、薄膜
部10aがそのほぼ1/3のt2に形成されている。従
って、ドレイン14は、ゲート12の近傍が不純物低濃
度領域、遠方が不純物高濃度領域でそれぞれ構成される
ことになる。
In the MoS transistor shown in FIG.
The film thickness of ilO is such that the thick film part 10b is formed at t in FIG. 3, and the thin film part 10a is formed at t2, which is approximately 1/3 of the thickness. Therefore, the drain 14 consists of a low impurity concentration region near the gate 12 and a high impurity concentration region far away.

次に、本発明によるMOSトランジスタの製造方法につ
いて、第2図(a)ないしく6)により説明する。
Next, a method for manufacturing a MOS transistor according to the present invention will be explained with reference to FIGS. 2(a) to 6).

まず、石英基板9の全面に膜厚0.2μ園ないし0.3
μ鳳のポリシリコン膜を形成した後、バターニングして
島状の厚膜部10bの一層部10cを形成する〔第2図
(、))、次に、膜厚約0.1μmのポリシリコン膜を
堆積して厚膜部10bおよび厚膜部10bに挟まれた薄
膜部10aを形成する〔第2図(b)]、次に。
First, a film thickness of 0.2 μm to 0.3 μm is applied to the entire surface of the quartz substrate 9.
After forming a polysilicon film of μm, buttering is performed to form a single layer portion 10c of the island-shaped thick film portion 10b (see FIG. 2(, )). Next, a film is deposited to form a thick film portion 10b and a thin film portion 10a sandwiched between the thick film portions 10b [FIG. 2(b)].

上記の薄膜部10aの中央部に、乾燥酸素ガスを用いて
膜厚0.12μ園ないし0.13μ■のゲート酸化膜1
1を形成した後、膜厚約4000人のポリシリコン膜を
成長させ、ゲート12を形成する〔第2図(c))、次
に。
A gate oxide film 1 with a film thickness of 0.12 μm to 0.13 μm is formed in the center of the thin film portion 10a using dry oxygen gas.
1, a polysilicon film with a thickness of approximately 4000 nm is grown to form a gate 12 [FIG. 2(c)].

n形不純物としてリンイオン15を160 k eV程
のエネルギで1×101′ないし5×10°個/ali
をポリシリコン膜10に注入する〔第2図(d))、最
後に、温度900℃で20分ないし30分間焼戻し処理
を施す〔第2図(e)〕と、第1図に示したMoSトラ
ンジスタが得られる6本製造方法によれば、160ke
Vでリンイオンを注入した場合のR,は約0.2μ議で
あり、90%以上の不純物が注入される範囲は0.2±
0.06μmであるから、第3図の分布図から判るよう
に、ソース13およびドレイン14の厚膜部10bは高
濃度となり、一方ソース13およびドレイン14の膜厚
約0.05u■薄膜部10aは2桁程度低い低濃度とな
る。
Phosphorus ions 15 are added as an n-type impurity at an energy of about 160 k eV to 1×101' to 5×10° pieces/ali.
The MoS film shown in FIG. According to the 6-piece manufacturing method that yields a transistor, 160ke
When phosphorus ions are implanted at V, R is about 0.2μ, and the range where 90% or more of impurities are implanted is 0.2±.
Since it is 0.06 μm, as can be seen from the distribution diagram in FIG. 3, the thick film portion 10b of the source 13 and drain 14 has a high concentration, while the film thickness of the source 13 and drain 14 is approximately 0.05 μm. The concentration is about two orders of magnitude lower.

第1図に戻って、ゲート13近傍のドレイン14は薄膜
部10aとなり、その不純物濃度は遠方の厚膜部tab
の不純物濃度よりも2桁小さいため、ゲート12とドレ
イン14との間の電界強度は従来の約100分の1とな
り、フィールドエミッションにより発生する電子、正孔
数を大幅に低減することができる。すなわち、第4図の
曲線Aに示すように、従来例の曲線Bに比べ逆方向電圧
下におけるリーク電流の増加を抑制することができる。
Returning to FIG. 1, the drain 14 near the gate 13 becomes a thin film part 10a, and its impurity concentration is lower than that of the distant thick film part tab.
Since the impurity concentration is two orders of magnitude lower than the impurity concentration, the electric field strength between the gate 12 and the drain 14 is about 1/100th that of the conventional one, and the number of electrons and holes generated by field emission can be significantly reduced. That is, as shown by curve A in FIG. 4, an increase in leakage current under reverse voltage can be suppressed compared to curve B of the conventional example.

また、本発明によるMOSトランジスタは、ケイ化アル
ミニウムなどの金属と接続するソース13およびドレイ
ン14の厚膜部10bの不純物濃度を低くすることなし
に、ゲート12下のチャネル領域の厚さを薄くすること
ができる。一般に、電流が1桁変化するのに必要なゲー
ト電圧を示すサブスレッショルド係数Sは、 s = dvaz n 、 to −−(1+ −!;
1−−)T dlogID       q    Cowここで、
CI):チャネル下の容量 C(1z :酸化膜容量 で与えられる。すなわち、チャネルの膜厚が薄くなると
、CDが小さくなるため、Sも小さくなり、MoSトラ
ンジスタのスイッチング特性が良好となる。従って、本
発明のMoSトランジスタは。
Furthermore, the MOS transistor according to the present invention can reduce the thickness of the channel region under the gate 12 without lowering the impurity concentration of the thick film portion 10b of the source 13 and drain 14 connected to metal such as aluminum silicide. be able to. In general, the subthreshold coefficient S, which indicates the gate voltage required for the current to change by one order of magnitude, is s = dvaz n , to −−(1+ −!;
1--) T dlogID q Cow where,
CI): capacitance under the channel C(1z: given by oxide film capacitance. In other words, as the channel thickness becomes thinner, CD becomes smaller, S also becomes smaller, and the switching characteristics of the MoS transistor become better. Therefore, , the MoS transistor of the present invention is.

コンタクト抵抗を減少させることなくスイッチング特性
を向上させることができる。
Switching characteristics can be improved without reducing contact resistance.

(発明の効果) 以上説明したように1本発明によれば、リーク電流の少
ない、スイッチング特性のよいMOSトランジスタが得
られる。
(Effects of the Invention) As explained above, according to the present invention, a MOS transistor with low leakage current and good switching characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるMoSトランジスタの要部拡大断
面図、第2図(a)ないしくa)はその各製造工程を示
す要部断面図、第3図はn形不純物の濃度分布図、第4
図は本発明の実施例および従来例のMoSトランジスタ
エ。−v6特性図、第5図は従来のMoSトランジスタ
の要部拡大断面図である。 1.9・・・石英基板、2.10・・・ポリシリコン膜
、3.13・・・ソース、 4・・・第1ドレイン、 
5・・・第2ドレイン、 6,11・・・ゲート酸化膜
、 7・・・第1ゲート、 8・・・第2ゲート、 1
0a・・・薄膜部、 10b・・・厚膜部% 10c・
・・1層部、 12・・・ゲート、 14・・・ドレイ
ン、15・・・リンイオン。 特許出願人 松下電子工業株式会社 第 1゜ 9・・・石談茎板 too・・・簿謙舒 11 ・・・ グ’−ト*イヒ嘉屹 13°・°ソー人 0・・・ホリシリコン騰 10b、、、 78職きヤ 12・・・ケ゛−ト 14・・・ ドレイン 第 不死物S友 表@炉うの豫さ (pm)
FIG. 1 is an enlarged sectional view of the main part of the MoS transistor according to the present invention, FIG. 2 (a) or a) is a sectional view of the main part showing each manufacturing process, and FIG. Fourth
The figure shows a MoS transistor according to an embodiment of the present invention and a conventional example. -v6 characteristic diagram, FIG. 5 is an enlarged sectional view of the main part of a conventional MoS transistor. 1.9...Quartz substrate, 2.10...Polysilicon film, 3.13...Source, 4...First drain,
5... Second drain, 6, 11... Gate oxide film, 7... First gate, 8... Second gate, 1
0a...Thin film part, 10b...Thick film part% 10c・
...1st layer part, 12...gate, 14...drain, 15...phosphorus ion. Patent Applicant: Matsushita Electronics Industry Co., Ltd. No. 1゜9...Shidan Shuban too...Book Kenshu 11...G'-to*Ihi Kahi 13°・°So人0...Horisilicon Temperature 10b...78 Job 12...Kate 14... Drain 1st Immortal S Friend Table @ Furnace (pm)

Claims (2)

【特許請求の範囲】[Claims] (1)半導体膜に、ソース領域、チャネル領域およびド
レイン領域が形成されたMOSトランジスタにおいて、
上記の半導体膜の薄膜部の中央部にチャネル領域を形成
し、薄膜部と厚膜部とから構成されたドレイン領域の不
純物濃度を、薄膜部が厚膜部に比べて低濃度となるよう
に構成したことを特徴とするMOSトランジスタ。
(1) In a MOS transistor in which a source region, a channel region, and a drain region are formed in a semiconductor film,
A channel region is formed in the center of the thin film part of the above semiconductor film, and the impurity concentration in the drain region, which is composed of a thin film part and a thick film part, is set so that the thin film part has a lower concentration than the thick film part. A MOS transistor characterized by having the following structure.
(2)半導体膜に、ソース領域、チャネル領域およびド
レイン領域が形成されたMOSトランジスタにおいて、
上記の半導体膜に厚膜部と薄膜部を形成し、その薄膜部
の中央部にチャネル領域を形成し、半導体膜に注入され
不純物濃度が最大となる深さと、上記のドレイン領域の
厚膜部の厚膜とが同程度となるエネルギで不純物注入を
行い、薄膜部と厚膜部とから構成されたドレイン領域の
不純物濃度を、薄膜部が厚膜部に比べて低濃度となるよ
うにすることを特徴とするMOSトランジスタの製造方
法。
(2) In a MOS transistor in which a source region, a channel region, and a drain region are formed in a semiconductor film,
A thick film part and a thin film part are formed in the above semiconductor film, a channel region is formed in the center of the thin film part, and the depth at which the impurity concentration is maximized when implanted into the semiconductor film is determined, and the thick film part of the above drain region is The impurity is implanted with energy that is approximately the same as that of the thick film, so that the impurity concentration in the drain region, which is composed of a thin film part and a thick film part, is lower than that in the thick film part. A method for manufacturing a MOS transistor characterized by the following.
JP6803789A 1989-03-20 1989-03-20 Mos transistor and manufacture thereof Pending JPH02246277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6803789A JPH02246277A (en) 1989-03-20 1989-03-20 Mos transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6803789A JPH02246277A (en) 1989-03-20 1989-03-20 Mos transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02246277A true JPH02246277A (en) 1990-10-02

Family

ID=13362197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6803789A Pending JPH02246277A (en) 1989-03-20 1989-03-20 Mos transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02246277A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994000882A1 (en) * 1992-06-24 1994-01-06 Seiko Epson Corporation Thin film transistor, solid-state device, display device, and method for manufacturing thin film transistor
WO1994018706A1 (en) * 1993-02-10 1994-08-18 Seiko Epson Corporation Active matrix substrate and thin film transistor, and method of its manufacture
WO1995003629A1 (en) * 1993-07-26 1995-02-02 Seiko Epson Corporation Thin film semiconductor device, its manufacture, and display system
US5953582A (en) * 1993-02-10 1999-09-14 Seiko Epson Corporation Active matrix panel manufacturing method including TFTS having variable impurity concentration levels
US6049092A (en) * 1993-09-20 2000-04-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6259120B1 (en) 1993-10-01 2001-07-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US6489632B1 (en) * 1993-01-18 2002-12-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a gate oxide film
US6777763B1 (en) 1993-10-01 2004-08-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62281473A (en) * 1986-05-30 1987-12-07 Sony Corp Manufacture of field-effect type transistor
JPS63284865A (en) * 1987-05-18 1988-11-22 Hitachi Ltd Thin film semiconductor element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62281473A (en) * 1986-05-30 1987-12-07 Sony Corp Manufacture of field-effect type transistor
JPS63284865A (en) * 1987-05-18 1988-11-22 Hitachi Ltd Thin film semiconductor element

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508216A (en) * 1992-06-24 1996-04-16 Seiko Epson Corporation Thin film transistor, solid device, display device and manufacturing method of a thin film transistor
US5757048A (en) * 1992-06-24 1998-05-26 Seiko Epson Corporation Thin film transistor, solid state device, display device and manufacturing method of a thin film transistor
WO1994000882A1 (en) * 1992-06-24 1994-01-06 Seiko Epson Corporation Thin film transistor, solid-state device, display device, and method for manufacturing thin film transistor
US6489632B1 (en) * 1993-01-18 2002-12-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a gate oxide film
US7408233B2 (en) 1993-01-18 2008-08-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having N-channel thin film transistor with LDD regions and P-channel thin film transistor with LDD region
US6995432B2 (en) 1993-01-18 2006-02-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a gate oxide film with some NTFTS with LDD regions and no PTFTS with LDD regions
WO1994018706A1 (en) * 1993-02-10 1994-08-18 Seiko Epson Corporation Active matrix substrate and thin film transistor, and method of its manufacture
US5563427A (en) * 1993-02-10 1996-10-08 Seiko Epson Corporation Active matrix panel and manufacturing method including TFTs having variable impurity concentration levels
US5953582A (en) * 1993-02-10 1999-09-14 Seiko Epson Corporation Active matrix panel manufacturing method including TFTS having variable impurity concentration levels
US6180957B1 (en) 1993-07-26 2001-01-30 Seiko Epson Corporation Thin-film semiconductor device, and display system using the same
US6808965B1 (en) 1993-07-26 2004-10-26 Seiko Epson Corporation Methodology for fabricating a thin film transistor, including an LDD region, from amorphous semiconductor film deposited at 530° C. or less using low pressure chemical vapor deposition
WO1995003629A1 (en) * 1993-07-26 1995-02-02 Seiko Epson Corporation Thin film semiconductor device, its manufacture, and display system
US6049092A (en) * 1993-09-20 2000-04-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US6259120B1 (en) 1993-10-01 2001-07-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US6777763B1 (en) 1993-10-01 2004-08-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US7166503B2 (en) 1993-10-01 2007-01-23 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a TFT with laser irradiation

Similar Documents

Publication Publication Date Title
JPH02246277A (en) Mos transistor and manufacture thereof
JPH0228270B2 (en)
JPH04250669A (en) Polysilicon thin film semiconductor device
JP3485983B2 (en) Structure of thin film transistor and method of manufacturing the same
JPS625661A (en) Thin film transistor
JPH04279064A (en) Display device
JPH01218070A (en) Mos transistor
JPH09312405A (en) Thin-film transistor and manufacture thereof
JPS62160769A (en) Thin film transistor element
JPH0379035A (en) Mos transistor and manufacture thereof
JPH01302768A (en) Inverse stagger type si-thin film transistor
JPH0350771A (en) Semiconductor device
JP3052488B2 (en) Thin film transistor
JPS59124165A (en) Insulated gate type transistor and manufacture thereof
JPH06275830A (en) Accumulation-type polycrystalline silicon thin-film transistor
JPS6380570A (en) Manufacture of thin film transistor
JPS5897874A (en) Manufacture of field-effect transistor
JPH03200319A (en) Formation of poly-crystalline silicon
JPH0341479Y2 (en)
JPS61228671A (en) Thin film transistor
JPH05110095A (en) Thin film mos type transistor
JPH02208942A (en) Manufacture of thin film transistor
JP3153515B2 (en) Method for manufacturing insulated gate semiconductor device
JPS6138625B2 (en)
JPH0298968A (en) Mos type semiconductor device