JPH02243758A - Vacuum device - Google Patents

Vacuum device

Info

Publication number
JPH02243758A
JPH02243758A JP6200889A JP6200889A JPH02243758A JP H02243758 A JPH02243758 A JP H02243758A JP 6200889 A JP6200889 A JP 6200889A JP 6200889 A JP6200889 A JP 6200889A JP H02243758 A JPH02243758 A JP H02243758A
Authority
JP
Japan
Prior art keywords
crucible
heater
barb
pbn
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6200889A
Other languages
Japanese (ja)
Inventor
Yoshihiro Sugiyama
芳弘 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6200889A priority Critical patent/JPH02243758A/en
Publication of JPH02243758A publication Critical patent/JPH02243758A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable stable evaporation in a crucible for a long time by fitting a return made of pyrolytic boron nitride and extending downward from the top of the crucible to the crucible without reducing the effective diameter of the crucible. CONSTITUTION:A crucible 4 made of pyrolytic boron nitride and contg. an evaporating source and a heater 6 for heating the crucible 4 are set in a vacuum device. A return 26 made of pyrolytic boron nitride and extending downward from the top of the crucible 4 is fitted to the crucible 4 without reducing the effective diameter of the crucible 4 and a heater 27 for temp. compensation is incorporated into the return 26. The evaporating source such as Al can be prevented from crawling up along the inside of the crucible.

Description

【発明の詳細な説明】 〔概 要〕 蒸発物を基板上に堆積(付着)せさる真空装置、より詳
しくは、該真空装置での蒸発ソースを収容するるつぼの
改善に関し、 PBNるつぼにおいてA1がるつぼ上部に這い上がるの
を抑制し、るつぼ上部でのAI凝固を防止し、AI と
安定に長時間蒸発させることであり、そのためのるつぼ
を提供することを目的とし、蒸発ソースを収容するパイ
ロリティックボロンナイトライド製のるつぼと、該るつ
ぼを加熱するヒータとを備えた真空装置において、前記
るつぼの蒸発有効口径を狭めることなく、前記るつぼの
上部に前記るつぼの頂面から下方へ延びるパイロリティ
ックボロンナイトライド製のかえし部を付設するように
構成する。
[Detailed Description of the Invention] [Summary] Regarding the improvement of a vacuum device for depositing (adhering) an evaporated material on a substrate, more specifically, a crucible that houses an evaporation source in the vacuum device, A1 in a PBN crucible is The aim is to suppress AI from creeping up to the top of the crucible, prevent AI from coagulating at the top of the crucible, and evaporate AI stably for a long period of time. In a vacuum device equipped with a crucible made of boron nitride and a heater for heating the crucible, pyrolytic boron is added to the upper part of the crucible and extends downward from the top surface of the crucible without narrowing the effective evaporation aperture of the crucible. It is configured to include a barb made of nitride.

〔産業上の利用分野〕[Industrial application field]

本発明は、蒸発物を基板上に堆積(付着)させる真空装
置、より詳しくは、該真空装置での蒸発ソースを収容す
るるつぼの改善に関する。
The present invention relates to a vacuum apparatus for depositing evaporates onto a substrate, and more particularly to an improvement in a crucible containing an evaporation source in such a vacuum apparatus.

近年、真空装置、特に、分子線エピタキシャル(MBI
E)成長装置においては、蒸発ソース(例えば、アルミ
ニウム:A1)を長時間、安定に蒸発させる技術が要求
されており、るつぼの大型化や形状の改良などがなされ
ている。
In recent years, vacuum equipment, especially molecular beam epitaxial (MBI)
E) In growth apparatuses, there is a need for technology to stably evaporate an evaporation source (for example, aluminum: A1) for a long period of time, and crucibles have been made larger and their shapes have been improved.

分子線エピタキシャル成長では、超高真空中で、金属ソ
ース(例えば、AI、Ga、As、Inなどそれぞれ)
をるつぼに入れて加熱蒸発させ、分子線として加熱され
た基板上に照射(衝突)させて、エピタキシャル結晶層
(膜)を形成する。この技術は、特に、化合物半導体層
(膜)形成に利用されており、光ダイオード、レーザな
どの光素子や集積回路(IC)などの半導体装置の製造
に応用されている。
In molecular beam epitaxial growth, a metal source (e.g., AI, Ga, As, In, etc.) is grown in an ultra-high vacuum.
is placed in a crucible and heated to evaporate, and the heated substrate is irradiated (collided) with molecular beams to form an epitaxial crystal layer (film). This technique is particularly used to form compound semiconductor layers (films), and is applied to the manufacture of optical elements such as photodiodes and lasers, and semiconductor devices such as integrated circuits (ICs).

〔従来の技術〕[Conventional technology]

真空装置、例えば、分子線エピタキシャル成長装置は、
第4図に示すように、排気系につながるゲートバルブ1
を備えた真空チャンバ2と、チャンバー用液体窒素シュ
ラウド3と、るつぼ4.5、ヒータ6.7およびファー
ネス部21.22を有する蒸発源(分子線源)セル8.
9と、シャッタ10゜11と、セル用液体窒素シラウド
12と、のぞき窓13と、のぞき窓用シャッタ14と、
基板15を保持する基板ホルダ16と、該基板15を加
熱ヒータ17とからなる。そして、従来使用されている
るつぼ4又は5はパイロリティックボロンナイトライド
(PBN)製でありかつ第5図に示すように円錐ラッパ
のようなオープンタイプの形状である。
Vacuum equipment, for example, molecular beam epitaxial growth equipment,
As shown in Figure 4, gate valve 1 connected to the exhaust system
an evaporation source (molecular beam source) cell 8. having a vacuum chamber 2 equipped with a chamber liquid nitrogen shroud 3, a crucible 4.5, a heater 6.7, and a furnace part 21.22.
9, a shutter 10° 11, a cell liquid nitrogen shroud 12, a peephole 13, a peephole shutter 14,
It consists of a substrate holder 16 that holds the substrate 15 and a heater 17 that heats the substrate 15. The crucible 4 or 5 conventionally used is made of pyrolytic boron nitride (PBN) and has an open type shape like a conical trumpet as shown in FIG.

このるつぼ4内に蒸発源ソース(例えば、AI )を入
れ、ヒータ6によって溶解し、高真空中で蒸発して分子
がビーム(線)状になってセル8から出て、基板15に
到達する。なお、るつぼ40円錐頂角θは、第6図に示
すように、蒸発源セル8と基板15との距離lおよび基
板ホルダ(モリブデンブロック)15の直径りを考慮し
て適切に設定される。
An evaporation source (for example, AI) is placed in this crucible 4, melted by a heater 6, and evaporated in a high vacuum, molecules exiting the cell 8 in the form of a beam (line) and reaching the substrate 15. . The apex angle θ of the cone of the crucible 40 is appropriately set in consideration of the distance l between the evaporation source cell 8 and the substrate 15 and the diameter of the substrate holder (molybdenum block) 15, as shown in FIG.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したPBNるつぼでAIを分子線にしてAIを含む
化合物半導体層(AIGaAs 、 InAlAsAl
AsSbなど)をエピタキシャル成長させる場合に、溶
融したAI はPBNとの表面張力の関係でPBNるつ
ぼの内面を這い上がる性質があり、最悪の場合にるつぼ
の外側へ流れだす。そうでなくても、るつぼ上端部はセ
ル用液体窒素シュラウドの影響を受けるので、るつぼ上
部にてA1が凝固してAIの蒸発が妨げられ、エピタキ
シャル成長層中のA1含有量の変動やA1分布の不均一
を招く。
A compound semiconductor layer containing AI (AIGaAs, InAlAsAl
When epitaxially growing materials (such as AsSb), molten AI has a tendency to creep up the inner surface of the PBN crucible due to its surface tension with PBN, and in the worst case, it will flow out of the crucible. Even if this is not the case, the upper end of the crucible is affected by the liquid nitrogen shroud for the cell, so A1 solidifies at the upper part of the crucible and prevents the evaporation of AI, leading to fluctuations in the A1 content in the epitaxial growth layer and changes in the A1 distribution. leading to non-uniformity.

本発明の目的は、PBNるつぼにおいてAIがるつぼ上
部に這い上がるのを抑制し、るつぼ上部でのAI凝固を
防止し、A1を安定に長時間蒸発させることであり、そ
のためにるつぼを提供することである。
The purpose of the present invention is to suppress AI from creeping up to the top of the crucible in a PBN crucible, prevent AI solidification at the top of the crucible, and stably evaporate A1 for a long time, and to provide a crucible for this purpose. It is.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的が、蒸発ソースを収容するパイロリティック
ボロンナイトライド製のるつぼと、該るつぼを加熱する
ヒータとを備えた真空装置において、前記るつぼの蒸発
有効口径を狭めることなく、前記るつぼの上部に前記る
つぼの頂面から下方へ延びるパイロリティックボロンナ
イトライド製のかえし部を付設していることを特徴とす
る真空装置によって達成される。
The above-mentioned object is a vacuum apparatus equipped with a crucible made of pyrolytic boron nitride that accommodates an evaporation source, and a heater that heats the crucible. This is achieved by a vacuum device characterized in that it is provided with a barb made of pyrolytic boron nitride that extends downward from the top surface of the crucible.

かえし部はその内部に温度補正加熱用ヒータを有する(
内蔵する)ことが好ましい。
The barb part has a temperature compensation heater inside it (
(built-in) is preferable.

〔作 用〕[For production]

本発明では、るつぼと同じ材質であるPBHのかえし部
をるつぼ蒸発有効口径(所定のるつぼ円錐頂角)となる
ように設計製作してあり、るつぼ本体との間に隙間を形
成してAIのるつぼ上部内面までの這い上がりを抑制す
る。さらに、かえし部に内蔵ヒータがあって、るつぼ上
部でのAI凝固を予防している。
In the present invention, the barb part of the PBH, which is made of the same material as the crucible, is designed and manufactured to have the crucible evaporation effective aperture (predetermined crucible cone apex angle), and a gap is formed between it and the crucible body to allow the AI to Prevents creeping up to the inner surface of the upper part of the crucible. Additionally, there is a built-in heater in the barb to prevent AI from solidifying at the top of the crucible.

〔実施例〕〔Example〕

以下、添付図面を参照して、本発明の実施態様例によっ
て本発明の詳細な説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail by way of embodiments with reference to the accompanying drawings.

第1図は、本発明に係る真空装置、特に、分子線エピタ
キシャル成長装置での蒸発源(分子線源)セル8の断面
図であり、従来装置(第4図)のものと同じ部分には同
じ参照番号を使用している。
FIG. 1 is a cross-sectional view of an evaporation source (molecular beam source) cell 8 in a vacuum apparatus according to the present invention, particularly a molecular beam epitaxial growth apparatus. Reference numbers are used.

本発明によると、第1図に示すように、PBNるつぼ4
をPBNるつぼ本体25とPBNかえし部26とで構成
し、かえし部26はるつぼ本体25の頂面(上端面)か
ら下方へ延びており、管フランジに近い形状である。か
えし部26はタンクルワイヤの温度補正加熱ヒータ27
を内蔵しており、そして、重要なことはかえし部26の
るつぼ本体25内側での内面が所定のるつぼ円錐頂角θ
での円錐面aに一致するようになっていることである。
According to the present invention, as shown in FIG.
is composed of a PBN crucible body 25 and a PBN barb 26, and the barb 26 extends downward from the top surface (upper end surface) of the crucible body 25 and has a shape similar to a pipe flange. The barb part 26 is a temperature correction heater 27 made of tank wire.
What is important is that the inner surface of the barb 26 inside the crucible body 25 has a predetermined crucible cone apex angle θ.
This means that the conical surface a coincides with the conical surface a at .

このようにしてるつぼ蒸発有効口径は従来と変わりがな
い。そして、るつぼ本体25はかえし部26に対応する
上部が円錐面より外方へ拡大している。
In this way, the effective aperture of the crucible for evaporation remains the same as before. The upper portion of the crucible body 25 corresponding to the barb portion 26 expands outward from the conical surface.

るつぼ本体25は従来と同様な方法でPBHによって製
作され、かえし部26では、所定金型上にPBNを薄く
形成し、ヒータのタンクルワイヤ27を巻き付け、該ヒ
ータを覆うようにPBNをさらに形成して製作される。
The crucible body 25 is manufactured by PBH in the same manner as in the past, and in the barb part 26, a thin layer of PBN is formed on a predetermined mold, a tank wire 27 of the heater is wound around it, and PBN is further formed to cover the heater. Manufactured.

製作したるつぼ本体25を蒸発源セル8のファーネス部
21内にセットし、さらにかえし部26を第1図に示す
ようにセットし、押え具28にて固定する。
The manufactured crucible body 25 is set in the furnace part 21 of the evaporation source cell 8, and the barb part 26 is further set as shown in FIG. 1 and fixed with a presser 28.

次に、るつぼ本体25内に所定量のAI固体30を入れ
、第4図の分子線エピタキシャル成長装置内に蒸発源セ
ル8をセットし、真空チャンバ2内を排気し高真空状態
にする。シャッタ10を閉じた状態でセル用ヒータ6お
よび温度補正加熱ヒータ26を所定温度まで発熱させて
A130を溶解する。同時に基板加熱用ヒータ17でも
って基板15を成長温度にする。このときには他の化合
物半導体成分についてもそれぞれの蒸発源セル9にて溶
融しである。そして、シャッタ10.11を開いて、蒸
発源セル8および9から分子線(A1分子線、化合物半
導体成分の分子線)を基板15に当て、所定厚さのAI
含有化合物半導体層を成長させたところで、シャッタ1
0.11を閉じ、ヒーター加熱温度と蒸発がない状態ま
で下げる。
Next, a predetermined amount of AI solid 30 is placed in the crucible body 25, the evaporation source cell 8 is set in the molecular beam epitaxial growth apparatus shown in FIG. 4, and the vacuum chamber 2 is evacuated to a high vacuum state. With the shutter 10 closed, the cell heater 6 and temperature correction heater 26 are heated to a predetermined temperature to melt A130. At the same time, the substrate 15 is brought to the growth temperature using the substrate heating heater 17. At this time, other compound semiconductor components are also melted in each evaporation source cell 9. Then, the shutters 10 and 11 are opened, and molecular beams (A1 molecular beams, compound semiconductor component molecular beams) are applied to the substrate 15 from the evaporation source cells 8 and 9, and a predetermined thickness of AI is applied.
After growing the compound semiconductor layer, the shutter 1
Close the 0.11 and lower the heater heating temperature to a state where there is no evaporation.

このようにしてA1蒸発源セル8を長時間使用しても、
PBNかえし部26の開口側表面にAIが付着すること
はなく、かえし部26とるつぼ本体26との隙間にAI
が存在するものの使用中は溶融状態である。
Even if the A1 evaporation source cell 8 is used for a long time in this way,
AI does not adhere to the opening side surface of the PBN barb part 26, and the AI does not adhere to the opening side surface of the PBN barb part 26.
Although it exists, it is in a molten state during use.

また、PBNかえし部26およびるつぼ本体25の上部
の形状は第1図に示したものだけでなく、第2図に示す
ように基本的にるつぼ本体25とヒータ27内蔵のかえ
し部26とから構成されていれば良く、第3A図、第3
B図および第3C図に示すようなるつぼ形状でもよい。
In addition, the shapes of the PBN barb 26 and the upper part of the crucible body 25 are not limited to those shown in FIG. 1, but as shown in FIG. Figure 3A,
It may also have a crucible shape as shown in Figures B and 3C.

第3A図の場合には、るつぼ本体25の頂面に凸部があ
り、一方、かえし部26には対応位置に凹所があって、
これらが嵌合する(31で示す)。第3B図の場合には
、かえし部26の下部が外方へ湾曲せずにまっすぐなま
まである。さらに、第3C図の場合には、るつぼ本体2
5の上部を段差形状にすることなく単調な円錐形状にし
である。これら第3A図〜第3C図ではいずれもかえし
部26の開口側表面はるつぼの頂角θでの円錐面aと一
致している。
In the case of FIG. 3A, the crucible body 25 has a convex portion on the top surface, while the barb portion 26 has a concave portion at a corresponding position.
These fit together (indicated by 31). In the case of FIG. 3B, the lower part of the barb 26 remains straight without curving outward. Furthermore, in the case of FIG. 3C, the crucible body 2
The upper part of 5 is made into a monotonous conical shape without having a stepped shape. In all of these FIGS. 3A to 3C, the opening side surface of the barb portion 26 coincides with the conical surface a at the apex angle θ of the crucible.

〔発明の効果〕 以上説明したように本発明によれば、蒸発の有効口径を
損なうことなくかえし部をるつぼ上部に設けて、AIが
PBNるつぼ内面を這い上がることを抑制でき、長時間
安定した蒸発(分子線発生)を確実に行なえる。
[Effects of the Invention] As explained above, according to the present invention, the barb portion is provided at the top of the crucible without impairing the effective aperture for evaporation, and it is possible to suppress AI from creeping up the inner surface of the PBN crucible, resulting in a stable and long-term Evaporation (molecular beam generation) can be performed reliably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る分子線エピタキシャル成長装置
(真空装置)での蒸発源セルの断面図であり、 第2図は、本発明に係るPBNるつぼの断面図であり、 第3A図〜第3C図は、本発明に係るPBNるつぼの部
分断面であり、 第4図は、分子線エピタキシャル成長装置の概略断面図
であり、 第5図は、従来のPBNるつぼの断面図であり、および 第6図は、PBNるつぼと、基板および基板ホルダとの
関係を示す断面図である。 2・・・真空チャンバ、 4.5・・・PBNるつぼ、 6.7・・・ヒータ、 8.9・・・蒸発源セル、 15・・・基板、 17・・・基板ヒータ、 5・・・るつぼ本体、 6・・・かえし部、 7・・・ヒータ、 0・・・A1゜
FIG. 1 is a cross-sectional view of an evaporation source cell in a molecular beam epitaxial growth apparatus (vacuum apparatus) according to the present invention, FIG. 2 is a cross-sectional view of a PBN crucible according to the present invention, and FIGS. 3C is a partial cross section of a PBN crucible according to the present invention, FIG. 4 is a schematic cross section of a molecular beam epitaxial growth apparatus, FIG. 5 is a cross section of a conventional PBN crucible, and FIG. The figure is a cross-sectional view showing the relationship between a PBN crucible, a substrate, and a substrate holder. 2... Vacuum chamber, 4.5... PBN crucible, 6.7... Heater, 8.9... Evaporation source cell, 15... Substrate, 17... Substrate heater, 5...・Crucible body, 6...Barb part, 7...Heater, 0...A1゜

Claims (1)

【特許請求の範囲】[Claims] 1、蒸発ソースを収容するパイロリティックボロンナイ
トライド製のるつぼと、該るつぼを加熱するヒータとを
備えた真空装置において、前記るつぼの蒸発有効口径を
狭めることなく、前記るつぼの上部に前記るつぼの頂面
から下方へ延びるパイロリティックボロンナイトライド
製のかえし部を付設していることを特徴とする真空装置
1. In a vacuum apparatus equipped with a crucible made of pyrolytic boron nitride that accommodates an evaporation source and a heater that heats the crucible, the crucible is placed above the crucible without narrowing the effective evaporation aperture of the crucible. A vacuum device characterized in that it is equipped with a barb made of pyrolytic boron nitride that extends downward from the top surface.
JP6200889A 1989-03-16 1989-03-16 Vacuum device Pending JPH02243758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6200889A JPH02243758A (en) 1989-03-16 1989-03-16 Vacuum device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6200889A JPH02243758A (en) 1989-03-16 1989-03-16 Vacuum device

Publications (1)

Publication Number Publication Date
JPH02243758A true JPH02243758A (en) 1990-09-27

Family

ID=13187698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6200889A Pending JPH02243758A (en) 1989-03-16 1989-03-16 Vacuum device

Country Status (1)

Country Link
JP (1) JPH02243758A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087353A (en) * 2010-10-19 2012-05-10 Mitsubishi Shindoh Co Ltd Vacuum deposition device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087353A (en) * 2010-10-19 2012-05-10 Mitsubishi Shindoh Co Ltd Vacuum deposition device

Similar Documents

Publication Publication Date Title
KR100287978B1 (en) MG evaporation method with increased evaporation rate
JPH02243758A (en) Vacuum device
JPH04348022A (en) Cell for molecular beam epitaxy
JP3323522B2 (en) Molecular beam cell
JPS61220414A (en) Apparatus for generating molecular beam
JP2546746Y2 (en) Vertical Bridgman crucible
JPH03159989A (en) Vacuum deposition apparatus
JPH026385A (en) Method for forming thin film and apparatus therefor
JPH0841629A (en) Cell shutter and its use method
JPS63282190A (en) Molecular beam crystal growth device
JPH06172083A (en) Molecular beam epitaxial growth method and crucible to be used therefor
JPH04274316A (en) Cell for molecular beam epitaxy
JPS60225421A (en) Evaporation source crucible for molecular beam epitaxy
JPH0391236A (en) Method of manufacturing product comprising iii/v group semiconductor devices
JPS60240119A (en) Molecular beam crystal growth
JPH0619569Y2 (en) Molecular beam cell PBN crucible
JPH0322913Y2 (en)
JPH03228898A (en) Crystal growing method
JPS6240427B2 (en)
JPH0512297Y2 (en)
JPH097947A (en) Molecular beam cell
JPS60257126A (en) Molecular beam epitaxy apparatus
JPS63282189A (en) Molecular beam epitaxial growth device
JPS63122211A (en) Molecular beam generating device
JPH01305889A (en) Molecular beam cell